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Abstract

Recently, researchers have investigated novel
dual representations as a basis for dynamic
programming and reinforcement learning al-
gorithms. Although the convergence prop-
erties of classical dynamic programming al-
gorithms have been established for dual rep-
resentations, temporal difference learning al-
gorithms have not yet been analyzed. In this
paper, we study the convergence properties of
temporal difference learning using dual rep-
resentations. We make significant progress
by proving the convergence of dual temporal
difference learning with eligibility traces. Ex-
perimental results suggest that the dual algo-
rithms seem to demonstrate empirical bene-
fits over standard primal algorithms.

1 Introduction

Algorithms for dynamic programming (DP) and rein-
forcement learning (RL) are usually formulated with
respect to value functions for states or state-action
pairs (Bertsekas and Tsitsiklis 1996; Sutton and Barto
1998).  However, linear programming approaches
demonstrate that the value function representation is
not an indispensable component for solving DP and
RL problems. Instead, investigations into the dual
representation show that the notion of state or state-
action visit distribution can replace the concept of
value functions (Wang et al. 2007, 2008). In partic-
ular, the dual representation provides an equivalent
but distinct approach to solving DP and RL prob-
lems (Wang et al. 2007, 2008). It is known that there
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exist dual forms for standard DP and RL algorithms,
including policy evaluation, policy improvement and
off-policy control. It is also known from previous work
that dual DP algorithms possess advantageous conver-
gence properties over their primal counterparts: For
off-policy control with function approximation, where
the gradient-based updates in the primal form often
diverge, the dual DP algorithms empirically remain
stable. However, no previous work has been done on
the dual form temporal difference (TD) learning.

In this paper, we contribute progress to research on
dual representations for DP and RL algorithms by pre-
senting new theoretical results for the dual representa-
tion of reinforcement learning algorithms; in particu-
lar, temporal difference learning with eligibility traces.
We also show the convergence property empirically.

The remainder of this paper is organized as follows.
First we provide some brief background on existing
TD algorithms, both in the primal and dual represen-
tations, in Section 2. After presenting the dual form of
TD algorithm with eligibility traces in Section 3, and
covering necessary preliminaries, we show the conver-
gence property theoretically in Section 4. We then
present an empirical study of convergence in Section 5
before concluding.

2 Background

Reinforcement learning is an approach to finding an
optimal policy for a sequential decision making prob-
lem when one only has access to the environment
by choosing actions and observing state transitions
and rewards (Bertsekas and Tsitsiklis 1996; Puterman
1994; Sutton and Barto 1998). We consider a Markov
decision process (MDP), defined by (S, A, P,r,~),
where S is a finite or countably infinite set of states; A
is a set of actions; P is a transition |S||A| x | S| matrix,
whose entry Py, specifies the conditional probabil-
ity of transitioning to state s’ starting from state s and
taking action a; r is a bounded |S||A|x 1 reward vector,
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whose entry r(,) specifies the reward obtained when
taking action a in state s; and 0 < v < 1 is a discount
factor.! A policy 7 is represented by an |S||A| x 1 vec-
tor, whose entry 7 (,) specifies the probability of tak-
ing action a in state s, that is, 0, () = 1. It is con-
venient to represent a policy as an |S| x |S]|A| matrix
IT, where I s1q = 7 (5q) if s’ = s, otherwise 0. Note the
same definition for IT is also used in Lagoudakis and
Parr (2003). The [S| x |S| matrix IIP gives the state
to state transition probabilities induced by 7. Let
{at}2, be any positive and non-increasing step-size
sequence such that > ,° a; = oo and Y o af < oo.
We assume the MDP induces an irreducible and ape-
riodic Markov chain.

2.1 Primal TD(0)

TD learning is a traditional approach to policy evalua-
tion (Sutton and Barto 1998) that has been proved to
converge to an exact representation of the value func-
tion in the tabular case and to a bounded error in the
linear function approximation case (Tsitsiklis and Van
Roy 1997). To express TD algorithms in the primal
representation, recall that the state value function can
be specified by an |S|x 1 vector

v = Z A (TTP) TIr
i=0

which satisfies

v = IIr 4+ ~IIPv.

The first temporal difference algorithm, TD(0), is
given by the simple update rule in the tabular case

v(se) = v(st) +aufre +yv(se+1) — v(se)] (1)

where r; is the observed reward at time t.

