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Abstract
In this paper, we describe AzureML, a web service that provides a model authoring en-
vironment where data scientists can create machine learning models and publish them
easily (http://www.azure.com/ml). In addition, AzureML provides several distinguishing
features. These include: (a) collaboration, (b) versioning, (c) visual workflows, (d) exter-
nal language support, (e) push-button operationalization, (f) monetization and (g) service
tiers. We outline the system overview, design principles and lessons learned in building
such a system.
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1. Introduction

With the rise of big-data, machine learning has moved from being an academic interest to
providing competitive advantage to data driven companies. Previously, building such predic-
tive systems required deep expertise in machine learning as well as scalable software engineer-
ing. Recent trends have democratized machine learning and made building predictive appli-
cations far easier. Firstly, the emergence of machine learning libraries such as scikit-learn Pe-
dregosa et al. (2011), WEKA Holmes et al. (1994), Vowpal Wabbit Langford et al. (2007) etc.
and open source languages like R R Development Core Team (2011) and Julia Bezanson et al.
(2012) have made building machine learning models easier even without machine learning
expertise. Secondly, scalable data frameworks Zaharia et al. (2010); Low et al. (2010) have
provided necessary infrastructure for handling large amounts of data. Operationalizing mod-
els built this way still remains a challenge. Many web services (e.g. http://dataiku.com,
http://bigml.com, http://cloud.google.com/prediction, http://datarobot.com etc.)
have attempted to address this problem providing turnkey solutions that enable software
developers and data scientists to build predictive applications without requiring deep ma-
chine learning or distributed computing expertise. In this paper, we describe AzureML, a
web service that provides a model authoring environment where data scientists can create
machine learning models and publish them easily (http://www.azure.com/ml). In addition,
AzureML provides several distinguishing features. These include:

1. Collaboration: AzureML provides the ability to share a workspace of related modeling
workflows (called experiments) with other data scientists. Experiments can also be
shared with the wider community through an experiment gallery. Experiments in
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the gallery are indexed and searchable. Discovery is enabled by ranking experiments
organically based on popularity and community rating.

2. Versioning: AzureML provides the ability to save the state of individual experiments.
Each experiment has a version history. This enables rapid iteration without the over-
head of tracking and maintaining individual experiments and different parameter set-
tings.

3. Visual workflows: Data workflows can be authored and manipulated in a graphical
environment that is more natural and intuitive than scripts. An experiment graph
can be composed by joining modules (functional blocks that provide a way to package
scripts, algorithms and data manipulation routines).

4. External language support: AzureML supports packaging scripts and algorithms in
external languages such as python and R as modules. These modules can be inserted
into any experiment graph along with built-in modules. This allows data scientists to
leverage existing code along with built-in modules provided by AzureML.

5. Push button operationalization: Experiments containing models and data manipula-
tion workflow can be operationalized into a web service with minimal user intervention.
In contrast to other web-services, the prediction service can consist of data pre and
post-processing. Operationally, each prediction corresponds to an experiment graph
run in memory on a single instance or a groups of instances.

6. Monetization: AzureML provides a market place where authors of models can mone-
tize their published data or prediction services. This opens up new opportunities for
modelers in the prediction economy.

7. Service tiers: AzureML currently exposes two service tiers, paid and free. Anyone
with a liveID can create a workspace and begin to author and run experiments. These
experiments are limited in the size of data that can be manipulated, the size of exper-
iments that can be created, and the running time of these experiments. In addition,
free users cannot operationalize models to a production level of service. Paid users
have no such limits. In the rest of this paper, we outline the system overview, design
principles and lessons learned in building such a system.

2. System Overview

AzureML consists of several loosely coupled services (see Figure 2) which are described in
the following.

