
JMLR: Workshop and Conference Proceedings 50:29–42, 2016 PAPIs 2015

Protocols and Structures
for Inference:

A RESTful API for Machine Learning

James Montgomery james.montgomery@utas.edu.au
School of Engineering and ICT, University of Tasmania, Hobart TAS Australia

Mark D. Reid mark.reid@anu.edu.au
Research School of Computer Science, Australian National University, Canberra ACT Australia &
NICTA

Barry Drake barry.drake@cisra.canon.com.au
Canon Information Systems Research Australia, Sydney NSW Australia

Editor: Louis Dorard, Mark D. Reid and Francisco J. Martin

Abstract
Diversity in machine learning APIs (in both software toolkits and web services), works
against realising machine learning’s full potential, making it difficult to draw on individ-
ual algorithms from different products or to compose multiple algorithms to solve complex
tasks. This paper introduces the Protocols and Structures for Inference (PSI) service archi-
tecture and specification, which presents inferential entities—relations, attributes, learners
and predictors—as RESTful web resources that are accessible via a common but flexible
and extensible interface. Resources describe the data they ingest or emit using a variant of
the JSON schema language, and the API has mechanisms to support non-JSON data and
future extension of service features.
Keywords: RESTful API, web service, schema

1. Introduction

Machine learning algorithms are implemented across a wide array of toolkits, such as
Weka (Hall et al., 2009), Orange (Demsar and Zupan, 2004), Shogun (Sonnenburg et al.,
2010) and scikit-learn (Pedregosa et al., 2011), as well as custom-built research software.
Although each toolkit or one-off implementation is individually powerful, differences in the
programming language used and supported dataset formats make it difficult to use the best
features from each. These differences limit their accessibility, since new users may have to
learn a new programming language to run a learner or write a parser for a new data format,
and their interoperability, requiring data format converters and multiple language platforms.

One way of improving these software packages’ accessibility and interoperability is to
provide an abstracted interface to them via web services. Resource-oriented architectures
(ROAs) (Richardson and Ruby, 2007) in the REpresentational State Transfer (REST) style
appear well suited to this task, given the natural alignment of REST’s design philosophy
with the desire to hide implementation-specific details. There has been recent, rapid growth
in the area of machine learning web services, including services such as the Google Pre-

c© 2016 J. Montgomery, M.D. Reid & B. Drake.

Montgomery Reid Drake

diction API, OpenTox (Hardy et al., 2010), BigML, Microsoft’s Azure ML, Wise.io, and
many more. However, despite this wide range of services, improvements in accessibility and
interoperability have not necessarily followed. The language each service speaks—HTTP
and JSON—may now be consistent, but each service presents its own distinct API while
necessarily offering only a subset of inference tools. For instance, the Google Prediction API
can perform only classification or regression while, in contrast, OpenTox’s range of learning
algorithms is extensible but restricted to the toxicology domain. Composing these existing
services requires the client to understand each distinct API and to perform a considerable
amount of data conversion on the client-side.

The Protocols and Structures for Inference (PSI) project has produced a specification
for a RESTful API in which each of the main inferential entities—datasets (known as rela-
tions), attributes, data transformers, learners and predictors—are resources, with an overall
interface that is sufficiently flexible to tackle a broad range of machine learning problems
and workflows using a variety of different algorithms. The key feature of our approach is
an emphasis on resource composition which allows the creation of federated machine learn-
ing solutions (e.g., allowing for workflows that use learning algorithms and data hosted on
different severs). In order to promote composition, we introduce a schema language that
describes those parts of resources’ interfaces that vary depending on the data or learn-
ing algorithm. PSI is thus not an implementation but an attempt at building a standard
for presenting machine learning services in a consistent fashion. This paper presents an
overview of the API’s design, with the full specification and additional examples available
at http://psikit.net/. An example PSI service that exposes learning algorithms from Weka
and scikit-learn is available at http://poseidon.cecs.anu.edu.au and a demonstration in-
browser JavaScript client that can be used with any PSI-compliant service is available at
http://psi.cecs.anu.edu.au/demo.

2. A Resource-Oriented Architecture for Machine Learning

There are a diverse range of problems within machine learning that can be cast in a data-
learner-predictor framework, in which a learning algorithm is applied to a dataset of in-
stances of some phenomenon of interest in order to produce a predictor that can make
inferences about additional, previously unseen instances. Applicable problems include clas-
sification and regression as well as more varied problems such as ranking, dimensional re-
duction and collaborative filtering.