This algorithm can be extended to cope with large
state spaces by introducing a function approximator
to take the place of an exact representation of v. In
linear function approximation, one defines ¢'(s) =
{#1(s),- -+, dr(s)}, where k is the number of basis
functions. The approximate value function is then
given by v(s) = ¢(s)Tw, where w is the weight vector.
The update procedure for approximate TD(0) is then

= Wi+ ad(se)[re + ”Y¢T(5t+1>wt
—¢" (s¢)w] (2)

Wii1

!The analysis in this paper can be extended to the con-
tinuous case, which requires the transition probability ma-
trices to be replaced by probability transition kernels.

2.2 Dual TD(0)

Traditionally, the primal value function plays an es-
sential role in DP and RL algorithms. However, it
is demonstrated in Wang et al. (2007, 2008) that the
classical DP and RL algorithms, namely, policy eval-
uation, policy improvement, Q(0), Sarsa(0), have nat-
ural duals expressed with state or state-action distri-
butions.

To develop a dual form of state policy evaluation, one
considers the |S]x |S| matrix

M=(1-7)) 4Py
1=0

which satisfies the linear system
M=01-I+~+1IPM

Each row of M is a probability distribution and the
entries M ) correspond to the probability of dis-
counted state visits to s’ for a policy 7 starting in
state s. We have (1 —y)v = MTIIr. That is, given M
we can easily recover the state values of =.

In the tabular dual representation, the TD(0) update
rule can be expressed by
M(sy,:) = M(sy,:) +al(1—v)e],

FYM (St41,:) — M(s1,:)] (3)

where e, is a column vector of all zeros except for a
1 for the st entry (Wang et al. 2008).

Analogous to the primal case, linear function approx-
imation can be formulated in the dual representation
as follows. Let X = (YW ..., T®)) be a set of k basis
matrices such that each Y is an | S| x |S| matrix satis-
fying the constraints Y1 =1 and Y > 0. Clearly,
these are bounded functions. Assume furthermore
that these basis matrices are linearly independent; that
is, no one of them can be expressed as a linear combi-
nation of the others. Define ¥ as an |S|? x k matrix
of basis distributions, so that ¥(:,4) = vec(T?). De-
fine the operator reshape to be the inverse of vec, in
that it converts the vector Yw, whose dimension is
|S|? x 1, back into an |S| x |S| matrix. Then a linear
approximation in the dual representation, M , can be
expressed as:

k
M = Z w; YV = reshape(Iw),
i=1

where w > 0, W:rl = 1. Note that by these definitions
it follows that M is a nonnegative row normalized ma-
trix; such that M >0, and M1 =1.
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Given this form of linear approximation, the TD(0)
algorithm can be expressed by

wi + af(1 =) +yD(st41, 1) We
—T'(s¢, :)wt]FT(st, ) 4)

where I' = ((IIr)T ® I)¥ is an |S| x k matrix and ®
is the Kronecker product. To better understand the I'
object, which will be required below, note that by the
above definition we have

Wil =

r = ]

= [r@

Thus I" has a reasonably intuitive interpretation. Each
column of I" is associated with a single basis matrix
T®) . The column is a scaled version of the value
function one would obtain if T*) were the correct
M matrix for the policy and the transition dynam-
ics for the domain. That is, we have the relationship
(1 =~)v = MTlr.

3 Dual TD())

In this paper, we introduce the dual form of TD(A)
for general A and analyze its convergence properties.
Our analysis below will address both the tabular and
function approximation cases.

Recall that in the primal representation with linear
function approximation, TD(X), A € [0,1], can be ex-
pressed by the update rule

di = T4+ (se41)Wi — ¢ (s)wy
z = YAz—1+ P(sy)
Wil = Wi+ oudiz (5)

where d; is the temporal difference, z; is the eligibility
trace (Sutton and Barto 1998; Tsitsiklis and Van Roy
1997).

Our first contribution is to introduce a dual version of
TD()), in the linear function approximation case, and
show how it arises from the combination of a projection
and temporal difference operator.

Given the dual linear approximation representation in-
troduced in the previous section, an analogous TD(\)
update to the primal case can be expressed as

di = (1=7)r+~T(st41,:)wW — D(sg, )Wy
e = YAz + I‘T(st, )
Wit1 = Wi+ oudiz (6)

This algorithm arises from the combination of a tem-
poral difference operator and a projection operator as
follows. First define the dual TD(X) operator as

TOM =(1-X)> A"
m=0

(1= A (TP) + (yIIP)™ ' M| (7)
t=0

TOM = (1—7)§:7i(ﬂp)i =M (8)
i=0

(We will show that the dual T'D()) operator is a con-
traction in Lemma 4 below.)