2.1. Studio (UX)

This is the primary user interface layer that provides tools for authoring experiments Studio
provides a palette of available modules, saved user assets (models, datasets) and provides
a way to define and manipulate experiment graphs. Studio also provides UX necessary for
uploading assets, sharing experiments and converting experiments to published web ser-
vices. The primary document type within AzureML is an experiment. Operationally, an
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Figure 1: AzureML UX showing an example experimental graph and the module palette

experiment consists of a directed acyclic graph connecting several modules. Modules encap-
sulate data, machine learning algorithms, data transformation routines, saved models and
user-defined code. Modules are divided into many categories such as machine learning, data
manipulation, text analytics etc. Such modules can be referenced from multiple experiments
and web services.

2.2. Experimentation Service (ES)

ES is the primary backend service that orchestrates interaction among all component ser-
vices. ES is responsible for handling and dispatching UX events from Studio and communi-
cating the results of experiments back to the user. Interaction between Studio and ES are
defined by strong contracts allowing Studio and ES to be developed iteratively and indepen-
dently. In addition, ES is the repository for all assets (datasets, models, transforms) and
information about users and workspaces. Encapsulating all experiment related activities in
a service that exposes an API allows programmatic creation, migration and manipulation
of experiments. This allows other services to be built on top of AzureML. Internally, we use
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this API for end to end tests, runners, and validation of individual modules. The API also
enables AzureML datasets to be manipulated by external environments. A Python SDK is
available where datasets can be imported (with an auto-generated code snippet), explored,
and saved back to AzureML workspaces.

2.3. Job Execution Service (JES)

When an experiment is submitted for execution by the Studio, ES constructs a job consisting
of individual module executions and sends it to JES. JES is the scheduler that dispatches
these module executions to our execution cluster. Within a workspace, multiple experiments
can be scheduled in parallel. Within each experiment, the experiment graph establishes
dependencies among individual module invocations. Modules whose dependencies have been
satisfied can be executed in parallel. The JES only schedules individual modules and does
not execute the task itself. The individual tasks are queued and eventually gets executed on a
worker node (SNR). The JES is responsible for tracking the execution of tasks and scheduling
downstream modules when results of individual modules are available. In addition, JES
enforces resource limits on executions. Each workspace can only run a certain number of
jobs in parallel and each job has a limit on the number of tasks that can be executed
concurrently. These limits are established to maintain fairness among the different users
and also to differentiate among our different tiers of service.

2.4. Singe Node Runtime (SNR)

Tasks from JES are pushed on to a task queue from where SNRs pick them up for execution.
Each module task can potentially get scheduled on a separate machine. Therefore the task
and resources required for execution of a module are copied over locally to each SNR. Their
stateless nature allows us to scale the number of SNRs based on the experiment workload.
However, this design also adds some overhead associated with transporting data, dependent
and assemblies to the SNR prior to task execution. This overhead can be amortized by
careful JES scheduling where adjacent tasks on the graph get executed on the same SNR.

2.5. Request Response Service (RRS)

RRS is responsible for answering prediction requests for single input. It implements web ser-
vices that are published based on experiments authored in Studio. A distinguishing feature
of AzureML is that prediction/scoring workflow can be represented and manipulated as an
experiment graph. The presence of web input/output entry points are the only differentiat-
ing factors between training and scoring workflows. This implies that that prediction may
involve a subset or complete experiment graph including all data transformation modules.
A training graph can be transformed to a scoring/prediction graph based using simple rules
(which are in-fact automated). Some examples are: (a) replacing model training with a pre-
trained and serialized model (b) bypassing data splits in the module (c) replacing input data
sets with a web-input port etc. Another difference between training and scoring experiments
is that within RRS, modules are executed in memory and on the same machine. Predictions
can be made per instance or on a batch basis. When experiments are published to the
RRS, test endpoints are created along with an autogenerated help page for the API. This
help page describes the format of the requests that are accepted by the endpoint as well as
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Figure 2: Component services of AzureML

sample code in C#, Python, and R for consuming the endpoints. Each RRS call is stateless
and therefore can be replicated on multiple machines to scale with demand. We recently
introduced a retraining API where customers can programmatically re-run their training
experiments on new data, evaluate the resulting models, and update their web services with
the new models if they are satisfactory.

