
Deep Kernel Learning

Andrew Gordon Wilson∗ Zhiting Hu∗ Ruslan Salakhutdinov Eric P. Xing
CMU CMU University of Toronto CMU

Abstract

We introduce scalable deep kernels, which
combine the structural properties of deep
learning architectures with the non-
parametric flexibility of kernel methods.
Specifically, we transform the inputs of a
spectral mixture base kernel with a deep
architecture, using local kernel interpolation,
inducing points, and structure exploit-
ing (Kronecker and Toeplitz) algebra for
a scalable kernel representation. These
closed-form kernels can be used as drop-in
replacements for standard kernels, with ben-
efits in expressive power and scalability. We
jointly learn the properties of these kernels
through the marginal likelihood of a Gaus-
sian process. Inference and learning cost
O(n) for n training points, and predictions
cost O(1) per test point. On a large and
diverse collection of applications, including
a dataset with 2 million examples, we show
improved performance over scalable Gaus-
sian processes with flexible kernel learning
models, and stand-alone deep architectures.

1 Introduction

“How can Gaussian processes possibly replace neural
networks? Have we thrown the baby out with the
bathwater?” questioned MacKay (1998). It was the
late 1990s, and researchers had grown frustrated with
the many design choices associated with neural net-
works – regarding architecture, activation functions,
and regularisation – and the lack of a principled frame-
work to guide in these choices.

Gaussian processes had recently been popularised
within the machine learning community by Neal

∗Authors contributed equally. Appearing in Proceedings of
the 19th International Conference on Artificial Intelligence
and Statistics (AISTATS) 2016, Cadiz, Spain. JMLR:
W&CP volume 51. Copyright 2016 by the authors.

(1996), who had shown that Bayesian neural net-
works with infinitely many hidden units converged
to Gaussian processes with a particular kernel (co-
variance) function. Gaussian processes were subse-
quently viewed as flexible and interpretable alterna-
tives to neural networks, with straightforward learn-
ing procedures. Where neural networks used finitely
many highly adaptive basis functions, Gaussian pro-
cesses typically used infinitely many fixed basis func-
tions. As argued by MacKay (1998), Hinton et al.
(2006), and Bengio (2009), neural networks could
automatically discover meaningful representations in
high-dimensional data by learning multiple layers of
highly adaptive basis functions. By contrast, Gaus-
sian processes with popular kernel functions were used
typically as simple smoothing devices.

Recent approaches (e.g., Yang et al., 2015; Lloyd et al.,
2014; Wilson, 2014; Wilson and Adams, 2013) have
demonstrated that one can develop more expressive
kernel functions, which are indeed able to discover rich
structure in data without human intervention. Such
methods effectively use infinitely many adaptive ba-
sis functions. The relevant question then becomes not
which paradigm (e.g., kernel methods or neural net-
works) replaces the other, but whether we can combine
the advantages of each approach. Indeed, deep neural
networks provide a powerful mechanism for creating
adaptive basis functions, with inductive biases which
have proven effective for learning in many application
domains, including visual object recognition, speech
perception, language understanding, and information
retrieval (Krizhevsky et al., 2012; Hinton et al., 2012;
Socher et al., 2011; Kiros et al., 2014; Xu et al., 2015).

In this paper, we combine the non-parametric flexi-
bility of kernel methods with the structural proper-
ties of deep neural networks. In particular, we use
deep feedforward fully-connected and convolutional
networks, in combination with spectral mixture co-
variance functions (Wilson and Adams, 2013), induc-
ing points (Quiñonero-Candela and Rasmussen, 2005),
structure exploiting algebra (Saatchi, 2011), and lo-
cal kernel interpolation (Wilson and Nickisch, 2015;
Wilson et al., 2015), to create scalable expressive
closed form covariance kernels for Gaussian processes.

370

Deep Kernel Learning

As a non-parametric method, the information capac-
ity of our model grows with the amount of avail-
able data, but its complexity is automatically cali-
brated through the marginal likelihood of the Gaus-
sian process, without the need for regularization or
cross-validation (Rasmussen and Ghahramani, 2001;
Rasmussen and Williams, 2006; Wilson, 2014). The
flexibility and automatic calibration provided by the
non-parametric layer typically provides a high stan-
dard of performance, while reducing the need for ex-
tensive hand tuning from the user.

We further build on the ideas in KISS-GP (Wilson and
Nickisch, 2015) and extensions (Wilson et al., 2015), so
that our deep kernel learning model can scale linearly
with the number of training instances n, instead of
O(n3) as is standard with Gaussian processes (GPs),
while retaining a fully non-parametric representation.
Our approach also scales as O(1) per test point, in-
stead of the standard O(n2) for GPs, allowing for very
fast prediction times. Because KISS-GP creates an
approximate kernel from a user specified kernel for
fast computations, independently of a specific infer-
ence procedure, we can view the resulting kernel as a
scalable deep kernel. We demonstrate the value of this
scalability in the experimental results section, where it
is the large datasets that provide the greatest oppor-
tunities for our model to discover expressive statistical
representations.

We begin by reviewing related work in section 2, and
providing background on Gaussian processes in section
3. In section 4 we derive scalable closed form deep ker-
nels, and describe how to perform efficient automatic
learning of these kernels through the Gaussian process
marginal likelihood. In section 5, we show substan-
tially improved performance over standard Gaussian
processes, expressive kernel learning approaches, deep
neural networks, and Gaussian processes applied to
the outputs of trained deep networks, on a wide range
of datasets. We also interpret the learned kernels to
gain new insights into our modelling problems.