Second, to model the effect of linear approximation we
will need to introduce a linear projection operator. Let
D be the diagonal matrix with entries from the steady
state distribution p. Define |||, = /(-,-)p as the
norm on the inner product space, (z,y)p = =" Dy.
Define the pseudo-norm HMH;Hr = ||MHr||% =
(MTr)"D(MTIr). Define Ly(S, D,TIr) as the set of
matrices {M € RISIXISl| M| p e < 00}

We define the projection operator P with respect to
||'||D)Hr as follows.

st @

PM =

argmin
Mecol-span(¥)

where M is the true state visit distribution and M is
an approximation for it. The above equation can be
rewritten as

2
PM

argmin
Mecol-span(¥)

-3

D IIr

subject to M = reshape(¥w) for some w  (10)

Manipulating the objective function Jy;, we have,

N 2
Iy = M—M}

D, IIr

“ 2
= || e = MHrH
D

. 2
= ||vec(MTIIr) — vec(MTIr) ‘ ‘D

2

= || @ Dvec(hr) - vec(in)||

2
|[MTIr — Dw| 2, (11)

The optimization problem (10) can be expressed with
respect to w as

PM =

subject to w* =

reshape(Tw*)
argmin || MTIr — T'w||3, (12)
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We can obtain the gradient,

VwJu = —2I"D(MTIIr —I'w) (13)
Set VwJy = —2I'TD(MTIr —TI'w) = 0, then w =
(CTDD)~II'TDMIr. With MIIr = T'w and M =
PM, we have PMIIr = I'w. Thus, we obtain the
projection matrix P as:

P=T("DI)"'TTD. (14)

To make M a basis distribution, we need to fur-
ther confine it in Simplex(¥), by two more projec-
tions: Py, onto the subspace of row normalized matri-
ces span(¥) N {M|M1 = 1}, and P4, onto the sub-
space of non-negative matrices span(¥) N {M|M1 =
1 and M > 0}.2

Now we make the connection between the stochas-
tic gradient update (6) and gradient operator (13).
To achieve this, construct a Markov process X; =
(8¢, St41, 2t) and define a function u

u(w, X¢) = (1 —9)re + Y0 (se41, )W — T(se, 1) w) 2
Then the dual TD()) update becomes:
Wit = Wi + O[t’LL(Wt, Xt)

As we will show later, for any w, u(w,X;) has
a well-defined steady-state expectation denoted by
Eo[u(w, X;)], and as will be shown in Lemma 8,

Eolu(w, X,)] = T"D(T™(I'w) — I'w)

where, with a slight abuse of the notation, T (T'w)
denotes T (M)TIr. Thus, as one can see

1
Wip1 = W — EOétVWJM
is a steepest descent iteration in solving the problem
112
of minimizing HM N }

D IIr

Note that the update (6) requires only O(k) compu-
tation if access to I' is available. If T' is not explic-
itly available then, given access to a reward evaluator
for computing 7(s, a) the required entries in T' can be
efficiently estimated by sampling random states and
actions according to T and II, and evaluating r(s,a)
pointwise. To keep this paper simple, we assume that
the reward function r is known. If r is not known, it

*We may apply the operators P; and P to w in (6)
and (4) to make it normalized and non-negative at every
step, at the end of every IV steps or at the end of the exper-
iment. Our analysis focuses on the case the two operators
are applied at the last step of the experiment. We believe
it holds for the other cases.

is possible to efficiently estimate entries in I' by sam-
pling. However we did not run any experiments to test
this.

In principle, the dual policy evaluation algorithm could
be combined with policy improvement steps to obtain
a version of dual-Sarsa and dual-Q-learning, as sug-
gested in the existing publication (Wang et al. 2007).
But we have not yet analyzed these algorithms.

4 Theoretical results

In this section, we study the convergence property of
the dual TD(A). We present a series of lemmas which
underly the theorem for convergence.

Lemma 1 For any M € Ly(S, D, 1r),

ITPM||p e < M| p1e

Proof: ~ The proof involves Jensen’s inequality, the
Tonelli-Fubini theorem for the interchange of summa-
tions and the property that p is the steady state dis-
tribution.

IIPM|[) ., = (IPMIIr)" D(IIPMIIr)

S| S|

= > p() | _(IIP)(i, 5)(MTIr)(5)

i=1 j=1
S| IS|

> (@) D_(IP)G, ) [(MTIx) (7))

Jj=1

IN

IS IS

= Z Z p(i)(ILP) (i, j) [(MTIr) (5))*
S|

= Zu(j) [(M11x) (7))

= (MIIr)" D(MTIr)
= ||M||%),Hr I

Lemma 2 M* as defined in (8) is in La(S, D,IIr).