In the PSI architecture, datasets, known as relations (borrowing from database termi-
nology), the attributes of those relations, transformations that may be applied to that data
(and to predictions), learners and predictors are all resources that can be composed to per-
form different inference activities. Each resource is identified by its URI and interaction is
via the HTTP methods GET, POST and DELETE. Resource representations, request and
response messages, and attribute and predicted values are all represented in JSON.

Service providers are free to offer any subset of PSI resources that suits their purposes.
For instance, one service may provide data through relation and attribute resources, while
another service could offer learning algorithms and the predictors they produce. This flexi-
bility allows federated machine learning solutions to be created.

30

http://psikit.net/
http://poseidon.cecs.anu.edu.au
http://psi.cecs.anu.edu.au/demo

Protocols and Structures for Inference: A RESTful API

Predict

Train

Predicted

value

Relation

resource

instance

Attribute 1 emits

resource

Attribute 2 emits

Attribute n emits

instance

representations

Learnerrequires

resource

Predictoraccepts

update

emits

resource

Attribute emits

resource

Update

Transformer emitsaccepts

resource

Relation

resource

instance

schema
other data

source

Attribute emits

resourceRelation

resource

instance

a resource
resource

Legend: JSON

Figure 1: Common data flows through a PSI service. In this illustration the output from
Attribute 1 is transformed before it is used in learning

2.1. Flexibility Through Schema

To support a range of learning activities through a common interface, different learner
resources must be able to specify their requirements in terms of data they ingest and the
parameters they may need. On the other side, relation attributes must be able to express the
structure of the data they provide. To serve both needs, PSI uses a custom schema language
derived from, and compilable to, JSON Schema (Galiegue et al., 2013a,b; Luff et al., 2013).
It is this use of schema that allows PSI to safely connect instances (represented by their
attributes) with the learners that will process them. The inputs and outputs of (general-
purpose) transformers and predictors are also described by schema. Figure 1 illustrates the
three primary activities within the framework: training, prediction, and updating. In each
activity, schema define the output characteristics or input requirements of resources in the
workflow. Further, schema can support the generation of custom controls in client software,
in a manner similar to HTML form controls (see Section 4 below).

Given the potential complexity of JSON Schema expressions, the PSI Schema language
defines a number of abbreviations, including a set of common named schema that each PSI
service should understand. Each of these common schema is also a resource, and may accept
URI query string arguments that augment its representation with additional details such as
a default value, bounds and description. In PSI’s variant of JSON Schema, keys and values

31

Montgomery Reid Drake

PSI start

Schema
collection

integer

string

...

schema

...

Relations
collection

relation

attribute

sub-attribute

...

...

...

Learners
collection

learner

...

Predictors
collection

predictor

update

...

Transformers
collection

transformer

...

Optional resources

Resource instances

Required resources

For PAPIs 2015 paper

Figure 2: PSI Service Resource Hierarchy. All resource collections are optional and will
depend on the nature of the service being offered. A service may also consist of a
sole predictor, transformer or relation (and its attributes)

prefixed with $ generally refer to these predefined schema, with many examples appearing
in the following sections.

The following sections describe each of the other PSI resource types, illustrated using
hypothetical PSI services: one offered by a research team and another offered by a commer-
cial machine learning service, against which the research team wants to compare its learning
algorithms. The first could be of particular benefit to the research community: a publication
describing a new learning algorithm becomes interactive by including the URI of a learner
resource implementing that algorithm. Further, trained predictors can be made available as
isolated services.

2.2. Service Discovery

Each PSI service has a single published entry URI, the JSON representation of which includes
links to collections of the relations, learners, predictors, transformers and schema provided
by that service.1 Each collection has the same representation, which includes an array of
links to the resources it contains. In this way the resources of a PSI service naturally form
a hierarchy, which is illustrated in Figure 2 and explored in more detail over subsequent
sections.

Consider an example in which a research team has data and learning algorithms it wishes
to share. The team could offer these as a PSI service located at http://example.org, which
responds to a GET request with the following:

1. As a PSI service may also just consist of an isolated predictor or relation, this top-level discovery resource
and the collections beneath it is not mandatory, although the overhead for providing it is extremely small.

