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Abstract

Survey propagation (SP) is a message pass-
ing procedure that attempts to model all
the fixed points of Belief Propagation (BP),
thereby improving BP’s approximation in
loopy graphs where BP’s assumptions do
not hold. For this, SP messages represent
distributions over BP messages. Unfortu-
nately this requirement makes SP intractable
beyond constraint satisfaction problems be-
cause, to perform general SP updates, one
has to operate on distributions over a contin-
uous domain. We propose an approximation
scheme to efficiently extend the application
of SP to marginalization in binary pairwise
graphical models. Our approximate SP has
O(DK log(DK)τ) complexity per iteration,
where τ is the complexity of BP per itera-
tion, D is the maximum node degree and K
is a resolution constant controlling the ap-
proximation’s fidelity. Our experiments show
that this method can track many BP fixed
points, achieving a high marginalization ac-
curacy within a few iterations, in difficult set-
tings where BP is often non-convergent and
inaccurate.

1 Introduction

Complex probabilistic models are often defined over
large sets of interacting variables, and answering in-
teresting queries about these models involves inference
in the form of marginalization. If such a model fac-
torizes into lower order interactions in the form of a
hyper-tree, an efficient way to perform marginaliza-
tion is to use the distributive law (Aji and McEliece,
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2000). Belief Propagation (BP) is a method that
achieves this goal by passing messages on a hyper-
graph representing the conditional independencies be-
tween the variables. BP is exact on hyper-graphs
with no loops and often yields good approximations on
loopy graphs (Frey and MacKay, 1997; Murphy et al.,
1999).

Loopy BP (LBP) is an iterative message update pro-
cedure, where messages are passed on the edges of the
graph until they converge to a fixed point (Yedidia
et al., 2000; Heskes, 2003). For a loopy graph, many
such LBP fixed points could exist. Survey Propaga-
tion (SP) attempts to improve BP’s approximation by
capturing all such fixed points and weighing each one
by the corresponding Bethe partition function (Mezard
and Montanari, 2009). SP is also powered by the dis-
tributive law (Ravanbakhsh and Greiner, 2014) and
takes the form of a message exchange on a hyper-
graph. Today, SP and its potential in the field of
Artificial Intelligence (AI) remains obscure, and its
analysis and extensions have been confined to Con-
straint Satisfaction Problems (CSPs; e.g., Kroc et al.,
2007; Maneva et al., 2007; Ravanbakhsh and Greiner,
2015). This is partly due to the intractability of SP
in its general form. We introduce a method to extend
the application of SP to the Ising model – i.e., binary
Markov networks.

After reviewing BP and SP in Section 2, Section 3 de-
scribes an efficient approximation to SP for the Ising
model. Section 4 showcases a variety of Ising mod-
els where our approximation outperforms BP and it
further provides intuition into the behaviour of SP in
practice. We hope our first attempt at applying SP
in this setting will open doors to its applications in AI
and machine learning. Section 5 outlines some of these
directions for future work.

2 Background

Given a function F (x) where x = {x1, ..., xN} and
w.l.o.g. each xi takes one of M possible values, many
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queries that characterize the behaviour of F with re-
gards to a subset of its variables α ⊆ {1, . . . , N}, are
answered by marginalizing p̃α(xα) =

∑
x\α

F (x), where

\α denotes the set of variables excluding α. Compu-
tationally, this operation can be very expensive. For
example, if we wish to marginalize over all but one
variable xi (i.e. α = i), the cost of marginalization is
O
(
MN−1

)
).

If F (x) factorizes as a combination of local func-
tions fI(xI), it can be visualized using a factor graph
(Kschischang et al., 2001). This graph is bipartite
where each node in one part represents a local func-
tion {fI}I (a.k.a. a factor) and each node in other part
represents a variable {xi}i. Each variable is connected
via an edge to each factor in which it appears.

2.1 Belief Propagation

If F (x) factorizes as a product of local functions – i.e.,

F (x) =
∏

I

fI(xI) (1)

then the original marginalization problem can be
solved using the sum-product algorithm (a.k.a. BP).
BP relies on the sum and product operations satis-
fying the distributive law (Aji and McEliece, 2000):
ab+ac = a(b+c). Using this property, marginalization
is efficiently performed by first applying summation to
the factors fI (rather than the entire function F (x))
and then combining the results via the product opera-
tion. This can be viewed as passing messages along the
edges of a factor graph where the sum-product result
of each subsection of the graph is a message.