Proof: ~ We use Jensen’s inequality for the first in-
equality and Lemma 1 for the second:

M p e = ‘ (1= A+ Py
1=0 D,IIr
< (1_7)27i”(np)iHD,Hr
i=0
< (1_7)27i||l||D,Hr:||I||D,Hr |

=0
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Lemma 3 For any M ¢
[0,1], TV M € Ly(S, D, TIr).

Ly(S,D,IIr),\ €

Proof: Lemma 2 proves the case A = 1. Now we prove
the case A € [0,1).

TN M
SCEP'D SEUTER) el ]
m=0 t=0
+(’yHP)m+1M}
< |la=0 DA -y Aap)
m=0 t=0 D,IIr
H[1 =X > APy M
m=0 D, IIr
< (=N A=y Zv |@P) ||, g
m=0
FA =)D Ay M|
m=0
< @=ND A=Y A pe
m=0 t=0
1
+71_ A||M||D,Ht‘<oo

The next lemma will be useful for establishing the error
bound.

Lemma 4 For any M,M € Lo(S,D,IIr), and \ €

[0,1], we have
oo

1(1=A) T i
W02 0g ]|, < [0 = T

D IIr

Proof: The case of A = 1 is trivial. The result for

A €]0,1) follows from Lemma 1:

i
D,IIr

A) AP (M — )

m=0 D,TIr
< A) Z ATy H(M_M)HD,HI-
m=0
Py
11—\ H(M_M)HD,Hr |

Lemma 5 For A\ € [0,1], M* is the fixed point of
TN that is, TMM* = M*.

Proof: For the case of A = 1, the proof follows from

the definition of 7. For A € [0,1),
T M
SCEP'D SEUEER) 9Elt ]
m=0 t=0
+(7HP)’”+1M*]
= ) ZA’”[ 1—7)) ~'(1IIP)
m=0 t=0

t=0
— a-n Y [(1 ) Zf(np)t]
m=0 t=0
= (1-X)_ A"M*
_ M* m=0 I

The next lemma establishes that the composition
PTW is a contraction, and the fixed point, denoted
as M, must lie in the space {M|M = reshape(¥w)},
which is a subspace of Lo(S, D, IIr).

Lemma 6 PTW is a contractor, and it has a unique
fized point of the form M, = reshape(¥w*) for a
unique choice of w*. Furthermore,

. Ay .
08 =307l e < S22 g -

M*
>~ 1 ||D,Hr

Proof: From the fact that the projection P is non-
expansive, and by Lemma 4, T™) is a contractor, the
composition PT'™ is a contractor. By Lemma 5, T)
has a unique fixed point of the form M* = TWM*.
Now we establish the approximation error bound be-
tween M, and M*. Since M+ = PTWM,, P is
non-expansive, M* = T M* and from Lemma 4, we
have,

1My = PM|pe = ||[PTOM, - P

D,IIr
< HTWM+ Y
D, IIr
- oo
Jr
TN My — M*||p g,
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With the Pythagorean theorem for the first inequality
and Lemma 4 for the second, we have

[|My — M| p
My —PM* +PM* — M*||p
[[My —PM*||p e + [|PM* = M| p 1,

TN |My = M| p e + [[PM” —

IN

*
||D,Hr

Next, we study the expected behavior of the dual
TD(A) algorithm (6) in the steady state. To study
a process already in the steady state, we redefine
2= (YT (s,:). We study the prop-
erty of Ep[u(w, Xy)]. Recall Xy = (s¢, St+1, 2t)-

The desired result then follows.

Lemma 7 The following relations hold, and each of
them is well defined and finite:

Eo [T7(st, )T (8¢4m,:)] =TT DIIP)™T
HEO [FT(St; :)F(St+m, )] H < 00

Eo[zD(ss,:)] = Y (AA)™TTD(IIP)™T
m=0
= > (y)"TTDIP)" T
m=0

E [ztf St+1, .