2 Related Work

Given the intuitive value of combining kernels and neu-
ral networks, it is encouraging that various distinct
forms of such combinations have been considered in
different contexts.

The Gaussian process regression network (Wilson
et al., 2012) replaces all weight connections and activa-
tion functions in a Bayesian neural network with Gaus-
sian processes, allowing the authors to model input
dependent correlations between multiple tasks. Alter-
natively, Damianou and Lawrence (2013) replace ev-
ery activation function in a Bayesian neural network

with a Gaussian process transformation, in an unsu-
pervised setting. While promising, both models are
very task specific, and require sophisticated approxi-
mate Bayesian inference which is much more demand-
ing than what is required by standard Gaussian pro-
cesses or deep learning models, and typically does not
scale beyond a few thousand training points. Similarly,
Salakhutdinov and Hinton (2008) combine deep belief
networks (DBNs) with Gaussian processes, showing
improved performance over standard GPs with RBF
kernels, in the context of semi-supervised learning.
However, their model is heavily relying on unsuper-
vised pre-training of DBNs, with the GP component
unable to scale beyond a few thousand training points.
Likewise, Calandra et al. (2014) combine a feedfor-
ward neural network transformation with a Gaussian
process, showing an ability to learn sharp discontinu-
ities. However, similar to many other approaches, the
resulting model can only scale to at most a few thou-
sand data points.

In a frequentist setting, Yang et al. (2014) combine
convolutional networks, with parameters pre-trained
on ImageNet, with a scalable Fastfood (Le et al., 2013)
expansion for the RBF kernel applied to the final layer.
The resulting method is scalable and flexible, but the
network parameters generally must first be trained
separately from the Fastfood features, and the com-
bined model remains parametric, due to the paramet-
ric expansion provided by Fastfood. Careful atten-
tion must still be paid to training procedures, regu-
larization, and manual calibration of the network ar-
chitecture. In a similar manner, Huang et al. (2015)
and Snoek et al. (2015) have combined deep architec-
tures with parametric Bayesian models. Huang et al.
(2015) pursue an unsupervised pre-training procedure
using deep autoencoders, showing improved perfor-
mance over GPs using standard kernels. Snoek et al.
(2015) show promising performance on Bayesian op-
timisation tasks, for tuning the parameters of a deep
neural network, but do not use a Bayesian (marginal
likelihood) objective for training network parameters.

Our approach is distinct in that we combine deep feed-
forward and convolutional architectures with spectral
mixture covariances (Wilson and Adams, 2013), in-
ducing points, Kronecker and Toeplitz algebra, and
local kernel interpolation (Wilson and Nickisch, 2015;
Wilson et al., 2015), to derive expressive and scalable
closed form kernels, where all parameters are trained
jointly with a unified supervised objective, as part of a
non-parametric Gaussian process framework, without
requiring approximate Bayesian inference. Moreover,
the simple joint learning procedure in our approach
can be applied in general settings. Indeed we show
that the proposed model outperforms state of the art
stand-alone deep learning architectures and Gaussian

371

Andrew Gordon Wilson∗, Zhiting Hu∗, Ruslan Salakhutdinov, Eric P. Xing

processes with advanced kernel learning procedures on
a wide range of datasets, demonstrating its practical
significance. We also show that jointly training all the
weights of a deep kernel through the marginal likeli-
hood of a non-parametric GP provides significant ad-
vantages over training a GP applied to the output
layer of a trained deep neural network. Moreover,
we achieve scalability while retaining non-parametric
model structure by leveraging the very recent KISS-
GP approach (Wilson and Nickisch, 2015) and exten-
sions in Wilson et al. (2015) for efficiently representing
kernel functions, to produce scalable deep kernels.

3 Gaussian Processes

We briefly review Gaussian processes (GPs) and the
computational requirements for predictions and kernel
learning (see e.g., Rasmussen and Williams (2006) for
a comprehensive discussion of GPs).

We assume a dataset D of n input (predictor) vectors
X = {x1, . . . ,xn}, each of dimension D, which index
an n × 1 vector of targets y = (y(x1), . . . , y(xn))>.
If f(x) ∼ GP(µ, kγ), then any collection of function
values f has a joint Gaussian distribution,

f = f(X) = [f(x1), . . . , f(xn)]> ∼ N (µ,KX,X) , (1)

with mean vector and covariance matrix defined
by the mean function and covariance kernel of the
Gaussian process: µi = µ(xi), and (KX,X)ij =
kγ(xi,xj), where the kernel kγ is parametrized by
γ. Assuming additive Gaussian noise, y(x)|f(x) ∼
N (y(x); f(x), σ2), the predictive distribution of the
GP evaluated at the n∗ test points indexed by X∗,
is given by

f∗|X∗,X,y,γ, σ2 ∼ N (E[f∗], cov(f∗)) , (2)

E[f∗] = µX∗ +KX∗,X [KX,X + σ2I]−1(y − µX) ,

cov(f∗) = KX∗,X∗ −KX∗,X [KX,X + σ2I]−1KX,X∗ .

KX∗,X , for example, represents the n∗ × n matrix of
covariances between the GP evaluated at X∗ and X.
µX and µX∗ are mean vectors evaluated at X and X∗,
and KX,X is the n× n covariance matrix evaluated at
training inputs X. All covariance matrices implicitly
depend on the kernel hyperparameters γ.