For any factor graph, where ∂i denotes all factors
neighbouring variable i and ∂I denotes all variables
neighbouring factor I, two kinds of BP message up-
dates exist (note that we also assign a functional P̃ (·)
to each update). The message from factor I to vari-
ables i

p̃I→i(xi) =
∑

x\i

fI(xI)
∏

j∈∂I\i
p̂j→I(xj)

def
= P̃I→i(p̂∂I\i→I

)(xi)

where ∂I \ i denotes the set of all variables neighbour-
ing factor I, minus the variable indexed by i. Here,
p̂
∂I\i→I

is short form for the set {p̂j→I}j∈∂I\i, where

we use underline to distinguish sets (or tuples).

Likewise, messages from variables to factors pi→I are

p̃i→I(xi) =
∏

J∈∂i\I
p̂J→i(xi)

def
= P̃i→I(p̂∂i\I→i

)(xi).

With these messages, we can compute the marginal at
any variable as the product of all incoming messages

p̃i(xi) =
∏

I∈∂i

p̂I→i(xi)
def
= P̃i(p̂∂i→i

)(xi)

and similarly the marginal at any factor is the product
of that factor with all incoming messages – i.e.,

p̃I(xI) = fI(xI)
∏

i∈∂I

p̂
i→I

(xi)
def
= P̃I(p̂∂I→I

)(xI).

For any of the above quantities, p̂ represents the nor-
malized version of p̃ (e.g., p̂(xi) = p̃(xi)/p̃(∅)), where
p̃(∅) def

=
∑

xi
p̃(xi). As can be seen from the equations,

each node requires all incoming messages to compute
its marginal. When the graph is a tree, this is done by
choosing an arbitrary root node, passing messages to
it from the leaves, and then back down to the leaves.
When the graph has loops, one way by which we can
still perform message passing is by initializing all mes-
sages in the graph, sending them around the graph
until convergence, and then using them to compute
the marginals. This process is sometimes referred to
as Loopy BP (LBP) to distinguish it from BP on trees.

While LBP is known to give good results, it does not
have any guarantees and sometimes does not converge
at all or simply converges to an incorrect answer (Frey
and MacKay, 1997; Murphy et al., 1999; Weiss, 2000).
One reason is that the set of messages at any iter-
ation in loopy BP is computed from the set at the
previous iteration, making LBP sensitive to the set of
initial messages. Another is that LBP’s Bethe approx-
imation to the true partition function can be inaccu-
rate. This has motivated many to improve on the qual-
ity of LBP’s approximation. Most prominent classes
are: a) using region-based techniques (Pelizzola, 2005;
Yedida et al., 2005); b) convex and convergent alter-
natives (Wainwright et al., 2005; Yuille, 2002; Heskes,
2006); c) loop series (Chertkov and Chernyak, 2006;
Gómez et al., 2006); d) loop correction methods (Mon-
tanari and Rizzo, 2005; Mooij and Kappen, 2007) and
e) cut-set conditioning techniques (Pearl, 2014; Dar-
wiche, 2001).

However, in practice, one often observes that when
LBP converges, the quality of its results are better
than many of its convex/convergent variants. Al-
ternatively, region-based, loop correction techniques
and cut-set conditioning techniques could have an
exponential cost (in the size of regions, number of
nodes/edges, maximum degrees and cut-set size re-
spectively) and therefore none of these alternatives has
substituted LBP in practice. Interestingly, we see that
by tracking all BP fixed points, our approximate SP is
convergent in many settings where BP fails to converge
and has a polynomial time complexity.
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2.2 Survey Propagation

Initially, SP was used to solve K-SAT problems where
the variables are binary (Braunstein et al., 2005b;
Mezard et al., 2002). It was later extended to CSPs
with non-binary variable alphabets such as the graph
coloring problem (Braunstein et al., 2005a, 2003). In
all these problems, all the factors in the graph repre-
sent hard constraints, so that the BP (over Boolean
semiring, a.k.a. warning propagation) messages as-
sume only a finite number of values and the SP mes-
sages that are essentially distributions over BP mes-
sages remain tractable. This property is lost when the
factors are no longer hard constraints. We aim to de-
velop SP for applications beyond CSP by addressing
the new algorithmic issues which arise in this setting.
We provide an overview of SP before introducing our
approximation scheme in Section 3.