2.6. Batch Execution Service (BES)

BES provides prediction services on larger datasets in contrast to RRS that provides predic-
tion for single inputs. The execution of the graph within BES resembles that of a training
workflow.

2.7. Community/Gallery

Authors of experiments can share their workspaces with individual users who can either
edit or only view the experiments. In addition, AzureML also provides a gallery where

5



users can share experiments with all AzureML users. Gallery effectively provides a set of
templates that can serve as starting point for experiments. Gallery also supports discovery
of experiments through organic ranking as well as through a searchable index. Gallery is
available to browse for free on the web and experiments saved there can be imported into
any AzureML workspace.

2.8. Marketplace

Marketplace (http://datamarket.azure.com) allows users to monetize their published ex-
periments or data. Currently, the marketplace supports web services that were generated
using AzureML experiments as well as standalone web services authored externally. These
end points can be integrated into regular experiments allowing composition of functionalities.

3. Life of an experiment

In the following, we describe the typical (classification/regression) workflow of an AzureML
experiment.

3.1. Ingress

Data can be imported into AzureML in several different ways uploading CSV/TSV/ARFF
files, referencing a URL, Azure blob storage, SQL server etc. During ingress, schema from
these various formats are reconciled into an internal format (.dataset that will be discussed
later). In cases where input schema does not specify the data type of individual columns
(e.g. CSV), the types are guessed by looking at the composition of the data. AzureML also
provides mechanism to explicitly change data types after ingress.

3.2. Data manipulation

AzureML provides several mechanisms for manipulating data prior to training/predictions.

• Data transformation modules: AzureMLs palette provides modules such as Clean
Missing Values Join Columns, Project Columns, SQL transformation etc to allow
manipulation of data.

• R/Python scripts: Arbitrary R and python scripts can be packaged as modules to
transform the data. AzureML handles marshalling of data and schema.

3.3. Modeling

AzureML exposes both open-source as well algorithms developed at Microsoft to model data.
Table 1 provides a list of algorithms that is continuously expanding.

3.4. Parameter tuning and evaluation

Practical machine learning involves some art, those of choosing the appropriate model, algo-
rithm and finally their parameters. Some recent advances Bergstra et al. (2011); Snoek et al.
(2012) have automated the task of model selection and parameter optimization. AzureML
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Table 1: List of algorithms supported in AzureML

Binary classification

Average perceptron Freund and Schapire (1999)
Bayes point machine Herbrich et al. (2001)
Boosted decision tree Burges (2010)
Decision jungle Shotton et al. (2013)
Locally deep SVM Jose and Goyal (2013)
Logistic regression Duda et al. (2000)
Neural network Bishop (1995)
Online SVM Sha (2011)
Vowpal wabbit Langford et al. (2007)

Multiclass classification

Decision Forest Criminisi (2011)
Decision jungle Shotton et al. (2013)
Multinomial regression Andrew and Gao (2007)
Neural network Bishop (1995)
One-vs-all Rifkin (2002)
Vowpal wabbit Langford et al. (2007)

Regression

Bayesian linear regression Herbrich et al. (2001)
Boosted decision tree regression Burges (2010)
Linear regression (batch and online) Bottou (2010)
Decision forest regression Criminisi (2011)
Random forest based quantile regression Criminisi (2011)
Neural network Bishop (1995)
Ordinal regression McCullagh (1988)
Poisson regression Nelder and Wedderburn (1972)

Recommendation Matchbox recommender Stern et al. (2009)
Clustering K-means clustering Jain (2010)

Anomaly detection One class SVM Schölkopf and Williamsonx
PCA-based anomaly detection Duda et al. (2000)

Feature selection Filter based feature selection Guyon et al. (2003)
Permutation feature importance Breiman (2001)

Topic modeling Online LDA using Vowpal Wabbit Hoffman et al. (2010)
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provides a sampling based approach to optimization where a grid of parameters can be fully
explored or sampled randomly to optimize metrics. Random sampling is typically more cost
efficient than grid search in practice.