GPs with RBF kernels correspond to models which
have an infinite basis expansion in a dual space, and
have compelling theoretical properties: these models
are universal approximators, and have prior support
to within an arbitrarily small epsilon band of any con-
tinuous function (Micchelli et al., 2006). Indeed the
properties of the distribution over functions induced by
a Gaussian process are controlled by the kernel func-

tion. For example, the popular RBF kernel,

kRBF(x,x′) = exp(−1

2
||x− x′||/`2) (3)

encodes the inductive bias that function values closer
together in the input space are more correlated. The
complexity of the functions in the input space is deter-
mined by the interpretable length-scale hyperparam-
eter `. Shorter length-scales correspond to functions
which vary more rapidly with the inputs x.

The structure of our data is discovered through
learning interpretable kernel hyperparameters. The
marginal likelihood of the targets y, the probability
of the data conditioned only on kernel hyperparame-
ters γ, provides a principled probabilistic framework
for kernel learning:

log p(y|γ, X) ∝ −[y>(Kγ +σ2I)−1y+log |Kγ +σ2I|] ,
(4)

where we have usedKγ as shorthand forKX,X given γ.
Note that the expression for the log marginal likeli-
hood in Eq. (4) pleasingly separates into automatically
calibrated model fit and complexity terms (Rasmussen
and Ghahramani, 2001). Kernel learning is performed
by optimizing Eq. (4) with respect to γ.

The computational bottleneck for inference is solving
the linear system (KX,X + σ2I)−1y, and for kernel
learning is computing the log determinant log |KX,X +
σ2I|. The standard approach is to compute the
Cholesky decomposition of the n × n matrix KX,X ,
which requires O(n3) operations and O(n2) storage.
After inference, the predictive mean costs O(n), and
the predictive variance costs O(n2), per test point x∗.

4 Deep Kernel Learning

In this section we show how we can contruct kernels
which encapsulate the expressive power of deep archi-
tectures, and how to learn the properties of these ker-
nels as part of a scalable probabilistic GP framework.

Specifically, starting from a base kernel k(xi,xj |θ)
with hyperparameters θ, we transform the inputs (pre-
dictors) x as

k(xi,xj |θ)→ k(g(xi,w), g(xj ,w)|θ,w) , (5)

where g(x,w) is a non-linear mapping given by a deep
architecture, such as a deep convolutional network,
parametrized by weights w. The popular RBF kernel
(Eq. (3)) is a sensible choice of base kernel k(xi,xj |θ).
For added flexibility, we also propose to use spectral
mixture base kernels (Wilson and Adams, 2013):

kSM(x,x′|θ) = (6)

Q∑

q=1

aq
|Σq|

1
2

(2π)
D
2

exp

(
−1

2
||Σ

1
2
q (x− x′)||2

)
cos〈x− x′, 2πµq〉 .

372

Deep Kernel Learning

x1

xD

Input layer h
(1)
1

h
(1)
A

..
.

. . .

h
(2)
1

h
(2)
B

h
(L)
1

h
(L)
C

W (1)

W (2)

W (L)
h1(θ)

h∞(θ)

Hidden layers

∞ layer

y1

yP

Output layer. . .

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Figure 1: Deep Kernel Learning: A Gaussian process with
a deep kernel maps D dimensional inputs x through L para-
metric hidden layers followed by a hidden layer with an in-
finite number of basis functions, with base kernel hyperpa-
rameters θ. Overall, a Gaussian process with a deep kernel
produces a probabilistic mapping with an infinite number
of adaptive basis functions parametrized by γ = {w,θ}.
All parameters γ are learned jointly through the marginal
likelihood of the Gaussian process.

The parameters of the spectral mixture kernel θ =
{aq,Σq,µq} are mixture weights, bandwidths (inverse
length-scales), and frequencies. The spectral mixture
(SM) kernel, which forms an expressive basis for all
stationary covariance functions, can discover quasi-
periodic stationary structure with an interpretable and
succinct representation, while the deep learning trans-
formation g(x,w) captures non-stationary and hierar-
chical structure.

We use the deep kernel of Eq. (5) as the covari-
ance function of a Gaussian process to model data
D = {xi,yi}ni=1. Conditioned on all kernel hyperpa-
rameters, we can interpret our model as applying a
Gaussian process with base kernel kθ to the final hid-
den layer of a deep network. Since a GP with (RBF
or SM) base kernel kθ corresponds to an infinite basis
function representation, our network effectively has a
hidden layer with an infinite number of hidden units.
The overall model is shown in Figure 1.

We emphasize, however, that we jointly learn all deep
kernel hyperparameters, γ = {w,θ}, which include w,
the weights of the network, and θ the parameters of
the base kernel, by maximizing the log marginal like-
lihood L of the Gaussian process (see Eq. (4)). Indeed
compartmentalizing our model into a base kernel and
deep architecture is for pedagogical clarity. When ap-
plying a Gaussian process one can use our deep kernel,
which operates as a single unit, as a drop-in replace-
ment for e.g., standard ARD or Matérn kernels (Ras-
mussen and Williams, 2006), since learning and infer-
ence follow the same procedures. In the experiments,
we show that jointly learning all deep kernel parame-
ters has advantages over training a GP applied to the
output layer of a trained deep neural network.

For kernel learning, we use the chain rule to compute
derivatives of the log marginal likelihood with respect
to the deep kernel hyperparameters:

∂L
∂θ

=
∂L
∂Kγ

∂Kγ

∂θ
,

∂L
∂w

=
∂L
∂Kγ

∂Kγ

∂g(x,w)

∂g(x,w)

∂w
.

The implicit derivative of the log marginal likelihood
with respect to our n × n data covariance matrix Kγ

is given by

∂L
∂Kγ

=
1

2
(K−1γ yy>K−1γ −K−1γ) , (7)

where we have absorbed the noise covariance σ2I into
our covariance matrix, and treat it as part of the base
kernel hyperparameters θ.