When the messages in LBP converge to a fixed point,
they represent a set of messages p̂ that simultaneously
satisfy all BP update equations outlined in the previ-
ous section. Any such fixed point provides an approxi-
mation to the partition function (a.k.a. Bethe approx-
imation)

G(p̂)(∅) =
∏

I

P̃I(p̂∂I→I
)(∅)

∏

i

P̃i(p̂∂i→i
)(∅)


 ∏

i,I∈∂i

P̃i↔I(p̂i→I , p̂I→i)(∅)




−1

(2)

where P̃i↔I(p̂i→I , p̂I→i)(xi)
def
= p̂i→I(xi)p̂I→i(xi) (see

Ravanbakhsh and Greiner, 2014).

A factor graph with loops can have many BP fixed
points and, from a variational perspective, each stable
fixed point represents a local optimum of the Bethe ap-
proximation to the free energy (Heskes, 2003). Note
that each BP fixed point also represents a joint distri-
bution as a product of BP marginals

p̂(x) ∝
∏

I

p̃I(xI)
∏

i

p̃i(xi)
1−|∂i|. (3)

Now, assuming that the joint distribution of eq. (1)
is approximated by the “sum” of all such BP joint
forms – i.e., p(x) ≈ ∑

p̂ p̂(x), SP attempts to track
all such fixed points. Thus in SP, a marginalization
problem can now be viewed as marginalizing once over
the variables of interest for a particular fixed point,
and then a second time over all BP fixed points – that
is the SP approximation to the partition function is∑

p̂ G(p̂)(∅).

The settings satisfying these SP assumptions are char-
acterized as a phase in 1st order Replica Symmetry
Breaking (1RSB; see Mezard and Montanari, 2009),

known as dynamical or clustering phase. The upshot
is that the Gibbs measure 1 decomposes into a set of
(exponentially) many sub-measures of roughly equal
size. Here, our objective is to show that approxima-
tions to SP can indeed operate on a wide range of
problems where BP fails, even if the validity of SP’s
assumptions may be hard to verify.

Here, following Ravanbakhsh and Greiner (2014), we
quickly demonstrate the elegant way in which SP
tracks (possibly exponentially large number of) BP
fixed points. From the definition of G in eq. (2), we see
that it can be expressed as the product of three types
of factors: 1) Variable-type factors containing the com-
ponent ofG for each variable node in the original factor
graph P̃i(p̂∂i→i

)(∅); 2) Factor-type factors containing
the component of G for each factor node in the origi-
nal factor graph P̃I(p̂∂I→I

)(∅); and lastly, 3) edge-type
factors containing the component of G for each edge
in the original factor graph P̃i↔I(p̂i→I , p̂I→i)(∅). The
variables in G are the messages in the original factor
graph. Figure 1 shows the resulting SP factor graph
for a portion of its BP counterpart.

Since + distributes over ×, the sum-product algorithm
can be used on the SP factor graph to obtain the sum∑

p̂ G(p̂)(∅), where G is the product of the three factor

types. Using indicator functions 1(.) to guarantee that
the BP updates are satisfied (i.e., that we only con-
sider BP fixed points), sum-product message passing
on the SP factor graph can be reduced to two mes-
sage updates: 1) message from variable-type factors
to factor-type factors

Si→I(p̂i→I) ∝
∑

p̂
∂i\I→i

(
1
(
p̂i→I = Pi→I(p̂∂i\I→i

)
)

Pi→I(p̂∂i\I→i
)(∅)

∏

J∈∂i\I
SJ→i (p̂J→i)

)
(4)

and 2) message from factor-type factors to variable-
type factors

SI→i(p̂I→i) ∝
∑

p̂
∂I\i→I

(
1
(
p̂I→i = PI→i(p̂∂I\i→I

)
)

PI→i(p̂∂I\i→I
)(∅)

∏

j∈∂I\i
Sj→I (p̂j→I)