3.5. Operationalization

In AzureML, operationalization refers to the procedure of taking a trained model along with
associated data transformations and converting it to a web service than can be queried for
individual or bulk predictions. The primary challenge in operationalization is optimizing
for latency and ability to handle large throughput. Some services export the learned model
to a popular format (e.g. PMML Guazzelli et al. (2009)) and yield the choice of opera-
tionalization to the model owner. In contrast, AzureML manages the model for the user.
The models are replicated based on the volume of prediction requests. Further, AzureML
supports machine learning models that cannot be fully expressed in standards like PMML.

3.6. Modules

In AzureML, modules are the individual components in an experiment graph. All machine
learning algorithms, data processing routines and custom code are packaged as modules.
Each module may consist of one or more input and output ports. Each port has an as-
signed type (example dataset, ilearner, itransform etc.) which determines how modules are
connected.

3.7. Graph Execution

The experiment graph is a directed acyclic graph that also defines the data dependencies
between the modules. Modules that do not depend on each other can be executed in parallel.
The job execution service (JES) is responsible for this functionality.

3.8. Schema validation

Datasets in AzureML are tagged with meta-data. In addition to column names and column
types as in R and python, meta-data in AzureML attaches semantic meaning to individual
columns. For instance, the meta-data information keeps track of columns that are used
for training vs. those generated by predictions. This schema is propagated across the
experiment graph even before the results are computed. This is essential in validating and
early reporting of data compatibility. A module missing certain columns can report an error
even before the upstream computation can take place.

3.9. External language support

AzureML support mixing of built-in modules as well as custom modules. Custom modules
are user defined code that is packaged as a module. Currently, both R and Python language
modules are supported. Data is marshalled in an out at the module boundary along with the
associated metadata. Security is a primary consideration when allowing user code within
a managed environment. Within AzureML, these modules are executed within a sandbox
environment that limits system level operations.
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3.10. Experiments as documents

AzureML in addition to being a modeling environment is foremost an authoring environment.
Experiments are treated as assets of a data science process that need to be tracked, versioned
and shared. Each run of an experiment is recorded and saved. Results from previous
experiments are cached. If a section of the graph consists of deterministic modules, the
modules are re-run only if upstream outputs are changed. Otherwise, cached results are
returned immediately. Previous runs of an experiments are frozen can be accessed and
copied over as new experiments.

4. Implementation details

4.1. Data types

AzureML experiments can be viewed as transformations on a restricted set of data types.
Modules take as input and produce as output objects of the following types:

• DataSets: These are typically CSV, TSV, ARFF, and files in our own proprietary
format

• Models: Trained and untrained models such as SVMs, Decision Trees, and Neural
Networks.

• Transforms: Saved transformations that can be applied to data sets. Examples include
feature normalization, PCA transforms etc.

Because the inputs and outputs to modules are typed, the UX can quickly determine the
legality of connections between modules and disallow incompatible ones at experiment au-
thoring time.

4.2. Data representation

After ingress, data is serialized in a proprietary .dataset format. The file is organized as
schema, an index, and a linked list of 2D tiles, each tile containing a rectangular subset
of data. This flexible representation allows us to decompose at both row and column level
granularity. Wide slices are more suitable for streaming where as thin-and-long slices are
better suited for compression and column manipulation. The tiled representation allows us
to deliver good I/O performance across different access patterns streaming, batch loading
into memory, and random access. Conversion modules to other formats (ARFF/CSV/TSV)
are provided so that data can be egressed from our system in readable formats.

4.3. Modules

Modules are described by a formal interface what data types they accept and produce, and
their parameters. Parameters also have types and are organized into parameter trees where
certain parameters are only active if others are set to particular values. These descriptions
are loaded into the Studio UX in order to present a rich authoring and viewing experience.
Because we desire to support a multiplicity of data set formats (CSV/TSV/ARFF/.dataset
and others in the future) we decided that module writers should not be responsible for I/O,
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but rather should code against a data table interface. This interface, which includes access to
both data and schema takes the place of datasets in our code. When modules are executed,
the system converts the input file to an object implementing the data table interface and
passes this object to the module code. When module is execution is finished, the system
performs the reverse process it saves the object to a .dataset file and in addition creates
separate schema and visualization files for consumption by the Studio UX.