∂Kγ

∂θ are the derivatives of
the deep kernel with respect to the base kernel hyper-
parameters (such as length-scale), conditioned on the
fixed transformation of the inputs g(x,w). Similarly,

∂Kγ

∂g(x,w) are the implicit derivatives of the deep kernel

with respect to g, holding θ fixed. The derivatives with

respect to the weight variables ∂g(x,w)
∂w are computed

using standard backpropagation.

For scalability, we replace all instances of Kγ with
the KISS-GP covariance matrix (Wilson and Nickisch,
2015; Wilson et al., 2015)

Kγ ≈MKdeep
U,U M> := KKISS , (8)

where M is a sparse matrix of interpolation weights,
containing only 4 non-zero entries per row for local
cubic interpolation, and KU,U is a covariance matrix
created from our deep kernel, evaluated over m la-
tent inducing points U = [ui]i=1...m. We place the in-
ducing points over a regular multidimensional lattice,
and exploit the resulting decomposition of KU,U into a
Kronecker product of Toeplitz matrices for extremely
fast matrix vector multiplications (MVMs), without
requiring any grid structure in the data inputs X or
the transformed inputs g(x,w). Because KISS-GP op-
erates by creating an approximate kernel which ad-
mits fast computations, and is independent from a spe-
cific inference and learning procedure, we can view the
KISS approximation applied to our deep kernels as a
stand-alone kernel, k(x, z) = m>xK

deep
U,U mz, which can

be combined with Gaussian processes or other kernel
machines for scalable learning.

For inference we solve K−1KISSy using linear conjugate
gradients (LCG), an iterative procedure for solving lin-
ear systems which only involves matrix vector multi-
plications (MVMs). The number of iterations required
for convergence to within machine precision is j � n,
and in practice j depends on the conditioning of the
KISS-GP covariance matrix rather than the number of
training points n. For estimating the log determinant

373

Andrew Gordon Wilson∗, Zhiting Hu∗, Ruslan Salakhutdinov, Eric P. Xing

Table 1: Comparative RMSE performance and runtime on UCI regression datasets, with n training points and d the input
dimensions. The results are averaged over 5 equal partitions (90% train, 10% test) of the data ± one standard deviation.
The best denotes the best-performing kernel according to Yang et al. (2015) (note that often the best performing kernel
is GP-SM). Following Yang et al. (2015), as exact Gaussian processes are intractable on the large data used here, the
Fastfood finite basis function expansions are used for approximation in GP (RBF, SM, Best). We verified on datasets
with n < 10, 000 that exact GPs with RBF kernels provide comparable performance to the Fastfood expansions. For
datasets with n < 6, 000 we used a fully-connected DNN with a [d-1000-500-50-2] architecture, and for n > 6000 we
used a [d-1000-1000-500-50-2] architecture. DNN+GP is a GP applied to fixed pre-trained output layer of the DNN. We
used RBF kernel and KISS-GP approximation for direct comparison with our proposed deep kernel learning (DKL). We
consider scalable DKL with RBF and SM base kernels. For the SM base kernel, we set Q = 4 for datasets with n < 10, 000
training instances, and use Q = 6 for larger datasets.

Datasets n d

RMSE Runtime(s)

GP
DNN DNN+GP

DKL
DNN

DKL

RBF SM best RBF SM RBF SM

Gas 2,565 128 0.21±0.07 0.14±0.08 0.12±0.07 0.11±0.05 0.11±0.05 0.11±0.05 0.09±0.06 7.4 7.8 10.5

Skillcraft 3,338 19 1.26±3.14 0.25±0.02 0.25±0.02 0.25±0.00 0.25±0.00 0.25±0.00 0.25±0.00 15.8 15.9 17.1

SML 4,137 26 6.94±0.51 0.27±0.03 0.26±0.04 0.25±0.02 0.25±0.01 0.24±0.01 0.23±0.01 1.1 1.5 1.9

Parkinsons 5,875 20 3.94±1.31 0.00±0.00 0.00±0.00 0.31±0.04 0.31±0.04 0.29±0.04 0.29±0.04 3.2 3.4 6.5

Pumadyn 8,192 32 1.00±0.00 0.21±0.00 0.20±0.00 0.25±0.02 0.25±0.02 0.24±0.02 0.23±0.02 7.5 7.9 9.8

PoleTele 15,000 26 12.6±0.3 5.40±0.3 4.30±0.2 3.42±0.05 3.36±0.04 3.28±0.04 3.11±0.07 8.0 8.3 27.0

Elevators 16,599 18 0.12±0.00 0.090±0.001 0.089±0.002 0.099±0.001 0.097±0.002 0.084±0.002 0.084±0.002 8.9 9.2 11.8

Kin40k 40,000 8 0.34±0.01 0.19±0.02 0.06±0.00 0.11±0.01 0.11±0.01 0.05±0.00 0.03±0.01 19.8 20.7 25.0

Protein 45,730 9 1.64±1.66 0.50±0.02 0.47±0.01 0.49±0.01 0.49±0.01 0.46±0.01 0.43±0.01 143 155 144

KEGG 48,827 22 0.33±0.17 0.12±0.01 0.12±0.01 0.12±0.01 0.12±0.00 0.11±0.00 0.10±0.01 31.3 34.2 61.0

CTslice 53,500 385 7.13±0.11 2.21±0.06 0.59±0.07 0.41±0.06 0.41±0.02 0.36±0.01 0.34±0.02 36.4 44.3 80.4