32

Protocols and Structures for Inference: A RESTful API

{
"psiType": "service",
"uri": "http :// example.org",
"relations": "http :// example.org/data",
"schema": "http :// example.org/schema",
"learners": "http :// example.org/learn",
"predictors": "http :// example.org/infer",
"transformers": "http :// example.org/transform"

}

indicating that the service potentially offers all PSI resource types. The psiType attribute, a
part of all PSI resource representations, serves as a substitute for more specific media types
for each distinct kind of resource.

Following the relations link (i.e., performing a GET operation on its URI) returns the
representation:
{

"psiType": "resource -list",
"resources": ["http :// example.org/flowers"]

}

indicating that there is one dataset available, which can be interrogated further for details.

2.3. Relations and Attributes

Datasets in PSI are known as relations, a label borrowed from database terminology to
connote that they are collections of instances that share the same set of attributes. Each
of a relation’s attributes is a resource that transforms the underlying instance data—stored
in a database table, flat file, etc.—into representations that can be consumed by other
PSI resources or client software. Although the term “attribute" in machine learning often
indicates a single, atomic value, PSI attributes need not be only atomic-valued and may
instead represent object and list structures. A single PSI attribute may thus represent all
the data on which learning will take place. Further, although PSI represents values in JSON,
atomic values are not limited to the atomic data types of JSON, but may be any data with
an associated media type. The mechanism for handling such “rich values" is described in
Section 3.1 below.

The initial set of attributes associated with a relation is at the discretion of the service
provider, and may be a set of atomic-valued attributes or a single structured-attribute
that describes an entire instance. Each structured attribute is composed of other attribute
resources, so structured values may be decomposed as needed. New structured attributes
can be created by composing existing attributes (referred to by their URIs) in an attribute
definition POSTed to the relation. Thus if the “shape" of data produced by a relation’s
initial set of attributes is not compatible with a particular learner then new attributes can
be defined to reshape the data into a compatible form.

Continuing the example from above, the hypothetical research team has a dataset de-
scribing flowers in terms of their physical dimensions and species. The team uses this
data to train and test its own learning algorithms, but also wishes to share it with others,
so makes it available as a PSI relation resource, located at http://example.org/flowers,
which may be published independently or discovered through the service’s main entry point
at http://example.org. This relation’s attributes consist of an atomic-valued species and

33

Montgomery Reid Drake

an array-valued attribute of flower dimensions, which reside below the relation’s URI at
/species and /measurements, respectively:
{

"psiType": "relation",
"uri": "http :// example.org/flowers",
"description":"Flower species & physical dimensions",
"size": 150,
"defaultAttribute":

"http :// example.org/flowers/measurements",
"attributes": [

"http :// example.org/flowers/species",
"http :// example.org/flowers/measurements"

],
"querySchema": { ... }

}

Relations may optionally support service-specific queries (for instance, to select a subset of
the data for use in k-fold cross validation), the format of which is given by the querySchema
property of their representation (details omitted from this example for brevity).

Examining the measurements attribute of this relation reveals the structure of the values
it produces and URIs for its four sub-attributes corresponding to the elements of the array
values it emits (URIs omitted for brevity):
{

"psiType": "attribute",
"uri": "http :// example.org/flowers/measurements",
"description": "A structured attribute for presenting flower dimensions",
"relation": "http :// example.org/flowers",
"emits": {

"$array": { "items": ["$number", "$number", "$number", "$number"] }
},
"subattributes": { ... },
"querySchema": { ... }

}

The value of a particular (indexed) instance or of all instances may be obtained by
appending the URI query string instance=n or instance=all, respectively, which results in
PSI value representations such as:
{

"psiType": "value",
"value": [3.5, 5.1, 0.2, 1.4]

}

if a single instance is requested, or
{

"psiType": "value",
"valueList": [

[3.5, 5.1, 0.2, 1.4], ...
]

}

if all instances are requested (the ellipsis indicates the 149 elided values).
The PSI “value" representation is a generic container used for all values emitted by

attributes, transformers (discussed next) and predictors, which increases the number of
ways in which different value-generating resources may be connected.