= > ()T D(IIP)™ I

m=0

ZtT

For any M, M € Ly(S, D,IIr), we have

Eo [(M (s¢, :)IIr) (M (St-4m, :)r)]

= Zu(i)Z(HP)(LJ')(M(L:)HrW(J’,:)Hr
€S JES

= 3 uli)(M (i, ) TIe[(TLP)™ T3, ) Ir
€S

= (MTIr)" D(ITP)™ (MTIr)

Note, (ILP)™M € L (S, D,IlIr). For any MIIr = I'w
and MIIr = I'w, we have,

Eo [(M (s¢, )IIr)(M (St4m, :)r)]

Ey [WTFT(st, O (St4m, )W

w TTD(IIP)"T'w

Since w and W are arbitrary, it follows that,

Eo [T (s¢, )T (8¢4m,:)| = TTDIIP)™T

[CTD@MP)™T|| < k*max|T]D(IIP)"T]|
QY

k?max |} D? D (ILP)"T,
3

IN

kzn;.l‘c;XlIFillD [|(TP)™ |

IN

K max||Ti[[7,

k? max Ey[['?] < oo
where T'; = T'(;, ), the ith column vector. This com-
pletes the proof for 1) and 2). Now we prove 3).

0

Eo | Y (yN) 7T (sk, )0 (s0,1)

k=—o00

EQ [2’01—‘(80, )]

M-

(YA) " Eo [T (sk, )T (50, 1)]

k=—o00

M8

(YA Ey [FT(s,m, )L (s0,:)]

m=0

(y\)™T'T D(ITP)™T

NE

0

3
]

Note that Eg[z:I'(s¢,:)] is the same for all ¢t. The re-
sults of 4) and 5) can be proved similarly. |

Lemma 8 The following expectation is well defined
and finite for any finite w,

Eo [u(w, Xy)] = TTD(TW(I'w) — T'w)
Proof: By Lemma 7, we have,
Eo [u(w, Xy)]
= FEo[(1 —=7)zer + vzl (st41, )W — 2 (8¢, 1) W]

ITD ) " (yAIIP)™((1 — y)Hr + AIIPT'w — T'w)

m=0

For \ =1, it follows that
Eo [u(w, X))

r'p i (yITP)™((1 — y)IIr +AIIPT'w — I'w)

)

(1-

r'D (M*Hr + 3 (YIIP)" (4IIPT'w — I'w)
m=0

I'"D(M*Tr — T'w)

For A € [0,1), we have > oo (yAIIP)"M =
A) Do A (VITP) M, therefore,

Ep [u(w, X¢)]

) i AT
m=0

m

(v IIP)Y(
=0

~v)IIr

I''D((1 -
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Z A™ N “(VIIP)'(YIIPT'w — I'w))
t=0
= ITD((1 =X D A" (yIIP) (1 — y)IIr
m=0 t=0
+((1 - Z A" (ILP)™ ! — I)I'w)
m=0
= I'D(TM(I'w) —T'w)

By Lemma 7, each expectation is well defined and fi-
nite. |

Lemma 9 We have, (w — w*)TEq[u(w,X;)] <

0,Vw # w*.

Proof:  From (14), P = T(I'"DT)~I'" D, we have,
ITDP =TTD. Thus,
(w —w")TTTD(TM(I'w) — T'w)
= (w—w")TTTD((I —P)T™(I'w)
+PTWY(I'w) — T'w)

= (w—w)TTTD(PTMTw) - T'w)
‘ ‘PTW(FW) -
= HPTW(FW) —PTO(Tw*) ‘D
< HTW(PW) — T (Tw*) ‘D
< qlfw—Tw[p

where the first inequality is from Lemma 6 and the
second from Lemma 4.

(w —w)TTTD(TWM(T'w) — T'w)
= (Tw—Tw")TDPTM(I'w) — I'w)
= (I'w —T'w*)"D(PTN(Tw) — PTWV(T'w*)

+PTM(Tw*) — T'w)
= (Iw —Tw*)"D(PTMN(Tw) — PTY(T'w*)
+T'w* —T'w)

IN

IPw — Tw*[[ HPT(’\)(Fw) — PTO(Tw*)

?D

where we use the Cauchy-Schwartz inequality. The
result follows since v < 1. |

—[[Tw - Tw*[[}, < (v = 1) ||T'w — T'w"| 5,

Theorem 1 For any A € [0,1], the dual TD()\) al-
gorithm with linear function approximation converges.
The limit of convergence w* is the unique solution of
the equation PT™ (I'w) = I'w. Furthermore, w* sat-

. 1-A
isfies ||[My — M*||p p < (TJ) IPM* = M| p 1y

Proof: Let u(w,X;) = A(X¢)w: + b(X;), thus
A(X:) = z:(vT(8t41,:) — T(st,:)) and b

Y)zr. By Lemma 7, A = Ey[A(X:)] and b =
Eo [b(X})] are well defined and finite.