KEGGU 63,608 27 0.29±0.12 0.12±0.00 0.12±0.00 0.12±0.00 0.12±0.00 0.11±0.00 0.11±0.00 39.5 43.0 41.1

3Droad 434,874 3 12.9±0.1 10.3±0.2 9.90±0.10 7.36±0.07 7.04±0.06 6.91±0.04 6.91±0.04 239 256 292

Song 515,345 90 0.55±0.00 0.46±0.00 0.45±0.00 0.45±0.02 0.45±0.01 0.44±0.00 0.43±0.01 518 539 590

Buzz 583,250 77 0.88±0.01 0.51±0.01 0.51±0.01 0.49±0.00 0.49±0.00 0.48±0.00 0.46±0.01 486 523 770

Electric 2M 11 0.23±0.00 0.053±0.000 0.053±0.000 0.058±0.002 0.054±0.002 0.050±0.002 0.048±0.002 3458 3542 4881

in the marginal likelihood we follow the approach de-
scribed in Wilson and Nickisch (2015) with extensions
in Wilson et al. (2015).

KISS-GP training scales as O(n+ h(m)) (where h(m)
is typically close to linear in m), versus conventional
scalable GP approaches which require O(m2n + m3)
(Quiñonero-Candela and Rasmussen, 2005) computa-
tions and need m� n for tractability, which results in
severe deteriorations in predictive performance. The
ability to have large m ≈ n allows KISS-GP to have
near-exact accuracy in its approximation (Wilson and
Nickisch, 2015), retaining a non-parametric represen-
tation, while providing linear scaling in n and O(1)
time per test point prediction (Wilson et al., 2015).
We empirically demonstrate this scalability and accu-
racy in our experiments of section 5.

5 Experiments

We evaluate the proposed deep kernel learning method
on a wide range of regression problems, including a
large and diverse collection of regression tasks from
the UCI repository (section 5.1), orientation extrac-
tion from face patches (section 5.2), magnitude recov-
ery of handwritten digits (section 5.3), and step func-
tion recovery (section 5.4 and the supplementary ma-
terial). We show that the proposed algorithm substan-
tially outperforms GPs with expressive kernel learning
approaches, and deep neural networks, without any
significant increases in computational overhead.

All experiments were performed on a Linux machine
with eight 4.0GHz CPU cores and 32GB RAM. We
implemented DNNs based on Caffe (Jia et al., 2014),
a general deep learning platform.

For our deep kernel learning model, we first train a
deep neural network using SGD with the squared loss
objective, and rectified linear activation functions. Af-
ter the neural network has been pre-trained, a KISS-
GP model was fitted using the top-level features of the
DNN model as inputs. Using this pre-training initial-
ization, our joint deep kernel learning (DKL) model
of section 4 is then trained by optimizing all the hy-
perparameters γ of our deep kernel, by backpropagat-
ing derivatives through the marginal likelihood of the
Gaussian process (see Eq. 7).

5.1 UCI regression tasks

We consider a large set of UCI regression problems
of varying sizes and properties. Table 1 reports test
root mean squared error (RMSE) for 1) many scal-
able Gaussian process kernel learning methods based
on Fastfood (Yang et al., 2015); 2) stand-alone deep
neural networks (DNNs); and 3) our proposed com-
bined deep kernel learning (DKL) model using both
RBF and SM base kernels.

For smaller datasets, where the number of training ex-
amples n < 6, 000, we used a fully-connected neural
network with a d-1000-500-50-2 architecture; for larger

374

Deep Kernel Learning

36.15-43.10 -3.4917.35 -19.81

Training data

Test data

Label

Figure 2: Left: Randomly sampled training and test examples. Right: The two dimensional outputs of the convolutional
network on a set of test cases. Each point is shown using a line segment that has the same orientation as the input face.

datasets we used a d-1000-1000-500-50-2 architecture1.

Table 1 shows that on most of the datasets, our DKL
method strongly outperforms not only Gaussian pro-
cesses with the standard RBF kernel, but also the best-
performing kernels selected from a wide range of alter-
native kernel learning procedures (Yang et al., 2015).

We further compared DKL to stand-alone deep neu-
ral networks which have the exact same architecture
as the DNN component of DKL, and DNN+GP which
is a GP applied to a pre-trained DNN. We see that
DNN+GP outperforms stand-alone DNNs, showing
the non-parametric flexibility of kernel methods. By
combining KISS-GP with DNNs as part of a joint DKL
procedure, we obtain consistently better results than
DNN and DNN+GP over all 16 datasets. Moreover,
using a spectral mixture base kernel (Eq. (6)) to create
a deep kernel provides notable additional performance
improvements. By effectively learning the salient fea-
tures from raw data, plain DNNs generally achieve
competitive performance compared to expressive GPs.
Combining the complementary advantages of these ap-
proaches into scalable deep kernels consistently brings
substantial additional performance gains.

We next investigate the runtime of DKL. Table 1,
right panel, compares DKL with a stand-alone DNN
in terms of runtime for evaluating the objective and
derivatives (i.e. one forward and backpropagation pass
for DNN; one computation of the marginal likelihood
and all relevant derivatives for DKL). We see that in
addition to improving accuracy, combining KISS-GP
with DNNs for deep kernels introduces only negligible
runtime costs: KISS-GP imposes an additional run-
time of about 10% over a stand-alone DNN. Overall,
these results show the general applicability and prac-
tical significance of our scalable DKL approach.