4.4. External languages

AzureML supports a growing list of external languages including R and Python. We provide
Execute R and Execute Python modules where users can enter scripts for manipulating
data. Data internal to AzureML is marshalled as R and Pandas data-frames respectively.
AzureML thus provides the ability to compose a graph consisting of built-in as well as
user defined modules. In addition to supporting generic Execute Script modules for various
external languages, users also have the ability to define their own module implementations
in external languages. While the interface of, say, the Execute R module is static, a custom
module allows for a writer to fully define an interface, generating a black-box implementation
of routines in the external language of their choice. These custom modules interoperate with
production modules and can be dragged in to experiments from the module palette like any
other firstclass module.

4.5. Testing

All aspects of the product are extensively tested; ranging from usability sessions, mock
security attacks and integration testing to an extensive automated test framework. The au-
tomated framework includes correctness testing for algorithms, fuzzing techniques to detect
boundary cases, endto-end tests that ensure that the various system parts integrate well
together, etc. These tests both gate source code changes as well as act to detect regressions
post acceptance.

5. Lessons learned

Implementating a general machine learning web service required several design/performance
tradeoffs with a bias towards usability. The subsequent use of the system provided us certain
lessons outlined below.

5.1. Data wrangling support is useful

One of the key challenges in data science is data manipulation prior to building models. In
fact, it seems to take more effort than building models (http://nyti.ms/1t8IzfE). This is
reflected in our internal metrics that show that data-manipulation modules form majority of
experiment graphs. AzureML provides a rich library of data manipulation modules including
specific functionality (e.g. split, join etc.) and also very general modules such as (e.g. SQL
transform).
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5.2. Make big data possible and small data efficient

It is very tempting to adopt distributed frameworks prior to evaluating its tradeoffs. It has
been shown that mapreduce style computing is inefficient for machine learning leading to
in-memory solutions such as Spark Zaharia et al. (2010). A typical data science workflow
involves rapid exploration and experimentation using a small data set in a development
environment followed by productizing the module using large amounts of data. AzureML
spans both ends of the size dimension. It makes big-data possible but small data efficient.
This is a fluid position that will evolve over time.

5.3. Reproducibility is important, but expensive

AzureML provides the notion of deterministic and nondeterministic modules. Workflows
containing only deterministic components is guaranteed to be reproducible across multiple
runs. This immutability of module output allows us to cache intermediate results between
experiment runs. Further, when executing an experiment graph, only modules downstream
of a modified module need to be re-executed. Other results are available immediately due
to guarantees of deterministic behavior. Caching allows a data-scientists to rapidly itera-
tion on an experiment. From an implementation perspective this implies that intermediate
results have to be serialized during graph execution. Further downstream modules cannot
be scheduled until upstream results are serialized. This adds a large I/O overhead to the
run-time of an experiment compared to a pipeline or deferred evaluation style execution
(e.g. Apache Spark). The design assumes that the amortized cost over many variants will
be minimized with checkpoints.

5.4. Feature gaps are inevitable but can be mitigated by user code

AzureML provides a rich set of algorithms and data transformation. The available function-
ality is expanded on a continuous basis. Users may be drawn to AzureML in order to utilize
the authoring environment and versioning capabilities but may not find specific algorithms
available in the palette. Because AzureML allows user to package custom code as modules,
required functionality can be easily added while feature gaps are eventually closed by the
AzureML. This allows users to leverage the rich set of libraries provided by R and Python
along with the authoring functionalities provided by AzureML.

6. Conclusion

In this paper, we described AzureML, a web service that allows easy development of predic-
tive models and APIs. Compared to other machine learning web services, AzureML provides
several distinguishing features such as versioning, collaboration, easy operationalization and
integration of user-code. The paper describes the design of the overall system as well as
trade-offs that were made to implement this functionality. Finally, the paper describes some
lessons learned that could prove useful for other providers of machine learning services.
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