34

Protocols and Structures for Inference: A RESTful API

2.4. Transformers: Functions as Services

A common need in machine learning is to transform values prior to learning, either to gen-
erate additional attributes (for instance, when performing linear regression on higher order
polynomials) or to convert a value into the appropriate type for a learning algorithm (for
instance, transforming a web page into a bag of words for document classification). The
PSI framework abstracts the notion of a function as a transformer resource, which accepts
and emits JSON values (the structure of which is defined by schema). As with mathemat-
ical functions, transformers may be joined (i.e., composed) to produce arbitrarily complex
transformation pipelines, provided that the input and output schema of the transformers in
the chain are compatible. A transformer resource responds to a join request with the URI
of the joined transformer resource, whose accepts schema is that of the first transformer and
emits schema is that of the second.2

Extending the earlier example, the research team may have, among its advertised col-
lection of transformers, one that calculates second-order combinations of feature values:
{

"psiType": "transformer",
"uri": "http :// example.org/transform/quadratic",
"description": "Computes x^a_i x^b_j for all x_i , x_j in input and 0<=a+b<=2",
"accepts": { "$array": { "items": "$number" } },
"emits": { "$array": { "items": "$number" } }

}

Transformers can be applied directly to values encoded as part of the query string in
their URI. For instance, a GET request to this transformer’s URI with the query string
value=[-2,3] would produce the PSI value:
{

"psiType": "value",
"value": [1, -2, 3, 4, -6, 9]

}

Attribute resources may also be joined with transformers, which fulfills the common need
to transform an entire relation prior to training. However, it is not the values of attributes
that are submitted to learner resources but the URIs of the attributes themselves, as part
of a learning task.

2.5. Learners and Learning Tasks

Learners are resources for generating predictors from relations. They do so by processing
tasks, which include algorithm parameter settings and, in a resources property of a task,
representations of one or attributes that will provide the training data. As different learning
algorithms have differing restrictions on the type of information they can process (and their
parameters), each learner reports a schema defining the structure of valid tasks. Part of
this schema defines the valid structure of the attributes’ descriptions such that their emits
schema are compatible with the data needs of the learner. The PSI specification defines
schema for a number of common attribute types, which reduces the complexity of both
defining and interpreting task schema.

2. The new, joined transformer resource may or may not actually exist within the service. In the prototype
PSI service implementation, joins are encoded in the query string fragment of a transformer’s URI.

35

Montgomery Reid Drake

The hypothetical research team introduced earlier wants to test its own algorithms
against a commercial machine learning service’s offerings. The company in question doesn’t
want to distribute copies of its proprietary learning algorithm, so makes it available as a PSI
learner resource at http://example.com/tryusout/knn. The research team GET the learner’s
representation and discover it has the following task schema:
{

"?k" : { "$integer": { "default": 1, "min": 1, "description": "The number of
nearest neighbours to examine" } },

"/resources": {
"/target": { "$nominalAttribute" : { "allItems" : "$string" } },
"/source": { "$arrayAttribute" : { "allItems" : "$numericValueSchema" } }

}
}

The schema indicates that the learner (apparently a variant of the k-nearest neighbour algo-
rithm) has an optional integer parameter k, the number of neighbours to consider, requires
an attribute to read each instance’s nominal class and another attribute that describes an
instance’s features as a list of numbers.

Using this task schema the research team constructs the following learning task that tells
the company’s knn learner to use k = 3 neighbours and to obtain training instances from the
team’s dataset using its attributes for reading instances’ species (target) and measurements
(source):
{

"k": 3,
"resources" : {

"relation" : "$http :// example.org/flowers",
"target" : "$http :// example.org/flowers/species",
"source" : "$http :// example.org/flowers/measurements"

}
}

where the $ prefix indicates that the URIs are references that should be resolved, that is, their
values should be replaced by the result of GET requests to those URIs. The company’s ser-
vice responds with the URI of the newly trained predictor: http://example.com/user/thx1138.

2.6. Predictors

A predictor is a transformer that is constructed by a learner. It thus has the same rep-
resentation and behaviour as any other transformer, and so may be composed with other
transformers or with an attribute (to provide predictions over a relation). Both predictors
and (untrained) transformers may include provenance information in their representations.
In the case of predictors this can include the URI of the PSI learner that produced them,
but the structure is otherwise open to be used however a service provider wishes.

Some learning algorithms, and hence the predictors they produce, support retraining
with additional examples. Such “updatable” predictors include an additional URI in their
representation that may be queried for the schema of values that may be used in retraining.
One or more values conforming to this schema may then be POSTed to the update URI,
after which the service will respond with the URI of the retrained predictor. Whether this is
the same as the original predictor or a new resource is left to the service provider’s discretion.