5.2 Face orientation extraction

We now consider the task of predicting the orienta-
tion of a face extracted from a gray-scale image patch,
explored in Salakhutdinov and Hinton (2008). We
investigate our DKL procedure for efficiently learn-
ing meaningful representations from high-dimensional

1We found [d-1000-1000-500-50] architectures provide
a similar level of performance, but scalable Kronecker al-
gebra is most effective if the network maps into D ≤ 5
dimensional spaces.

Table 2: RMSE performance on Olivetti and MNIST. For
comparison, in the face orientation extraction, we trained
DKL on the same amount (12,000) of training instances as
with DBN+GP, but used all labels; whereas DBN+GP (as
with GP) scaled to only 1,000 labeled images and modeled
the remaining data through unsupervised pretraining of
DBN. CNN+GP is a GP applied to fixed pre-trained CNN.
We used RBF base kernel within GPs.

Datasets GP DBN+GP CNN CNN+GP DKL

Olivetti 16.33 6.42 6.34 6.42 6.07
MNIST 1.25 1.03 0.59 0.56 0.53

highly-structured image data.

The Olivetti face data set contains ten 64×64 images
of forty different people, for 400 images total. Follow-
ing Salakhutdinov and Hinton (2008), we constructed
datasets of 28×28 images by randomly rotating (uni-
formly from −90◦ to +90◦), cropping, and subsam-
pling the original 400 images. We then randomly se-
lect 30 people uniformly and collect their images as
training data, while using the images of the remain-
ing 10 people as test data. Figure 2 shows randomly
sampled examples from the training and test data.

For training DKL on the Olivetti face patches we used
a convolutional network consisting of 2 convolutional
layers followed by 4 fully-connected layers, mapping a
face patch to a 2-dimensional feature vector, with a
SM base kernel. We describe this convolutional archi-
tecture in detail in the supplementary material.

Table 2 shows the RMSE of the predicted face ori-
entations using four models. The DBN+GP model,
proposed by Salakhutdinov and Hinton (2008), first
extracts features from raw data using a Deep Belief
Network (DBN), and then applies a Gaussian process
with an RBF kernel. However, their approach could
only handle up to a few thousand labelled datapoints,
due to the O(n3) complexity of standard Gaussian pro-
cesses. The remaining data were modeled through
unsupervised learning of a DBN, leaving the large
amount of available labels unused.

Our proposed deep kernel methods, by contrast, scale
linearly with the size of training data, and are capa-
ble of directly modeling the full labeled data to accu-
rately recover salient patterns. Figure 2, right panel,
shows that the deep kernel discovers features essential
for orientation prediction, while filtering out irrelevant
factors such as identities and scales.

375

Andrew Gordon Wilson∗, Zhiting Hu∗, Ruslan Salakhutdinov, Eric P. Xing

1 2 3 4 5 6

x 10
4

5.2

5.4

5.6

5.8

6

6.2

6.4

#Training Instances

R
M

S
E

CNN
DKL−RBF
DKL−SM

1 2 3 4 5 6

x 10
4

50

100

150

200

250

300

350

#Training Instances

R
un

tim
e

(s
)

CNN
DKL−RBF
DKL−SM

1.2 2 3 4 5 6

x 10
4

0

2

4

6

8

10

x 10
4

#Training Instances

T
ot

al
 T

ra
in

in
g

T
im

e
(s

)

CNN
DKL−RBF
DKL−SM

Figure 3: Left: RMSE vs. n, the number of training examples. Middle: Runtime vs n. Right: Total training time vs
n. The dashed line in black indicates a slope of 1. CNNs are used within DKL. We set Q = 4 for the SM kernel.

Figure 3, left panel, further validates the benefit of
scaling to large data. As more training data are used,
our model continues to increase in accuracy. Indeed,
it is the large datasets that will provide the greatest
opportunities for our model to discover expressive sta-
tistical representations.

In Figure 4 we show the spectral density (the Fourier
transform) of the base kernels learned through our
deep kernel learning method. The expressive spectral
mixture (SM) kernel discovers a structure with two
peaks in the frequency domain. The RBF kernel is
only able to use a single Gaussian in the spectral do-
main, centred at the origin. In an attempt to capture
the significant mass near a frequency of 25, the RBF
kernel spectral density spreads itself across the whole
frequency domain, missing the important local correla-
tions near a frequency s = 0, thus erroneously discard-
ing much of the network features as white noise, since
a broad spectral peak corresponds to a short length-
scale. This result provides intuition for why spectral
mixture base kernels generally perform much better
than RBF base kernels, despite the flexibility of the
deep architecture.

We further see the benefit of an SM base kernel in Fig-
ure 5, where we show the learned covariance matrices
constructed from the whole deep kernels (composition
of base kernel and deep architecture) for RBF and SM
base kernels. The covariance matrix is evaluated on
a set of test inputs, where we randomly sample 400
instances from the test set and sort them in terms
of the orientation angles of the input faces. We see
that the deep kernels with both RBF and SM base
kernels discover that faces with similar rotation an-
gles are highly correlated, concentrating their largest
entries on the diagonal (i.e., face pairs with similar
orientations). Deep kernel learning with an SM base
kernel captures these correlations more strongly than
the RBF base kernel, which is somewhat more diffuse.