)
. (5)

1Statistical physicists tend to study these phenomena
for ensembles and at the thermodynamic limit, where N →
∞. Gibbs measure (Georgii, 2011) is the equivalent of the
joint distribution p(x) in such infinite random fields.
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Figure 1: BP vs. SP

The SP marginal at a variable-type factor is given by

Si(p̂i) ∝
∑

p̂
∂i→i

(
1
(
p̂i = Pi(p̂∂i→i

)
)
Pi(p̂∂i→i

)(∅)

∏

I∈∂i

SI→i (p̂I→i)

)
(6)

and at a factor-type factor by

SI(p̂I) ∝
∑

p̂
∂I→I

(
1
(
p̂I = PI(p̂∂I→I

)
)
PI(p̂∂I→I

)(∅)

∏

i∈∂I

Si→I (p̂i→I)

)
. (7)

Note that each of these SP marginals is a distribution
over all possible values for a BP marginal at either
a variable or factor node of the original factor graph,
respectively. Looking at these expressions, the prob-
ability of each possible message or marginal value is
proportional to the number of “locally consistent” BP
fixed points in which it takes part, where each message
combination is weighted by its contribution to the cor-
responding Bethe partition function G.

3 Approximation Scheme

We now describe an efficient SP implementation for
marginalization on binary pairwise factor graphs. For

marginalization, if there are no hard constraints, any
factor graph can be transformed to a pairwise binary
model (Eaton and Ghahramani, 2013). The factors
in any such factor graph can then be transformed
to so-called Ising factors. The Ising model defines
p(x) ∝ ∏

ij e
xi Jij xj

∏
i e

xi θi , where xi ∈ {−1, 1}.
This joint form as a product of two types of fac-
tors: local factors fi(xi) = exiθi , and pairwise factors
fij(xi, xj) = exixjJij .

Figure 2 shows a portion of the BP and SP factor
graphs for the Ising model. For an N -variable Ising
model where the degree of each variable node is D, one
iteration of LBP is O(ND) or the number of edges in
the Ising model.

Figure 2: Portion of BP and SP factor graphs for the
Ising model: BP factor graph is denoted in black and
corresponding SP factors and messages are in red.

We now highlight the challenges in deriving efficient
SP for marginalization on the Ising model when start-
ing from the generic SP messages in Section 2. (In
the following, we refer to variable-type factors in the
SP factor graph as variables and factor-type-factors as
factors)

Quantization. Since the variables are binary, each
BP message can be represented by a scalar, the ra-
tio p(xi = 1)/p(xi = −1). However, this ratio is
real-valued which implies that the SP messages would
be continuous distributions over the domain [0,+∞).
A first attempt is to quantize this continuous space
(where ∞ is replaced by a sufficiently large number)
into K linearly spaced bins where each bin index k
represents the ratio bk = p(xi = 1)/p(xi = −1) of BP
message values for a particular BP message.

Representing SP message. Sending out an SP mes-
sage from a variable with degree D involves the combi-
nation of (D−1)+1 (i.e., the +1 coming from the local
factor) incoming SP messages where each message has
length K. Calculating eq. (4) is therefore O(KD), as
one has to consider all combination of bins (BP mes-
sages) from all incoming SP messages. Repeating this
for all D outgoing SP messages from each variable is
O(DKD).

Logarithmic quantization & convolution. To im-
prove this exponential time-complexity, we change the
quantization such that each bin index k now repre-
sents the log-ratio bk = ln(p(xi = 1)/p(xi = −1)) of
BP message values. Therefore, p(xi = −1) = 1− σ(k)
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and p(xi = 1) = σ(k) where σ(k) = ebk/(ebk + 1),
and the center bin represents a log-ratio of 0. By
working in the log-message space for BP, computing
BP marginals and passing BP messages through vari-
ables now involves “summation” of the log-messages
rather than “multiplication” of the original ones. For
SP, this enables convolution of the SP messages at the
variables.