To conclude the example begun earlier, the research team now has, in addition to its own
internally-trained predictor, a predictor that resides at http://example.com/user/thx1138,

36

Protocols and Structures for Inference: A RESTful API

and wishes to compare the performance of the two. Evaluation of predictor performance
is currently outside the specification, a deliberate design choice given the wide variety of
learning tasks and corresponding evaluation metrics. However, it would be straightforward to
develop “PSI-aware” evaluation services that could be applied to a variety of PSI-compatiable
learners and relations. In this hypothetical case, the research team has a separate dataset
for testing, which is located at http://example.org/test-flowers. Both its own and the
http://example.com-trained predictor can be applied to this dataset (by joining the relevant
attribute with each predictor in turn) to produce predictions that can be compared against
the correct answers. Satisfied that its own flower species predictor is competitive with the
commercial offering, the research team publicises the predictor’s URI so that it may be freely
used by the public.

3. Service Flexibility

A guiding principle in the design of the PSI framework is that it does not, as far as practi-
cable, preclude any particular mode of machine learning. The use of schema for specifying
data characteristics and the needs of learning algorithm is a core part of this approach. Two
additional features of the framework that assist in achieving this goal are its mechanisms
for dealing with non-JSON data and for providing additional points of extension that are
discoverable by client software.

3.1. Rich Values

While the JSON data format can support structured values through dictionaries (key–value
pairs) and lists, atomic data is fundamentally limited to integers, real numbers, Boolean
values, and strings. Although complex data such as images may be transformed into some
representation using these data types (e.g., an image as a list of RGB triples, one per pixel),
the extra work in doing so presents a clear barrier to adoption of the approach. To support
non-JSON data, the PSI framework introduces the notion of “rich values”, in which data
that cannot be neatly represented in JSON is encoded as either an HTTP or Data URI. In
the first case the data may be obtained by GETting a representation of the resource at the
nominated URI, while in the second case the data is encoded (using Base64, for instance)
as a Data URI string. The space overhead this entails (33% in the case of Base64) is offset
by the benefits of greatly extending the data formats PSI services may work with and, in
the future, may be offset by the use of binary JSON encodings.

Rich values are described in PSI’s schema language by referring to the data’s media type.
Consider again the hypothetical research team, which has augmented its flowers dataset
with images of the flowers described, with the following new attribute:
{

"psiType": "attribute",
"uri": "http :// example.org/flowers/image",
"relation": "http :// example.org/flowers",
"emits": "@image/jpeg"

}

Requesting the image of the first instance produces a data URI-encoded JPEG image (in
which the ellipsis indicates the 26,500 character URI has been truncated):

37

Montgomery Reid Drake

{
"psiType": "value",
"value": "data:image/jpeg;base64 ,/9j/4 AAQSkZJRgABAQEA ..."

}

A classification learner that accepts JPEG images as training data could be trained using
this additional data from the flowers relation. The predictor produced could then be made
available for use by members of the public who wish to identify flowers they have encountered.
Suitable transformer resources could also be made available to deal with non-JPEG data.

3.2. Linking to related services and actions

A key characteristic of RESTful services is that resource representations indicate (either via
their media type or explicitly via embedded links) the actions that may be taken with that
resource. To this end, most PSI resource representations may contain a relatedResources
property that is a collection of Link Description Objects (LDOs), which are part of the
JSON Hyperschema Luff et al. (2013) specification with a role similar to the link element
of HTML documents. This allows service providers to give additional assistance to clients
(for instance, providing links to learners that are compatible with a particular relation and
its attributes) or to link to functions that are outside the core PSI specification.

4. Demonstration Implementations

Prototype implementations of a PSI service and client have been developed, the sources of
which are available at https://github.com/orgs/psi-project. The demonstration service
was developed in Java, and an instance that exposes learning algorithms from the Java-based
Weka library (Hall et al., 2009) and Python-based scikit-learn (Pedregosa et al., 2011), as
well as providing sample datasets and transformers, is available at http://poseidon.cecs.
anu.edu.au.

The client is a browser-based JavaScript application, available at http://psi.cecs.anu.
edu.au/demo. It provides basic access to the entire service API and can communicate with
any service adhering to the PSI specification. HTML forms for both querying relations and
constructing learning tasks are generated from the schema returned by relation and learner
resources. This is done in two steps: first the PSI Schema is compiled to JSON Schema,
then a third-party JavaScript library is used to generate the form elements, including data
validation based on constraints expressed in the schema.