In Figure 5, right panel, we also show the learned
covariance matrix for an RBF kernel with a stan-
dard Gaussian process applied to the raw data inputs.
We see that the entries are very diffuse. In essence,
through deep kernel learning, we can learn a metric
where faces with similar rotation angles are highly

0 10 20 30
−800

−600

−400

−200

0

Frequency

Lo
g

S
pe

ct
ra

l D
en

si
ty

Figure 4: The log spectral densities of the DKL-SM and
DKL-SE base kernels are in black and red, respectively.

correlated, and thus overcome the fundamental limita-
tions of a Euclidean distance metric (used by standard
kernels), where similar rotation angles are not partic-
ularly correlated, regardless of what hyper-parameters
are learned with Euclidean kernels.

We next measure the scalability of our model. Fig-
ure 3, middle panel, shows the runtimes in seconds,
as a function of training instances, for evaluating the
objective and any relevant derivatives. We see that,
with the scalable KISS-GP, the joint model achieves
a roughly linear asymptotic scaling, with a slope of
1. In Figure 3, right panel, we show how the total
training time (i.e., the time for CNN pre-training plus
the time for DKL with CNN architecture joint train-
ing) changes with varying the data size n. In addition
to the linear scaling which is necessary for modeling
large data, the fixed added time in combining KISS-
GP with CNNs is modest, especially considering the
gains in performance and expressive power.

5.3 Digit magnitude extraction

We map images of handwritten digits to a single real-
value that is as close as possible to the integer repre-
sented by the digit in the image, as in Salakhutdinov
and Hinton (2008). The MNIST digit dataset contains
60,000 training data and 10,000 test 28× 28 images of
ten handwritten digits (0 to 9). We used a convolu-
tional neural network with a similar architecture as the
LeNet (LeCun et al., 1998) (detailed in the supplemen-
tary material). Table 2 shows that a CNN performs
considerably better than GP and DBN+GP, and DKL
(with CNN architecture) further improves over CNN.

5.4 Step function recovery

We have so far considered RMSE for comparison to
alternative methods where posterior predictive distri-

376

Deep Kernel Learning

100 200 300 400

100

200

300

400 −0.1

0

0.1

0.2

100 200 300 400

100

200

300

400 0

1

2

100 200 300 400

100

200

300

400 0

100

200

300

Figure 5: Left: The induced covariance matrix using DKL-SM kernel on a set of test cases, where the test samples
are ordered by the orientations of the input faces. Middle: The respective covariance matrix using DKL-RBF kernel.
Right: The respective covariance matrix using regular RBF kernel. The models are trained with n = 12, 000, and Q = 4
for the SM base kernel.

−1 −0.5 0 0.5 1
4

6

8

10

12

14

16

18

Input X

O
ut

pu
t Y

GP(RBF)
GP(SM)
DKL−SM
Training data

Figure 6: Recovering a step function. We show the pre-
dictive mean and 95% of the predictive probability mass
for regular GPs with RBF and SM kernels, and DKL with
SM base kernel. We set Q = 4 for SM kernels.

butions are not readily available, or on problems where
RMSE has historically been used as a benchmark.
However, an advantage of DKL over stand-alone deep
architectures is the ability to naturally produce a pos-
terior predictive distribution, which is especially use-
ful in applications such as reinforcement learning and
Bayesian optimisation. In Figure 6, we consider an ex-
ample where we use DKL to learn the posterior predic-
tive distribution for a step function with many chal-
lenging discontinuities. This problem is particularly
difficult for conventional GP approaches, due to strong
smoothness assumptions intrinsic to popular kernels.

GPs with SM kernels improve upon RBF kernels, but
neither can properly adapt to the many sharp changes
in covariance structure. By contrast, DKL-SM ac-
curately encodes the discontinuities of the function,
and has reasonable uncertainty over the whole domain.
Further details are in the supplement.

6 Discussion

We have explored scalable deep kernels, which combine
the structural properties of deep architectures with the
non-parametric flexibility of kernel methods. In par-
ticular, we transform the inputs of a base kernel with
a deep architecture, and then leverage local kernel in-
terpolation, inducing points, and structure exploiting
algebra (e.g., Kronecker and Toeplitz methods) for a
scalable kernel representation. These scalable kernels

can then be combined with Gaussian process inference
and learning procedures for O(n) training and O(1)
testing time. Moreover, we use spectral mixture co-
variances as a base kernel, which provides a significant
additional boost in representational power. Overall,
our scalable deep kernels can be used in place of stan-
dard kernels, following the same inference and learning
procedures, but with benefits in expressive power and
efficiency. We show on a wide range of experiments
the general applicability and practical significance of
our approach, consistently outperforming scalable GPs
with expressive kernels, stand-alone DNNs, and GPs
applied to the outputs of trained DNNs.

A major challenge in developing expressive kernel
learning approaches is the Euclidean and absolute dis-
tance based metrics which are pervasive in most fam-
ilies of kernel functions, such as the ARD and Matérn
kernels. Indeed, although intuitive in some cases, one
cannot expect Euclidean and absolute distance as mea-
sures of similarity to be generally applicable, and they
are especially problematic in high dimensional input
spaces (Aggarwal et al., 2001). Modern approaches
attempt to learn a flexible parametric family, for exam-
ple, through weighted combinations of known kernels
(e.g., Gönen and Alpaydın, 2011), but are still funda-
mentally limited to these standard notions of distance.

As we have seen in the Olivetti faces examples, our
approach allows for the whole functional form of the
metric to be learned in a flexible manner, through ex-
pressive transformations of the input space. We expect
such metric learning to be particularly valuable in high
dimensional classification problems, which we view as
a promising direction for future research. We hope
that this work will help bring together research on neu-
ral networks and kernel methods, to inspire many new
models and unifying perspectives which combine the
complementary advantages of these approaches.