Using Fast Fourier Transform (FFT). Rather
than convolving SP messages at the variables, we go
one step further and track their frequency transforms
and multiply those. At every iteration, we send out
messages from all variables by multiplying the fre-
quency transforms of all incoming SP messages at each
variable, which yields the SP marginals in the fre-
quency domain, and then divide out the incoming fre-
quency domain SP message on the edge for which we
want to send out the message. Sending out a message
from a variable with degree D involves the convolu-
tion of (D−1)+1 incoming SP messages of length K.
In the frequency domain this implies that the trans-
forms of the SP messages must have minimum length
of D(K − 1) + 1 to avoid aliasing. Thus, sending out
all messages from a single variable in the frequency do-
main involves multiplying D+1 incoming messages of
lengthD(K−1)+1 then dividing outD of them, one at
a time, resulting in a complexity of O(D2K). Sending
out messages for all variables is thus O(ND2K).

Variable-to-factor message. Algorithm 1 summa-
rizes the variable to factor subroutine. Here, the tuple
Sij→i = (Sij→i(b1), . . . , Sij→i(bK)) denotes a SP mes-
sage of length K and the tuple σ = (σ(1), . . . , σ(K))
contains the normalized BP probabilities for all K
bins. Here, the product of two tuples (e.g., σ Sij→i)

is their element-wise product. F(.) and F−1(.) rep-
resent taking frequency and inverse frequency trans-
forms respectively. The result of F−1(.) has length
D(K − 1) + 1 since the frequency transforms of the
SP messages also have the same length. We reduce it
to K bins by making an approximation where quan-
tities assigned beyond the two most extreme bins are
grouped into those two bins.

Factor-to-variable message. The first step in pass-
ing a D(K − 1) + 1-length frequency domain SP mes-
sage through a factor is taking its inverse frequency
transform which is O(DK log(DK)) using FFT. The
main procedure involves a one-to-one mapping of the
bin indices of the incoming SP message (of length K)
onto bin indices of the SP message leaving the factor,
and therefore requires K steps. We then take the fre-
quency transform of the result which also has complex-
ity O(DK log(DK)) to get a frequency domain result
of length D(K − 1) + 1. Combining these steps, the
complexity of passing SP messages through all O(ND)

Algorithm 1: SP variable to factor subroutine

Input: incoming messages {Sij→i}j∈∂i to node i
Output: outgoing messages {Si→ij}j∈∂i from node i

for ij ∈ ∂i do
S0
ij→i ← F

(
(1− σ)Sij→i

)

S1
ij→i ← F

(
σ Sij→i

)

end

S0
i ←

∏
ij∈∂i

S0
ij→i

S1
i ←

∏
ij∈∂i

S1
ij→i

for ij ∈ ∂i do
Si→ij ← F−1

(
S0
i /S

0
ij→i + S1

i /S
1
ij→i

)

end

pairwise factors is O(ND2K log(DK)).

Algorithm 2 shows the resulting factor to
variable subroutine. Here, the operation

2 tanh−1
(
tanh (Jij) tanh

(
bki→ij

2

))
is the BP factor

to variable update for the Ising model, when using
log-ratios. The function bin : ℜ → {1, . . . ,K} finds
the nearest bin index k for a given log-ratio.

Algorithm 2: SP factor to variable subroutine

Input: incoming message Si→ij to the factor ij
Output: outgoing messages Sij→j from the factor ij

for k ∈ {1, . . . ,K} do
Sij→j(k)← 0
for k′ ∈ {1, . . . ,K} do

if

k = bin

(
2 tanh−1

(
tanh (Jij) tanh

( bk′
2

)))

then
Sij→j(k)← Sij→j(k) + Si→ij(k

′)
end

end

end

General complexity. Adding the complexity of
sending all SP messages from the variables to the
complexity of then passing them through all fac-
tors, we see that the overall algorithm complexity is
O(ND2K log(DK)) – i.e., polynomial in D, N , and
K. This shows that SP is scalable to large instances
in the number of variables, bins, or the maximum de-
gree of a variable.

Algorithm 3 summarizes this general algorithm. Note
that in the initialization step of this algorithm, 2θi is
the log-ratio of hi(xi) = eθixi , representing the local
factor to variable BP update. Since this quantity re-
mains static throughout the iterations of LBP, so will
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its corresponding SP message during SP iterations.