Figures 3 and 4 present two screen captures from the client. Figure 3 shows the generated
form for defining a learning task for the Gaussian Mixture Model learner from scikit-learn.
The client also includes a demonstration of using the API to compare predictor performance
on classification tasks, given the URIs of the label and data attributes and URIs for the
predictors to compare. Part of the output from this extension is shown in Figure 4. This
illustrates that, while performance evaluation is not explicitly part of the PSI service API,
it is supported by interactions between a client and one or more PSI services.

A light-weight Python implementation of PSI is currently in development, and will in-
clude demonstrations of rich data transformers for converting various document types into
bags of words. An Amazon Machine Image (AMI) of the Java implementation will also be
available soon.

38

https://github.com/orgs/psi-project
http://poseidon.cecs.anu.edu.au
http://poseidon.cecs.anu.edu.au
http://psi.cecs.anu.edu.au/demo
http://psi.cecs.anu.edu.au/demo

Protocols and Structures for Inference: A RESTful API

Figure 3: The demonstration JavaScript client allows learning tasks to be defined using an
HTML form generated entirely from the task schema

39

Montgomery Reid Drake

Figure 4: Part of the output from the demonstration JavaScript client’s classifier comparison
tool. Its inputs are URIs for the testing data attributes and predictors to compare

40

Protocols and Structures for Inference: A RESTful API

5. Conclusions & Future Work

A number of extensions are planned for future versions, including: support for encryp-
tion and authentication; and the use of compressed JSON formats for large instance rep-
resentations. We also plan to make available virtual machines images with the code at
https://github.com/orgs/psi-project and its dependencies pre-installed so that others may
easily write PSI-compliant front-ends for their learning algorithms and data sets.

In its present version the PSI RESTful API already offers a general-purpose interface to
a range of machine learning activities and may be freely implemented by data, algorithm
and predictor providers. It uses schema to define attribute values and learner requirements,
and attribute composition to reshape data, both of which can support client software in
generating algorithm-specific controls and in composing learning tasks. We envisage a future
in which many varied PSI services exist, which we believe would be of benefit to algorithm
reuse and evaluation.

Acknowledgments

This research was supported under Australian Research Council’s Linkage Projects fund-
ing scheme (project number LP0991635) in collaboration with Canon Information Systems
Research Australia, and by Amazon’s AWS in Education Grant award. Mark Reid is also
supported by an ARC Discovery Early Career Researcher Award (DE130101605).

References

Janez Demsar and Blaz Zupan. Orange: From experimental machine learning to interactive
data mining. White paper, Faculty of Computer and Information Science, University of
Ljubljana, 2004. http://www.ailab.si/orange.

Francis Galiegue, Kris Zyp, and Gary Court. JSON schema: core definitions and terminol-
ogy. IETF draft 04 (work in progress), 2013a. http://tools.ietf.org/html/draft-zyp-json-
schema-04.

Francis Galiegue, Kris Zyp, and Gary Court. JSON schema: interactive and non interactive
validation. IETF draft 00 (work in progress), 2013b. http://tools.ietf.org/html/draft-fge-
json-schema-validation-00.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H.
Witten. The WEKA data mining software: An update. SIGKDD Explorations, 11:10–18,
2009.

Barry Hardy, Nicki Douglas, Christoph Helma, Micha Rautenberg, Nina Jeliazkova, Vedrin
Jeliazkov, . . . , and Sylvia Escher. Collaborative development of predictive toxicology
applications. Journal of Cheminformatics, 2, 2010.

Geraint Luff, Kris Zyp, and Gary Court. JSON hyper-schema: Hypertext definitions for
json schema. IETF draft 00 (work in progress), 2013. http://tools.ietf.org/html/draft-
luff-json-hyper-schema-00.

41

https://github.com/orgs/psi-project

Montgomery Reid Drake

Fabian Pedregosa, Gaë Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, . . . , and Édouard Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly, 2007.

Soeren Sonnenburg, Gunnar Raetsch, Sebastian Henschel, Christian Widmer, Jonas Behr,
Alexander Zien, . . . , and Vojtech Franc. The SHOGUN machine learning toolbox. Journal
of Machine Learning Research, 11:1799–1802, 2010.

42