377

Andrew Gordon Wilson∗, Zhiting Hu∗, Ruslan Salakhutdinov, Eric P. Xing

Acknowledgements: We thank NIH R01GM093156
and NIH R01GM087694, NSF IIS-1218282, and ONR
N000141410684 grants for support.

References

Aggarwal, C. C., Hinneburg, A., and Keim, D. A. (2001).
On the surprising behavior of distance metrics in high
dimensional space. Springer.

Bengio, Y. (2009). Learning deep architectures for AI.
Foundations and Trends in Machine Learning.

Calandra, R., Peters, J., Rasmussen, C. E., and Deisen-
roth, M. P. (2014). Manifold gaussian processes for re-
gression. arXiv preprint arXiv:1402.5876.

Damianou, A. and Lawrence, N. (2013). Deep Gaussian
processes. In Artificial Intelligence and Statistics.

Gönen, M. and Alpaydın, E. (2011). Multiple kernel learn-
ing algorithms. Journal of Machine Learning Research,
12:2211–2268.

Hinton, G. E., Deng, L., Yu, D., Dahl, G. E., rahman
Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V.,
Nguyen, P., Sainath, T. N., and Kingsbury, B. (2012).
Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups.
IEEE Signal Process. Mag., 29(6):82–97.

Hinton, G. E., Osindero, S., and Teh, Y. W. (2006). A fast
learning algorithm for deep belief nets. Neural Compu-
tation, 18(7):1527–1554.

Huang, W., Zhao, D., Sun, F., Liu, H., and Chang, E.
(2015). Scalable gaussian process regression using deep
neural networks. In Proceedings of the 24th International
Conference on Artificial Intelligence, pages 3576–3582.
AAAI Press.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. (2014).
Caffe: Convolutional architecture for fast feature em-
bedding. arXiv preprint arXiv:1408.5093.

Kiros, R., Salakhutdinov, R., and Zemel, R. (2014). Unify-
ing visual-semantic embeddings with multimodal neural
language models. TACL.

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). Ima-
genet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing
Systems.

Le, Q., Sarlos, T., and Smola, A. (2013). Fastfood-
computing Hilbert space expansions in loglinear time.
In Proceedings of the 30th International Conference on
Machine Learning, pages 244–252.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.

Lloyd, J. R., Duvenaud, D., Grosse, R., Tenenbaum, J. B.,
and Ghahramani, Z. (2014). Automatic construction
and Natural-Language description of nonparametric re-
gression models. In Association for the Advancement of
Artificial Intelligence (AAAI).

MacKay, D. J. (1998). Introduction to Gaussian processes.
In Bishop, C. M., editor, Neural Networks and Machine
Learning, chapter 11, pages 133–165. Springer-Verlag.

Micchelli, C. A., Xu, Y., and Zhang, H. (2006). Univer-
sal kernels. The Journal of Machine Learning Research,
7:2651–2667.

Neal, R. (1996). Bayesian Learning for Neural Networks.
Springer Verlag.

Quiñonero-Candela, J. and Rasmussen, C. (2005). A uni-
fying view of sparse approximate gaussian process re-
gression. The Journal of Machine Learning Research,
6:1939–1959.

Rasmussen, C. E. and Ghahramani, Z. (2001). Occam’s ra-
zor. In Neural Information Processing Systems (NIPS).

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian
processes for Machine Learning. The MIT Press.

Saatchi, Y. (2011). Scalable Inference for Structured Gaus-
sian Process Models. PhD thesis, University of Cam-
bridge.

Salakhutdinov, R. and Hinton, G. (2008). Using deep be-
lief nets to learn covariance kernels for Gaussian pro-
cesses. Advances in Neural Information Processing Sys-
tems, 20:1249–1256.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N.,
Sundaram, N., Patwary, M., Ali, M., and Adams, R. P.
(2015). Scalable bayesian optimization using deep neu-
ral networks. In International Conference on Machine
Learning.

Socher, R., Huang, E., Pennington, J., Ng, A., and Man-
ning, C. (2011). Dynamic pooling and unfolding re-
cursive autoencoders for paraphrase detection. In Ad-
vances in Neural Information Processing Systems 24,
pages 801–809.

Wilson, A. G. (2014). Covariance kernels for fast auto-
matic pattern discovery and extrapolation with Gaussian
processes. PhD thesis, University of Cambridge.

Wilson, A. G. and Adams, R. P. (2013). Gaussian process
kernels for pattern discovery and extrapolation. Inter-
national Conference on Machine Learning (ICML).

Wilson, A. G., Dann, C., and Nickisch, H. (2015).
Thoughts on massively scalable Gaussian processes.
Technical Report, Carnegie Mellon University.
http://www.cs.cmu.edu/~andrewgw/msgp.html.

Wilson, A. G., Knowles, D. A., and Ghahramani, Z. (2012).
Gaussian process regression networks. In International
Conference on Machine Learning (ICML), Edinburgh.
Omnipress.

Wilson, A. G. and Nickisch, H. (2015). Kernel interpolation
for scalable structured Gaussian processes (KISS-GP).
International Conference on Machine Learning (ICML).

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C.,
Salakhutdinov, R., Zemel, R. S., and Bengio, Y. (2015).
Show, attend and tell: Neural image caption generation
with visual attention. ICML.

Yang, Z., Moczulski, M., Denil, M., de Freitas, N., Smola,
A., Song, L., and Wang, Z. (2014). Deep fried convnets.
arXiv preprint arXiv:1412.7149.

Yang, Z., Smola, A. J., Song, L., and Wilson, A. G. (2015).
A la carte - learning fast kernels. Artificial Intelligence
and Statistics.

378