Algorithm 3: Approximate SP for the Ising Model

Input: The Ising model {Ji,j}i,j , {hi}i; fidelity K
Output: Approximate SP marginals over BP

marginals Si

Initialize Sij→j ∀ij
for i ∈ {1, . . . , N} do

for k ∈ {1, . . . ,K} do
Fix Sii→i(k)← 1

(
k = bin(2θi)

)

end

Fix S0
ii→i ← F ((1− σ)Sii→i)

Fix S1
ii→i ← F (σSii→i)

end
while not converged do

for i ∈ {1, . . . , N} do
Run SP variable-to-factor algorithm 1

end
for i, j 6= i with Jij 6= 0 do

Run SP factor-to-variable algorithm 2
end

end
for i ∈ {1, . . . , N} do

Si ← F−1
(
S0
i + S1

i

)

end

3.1 Tracking Many Fixed Points

To show the capabilities of SP, we test our algorithm
on the attractive homogeneous Ising model where local
fields θi are set to zero for all variables and the coupling
strengths Jij are all set to the same value J > 0.

When running LBP on this model, a phase transition
exists as J increases (Mezard and Montanari, 2009).
Before this phase transition, LBP has a single fixed
point. After the phase transition, it has two and picks
the one closest to the BP messages at initialization.

For a D-regular Ising model with N = 1000 variables
and degree D = 4, the phase transition occurs roughly
at J = 0.347. We run LBP and our approximate SP
algorithm on this model for this critical value of J as
well as values below and above it. For SP we use 101
bins where the middle bin represents a log-ratio of zero.
Here, leftmost bin 1 has a log-ratio of 0.0098 and right-
most bin 101 has a log-ratio of 0.9902. We plot one
of the SP and BP messages for each value of J . Each
BP message is expressed in the SP message space by
taking its value and binning it into one of the 101 SP
bins. From fig. 3, we see that before the phase transi-
tion the SP message also consists of a delta function,
only one fixed point exists, and SP emulates BP. Here,
the value on which the delta is placed corresponds to
the fixed-point message produced by BP.

SP begins to provide useful information when its mes-
sage hedges its bets on more than one value, as can be
seen at the phase transition. This indicates that more
than one BP fixed point exists and that SP is account-
ing for them all. This is clearer after the transition,
where the SP message captures both fixed points. Note
that the non-zero bins between the two fixed points is
because the fixed points overlap to a certain degree.
The assumption with SP is that the fixed points are
disjoint which could only be valid if the number of vari-
ables tends to infinity. This overlap (i.e. the residue)
diminishes as we increase the size.
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Figure 3: SP and BP messages for attractive homoge-
neous Ising model (N = 1000), before (1st row), during
(middle row) and after (bottom row) phase transition.

4 Experiments

We can use SP marginals, defined over BP marginals,
to obtain an average marginal at each variable i as
E[p(xi = 1)] =

∑K
k=1 σ(k)Si(k). This average is im-

plicitly weighted by the sum of Bethe partition func-
tion of BP fixed points with a particular marginal σ(k).
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We compare these averaged SP marginals to that of
BP and Gibbs sampling for many graph types. For
each type, we test on three types of pairwise couplings:
attractive, mixed, and repulsive (attractive and repul-
sive coupling results are presented in the supplemen-
tary material).

All couplings are sampled from a uniform distribu-
tion. Attractive couplings are sampled in the range
[0, β], mixed from the range [−β, β], and repulsive from
the range [−β, 0] where β ranges from 0 to 2. Local
fields θi are always sampled uniformly in the range
[−0.05, 0.05]. For each graph and coupling type, we
run three versions of SP: SP with 11 bins, 101 bins,
and 1001 bins. BP messages are initialized to be uni-
form while SP messages are initialized randomly. All
message passing algorithms do parallel message up-
dates and run for a maximum 1000 iterations or until
convergence, whichever comes first. Gibbs sampling is
run for 100,000 iterations where a sample is recorded
after each 100 iterations. We repeat the experiments
for 10 trials, each on a new instance, at each β value.

We limit the graphs’ sizes so that exact marginals can
be obtained via the junction tree algorithm (Lauritzen
and Spiegelhalter, 1988). However, as per our earlier
analysis, this inference scheme can easily scale up, pos-
sibly to graphs up to millions of edges. At each value
of β, each column of fig. 4 shows: 1st) the mean ab-
solute error of the marginals for all methods; 2nd) the
mean SP marginal entropy for the SP algorithms; 3rd)
the mean number of iterations for BP and SP. libDAI
(Mooij, 2010) is used for BP, Gibbs sampling, and the
junction tree method.