We now prove A is negative definite. By Lemma 6,
we have PTN(T'w*) = I'w*. From (14), we have
I'DP = I'"'D. Thus, I"DTMN(I'w*) = I'"DI'w*.
By Lemma 8, Ej[u(w*,X;)] = I'TD(TWM(I'w*) —
I'w*) = 0. We have, A(w — w*) = Epu(w, Xy)] —
Eolu(w*, X;)] = Eolu(w,X:)]. By Lemma 9, (w —
wH)TA(w — w*) < 0.

Following the line of proof in Tsitsiklis and Van
Roy Tsitsiklis and Van Roy (1997), and examining the
correspondence between ¢ in the primal representation
and T" in the dual representation, it is not difficult to
prove the required “degree of stability” (conditions 5
and 6 of Theorem 2 in Tsitsiklis and Van Roy (1997)).

Therefore, with all the conditions satisfied in The-
orem 2 in Tsitsiklis and Van Roy (1997), w; con-
verges to w*, which solves Aw + b = 0. Since
Aw 4+ b = Ey[s(w, X:)], from Lemma 8, we have,
I'"'D(TW(I'w) — I'w) = 0. With the fact that T'TD
has a full row rank, w* uniquely satisfies this equa-
tion. Lemma 6 implies that w* is the unique fixed
point of PT and provides the desired error bound.

5 Empirical results

We evaluate the convergence property of the algo-
rithms on two tasks: randomly synthesized MDPs and
the mountain car problem. We study three dual TD(\)
algorithms: dual tabular TD(0), dual TD(0) and dual
TD()), denoted as OM, GT (0)M and GT (A\) M, whose
updating procedures are presented in (3), (4) and (6),
respectively. We compare their performance with the
primal algorithms: tabular TD(0), TD(0) and TD(\),
denoted as Ov, GT (0)v and G7 (\)v, whose updating
procedures are presented in (1), (2) and (5), respec-
tively.

For the synthetic MDPs, the transition model P fol-
lows the uniform distribution U[0,1] and the reward
function r follows the standard normal distribution
N(0,1). We report the results for 100 states and 5 ac-
tions. The mountain car problem has continuous state
and action spaces. We discretize it with 222 states
and 3 actions. The reward is -1 everywhere except
that the reward is 100 at the right top (the target).
Our focus is to study the convergence property of the
algorithms, so we do not attempt to refine the choice of
basis functions. For both tasks, we choose 5 random
bases. For the primal algorithms, we generate ran-
dom basis functions following N(0,1). For the dual

637



Dual Temporal Difference Learning

algorithms, we choose basis functions randomly from
U(0,1) and normalize them.

The results are averaged over 30 runs, for a fixed ran-
dom policy and a fixed set of bases. Each run has
1000 episodes and each episode has 1000 steps. In
the mountain car problem, an episode terminates once
the target is reached. The reference point is calcu-
lated offline by solving a DP problem, which is an
optimal value. Figure 1 shows the results of which
the operators Py and PT are applied at the end of
each episode to make the weight vector normalized and
non-negative. For the random MDPs, dual TD(0) and
dual TD(A) have lower errors than TD(0) and TD()),
and dual tabular TD(0) has lower error than tabu-
lar TD(0). Moreover, the curves for dual algorithms
are stable. However the curves for primal algorithms
are slightly choppy. The dual and primal TD(0) plots
overlap with their TD()\) counterparts respectively in
Figure 1(a).

For the mountain car problem, dual algorithms con-
verge fast (in less than 100 episodes). However, pri-
mal algorithms TD(0) and TD()) are much less stable.
The dual algorithms in general achieve lower errors.
We have similar results for the cases the operators Py
and PT are applied in every step or at the end of the
whole experiments. The dual TD(0) plot overlaps with
the TD(A) plot in Figure 1(b).

6 Conclusion

Recently, researchers have investigated novel dual rep-
resentations as a basis for dynamic programming and
reinforcement learning algorithms. Although the con-
vergence properties of classical dynamic programming
algorithms have been established using dual represen-
tations, temporal difference learning algorithms have
not yet been analyzed. In this paper, we study the
convergence properties of temporal difference learning
using dual representations. We contribute significant
progress by proving the convergence of dual tempo-
ral difference learning with eligibility traces. Exper-
imental results on random MDPs and the mountain
car problems suggest that the dual algorithms seem to
demonstrate empirical benefits over standard primal
algorithms.
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