Each row in fig. 4 is a graph type: 1st) 10 variable,
fully connected; 2nd) 40 variable, bipartite with 20
variables blocks; 3rd) 100 variable 3-regular; 4th) 100
variable, 10x10 grid with periodic boundary; 5th) 1000
variable, 10x100 grid without periodic boundary.

Analysis. In all experiments, SP outperforms BP at
non-trivial temperatures (see fig. 4, first column and
supplementary material). SP achieves this accuracy,
by converging after only a few iterations (fig. 4, last
column). In fact SP’s average marginal error curves
resemble that of Gibbs sampling using a large num-
ber of (i.e., 105) iterations. The average SP marginal
entropy (fig. 4, 2nd column) starts at zero at trivial
temperatures, suggesting that BP indeed has a single
fixed point and increases for lower temperature (larger
β) values.

For the fully connected and bipartite graphs (first two
rows of fig. 4), the entropy points at a phase transi-
tion where it rises and then drops. After it drops, at
β=2, the SP marginals show two distinct modes per
marginal. Here, in contrast to the attractive homo-

geneous instance of section 3.1 with two fixed points,
we hypothesize that these two modes identify a large
number of BP fixed points, where the BP joint form of
eq. (3) is effectively choosing one of the two modes at
each variable, producing incorrect marginals. While
BP still converges to one of its large number of modes
for these instances (see final column), for the 3-regular
graph and both grid graphs (rows 3-5) BP has trouble
converging at all. For these graphs (i.e., the 3-regular
and both grid graphs), SP beliefs are spread across
many SP bins and the entropy climbs as β increases.

5 Discussion and Future work

We introduce the first SP approximation scheme for in-
ference beyond CSPs. Our scheme uses FFTs to scale
gracefully with the number of variables and edges in
the model. Our extensive experiments show that it
converges to accurate posterior marginals within few
iterations. We believe this opens the door for its ap-
plication and extension in a variety of settings.

Central to the application of inference in machine
learning is its role in maximum likelihood learning.
However, due to non-convergence and inaccuracy of
message passing techniques, Markov Chain Monte
Carlo (MCMC) methods such as Gibbs sampling are
the prominent methods in training models such as
Boltzmann Machines. We hope that our scheme could
become a fast alternative to MCMC for such models.

Another direction is in modeling and marginalization
for ensembles. For example, if we wish to de-noise over
the set of all possible corruptions of an image (Bishop,
2006) by a particular noise distribution (where the
noise distribution may be different for each pixel), we
could do so with SP by placing a prior over each local
factor representing the noise distribution. This idea
is closely related to an algorithm called density evolu-
tion used for error-correcting codes (Richardson and
Urbanke, 2001). Density evolution operates by lever-
aging the symmetry in the error correcting codes to
show that the density evolution variable-to-factor mes-
sage updates are the same for all variables and, like-
wise, for all factor-to-variable messages, providing a
closed form for the ensemble. SP can be thought of as
a generalization of density evolution where the Bethe
partition function of each fixed point is tracked. This
is important if the goal is to infer marginals. Another
method along the same lines is density propagation of
Ermon et al. (2012) that uses message passing with
convolution to estimate the number of configurations
x with a probability p(x).

Lastly, we are studying extensions of our scheme to
perform more accurate max-sum inference. Chieu
et al. (2007) propose a method that uses SP for Max-
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Figure 4: Results for mixed coupling. Green: Gibbs sampling, black: BP, dashed orange: SP 11 bins, dashed
red: SP 101 bins, and dashed dark red: SP 1001 bins.

imum A Posteriori (MAP) inference. Their method
relies on transferring the problem to a CSP and apply-
ing a parameterized version of SP (Maneva et al., 2007)
to perform inference by proxy. However, direct use of
SP for MAP, similar to our scheme is feasible, where

the convolution is replaced with max-convolution, the
zero temperature Bethe partition function represents
the value of MAP assignment, and max-product SP
tries to find the BP fixed point with the maximum
approximate MAP value.
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