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Abstract

Graphlets represent small induced subgraphs and are becoming increasingly important for
a variety of applications. Despite the importance of the local graphlet problem, existing
work focuses mainly on counting graphlets globally over the entire graph. These global
counts have been used for tasks such as graph classification as well as for understanding and
summarizing the fundamental structural patterns in graphs. In contrast, this work proposes
a flexible, efficient, and scalable parallel framework for the more challenging problem of
counting graphlets locally for a given edge or set of edges.The local graphlet counts provide
a topologically rigorous characterization of the local structure surrounding an edge. The
aim of this work is to obtain the count of every graphlet of size k € {3,4} for each edge.
The framework gives rise to efficient, parallel, and accurate unbiased estimation methods as
well as exact graphlet algorithms for counting graphlets locally. Experiments demonstrate
the effectiveness of the proposed exact and estimation methods.

Keywords: Graphlets, local graphlet counts, edge graphlet counts, edge features, statisti-
cal estimation, induced subgraphs, motifs, network analysis, statistical relational learning,
link classification, parallel algorithms.

1. Introduction

Graphlets are small induced subgraphs and are important for many predictive and descrip-
tive modeling tasks (Przulj et al., 2004; Milenkoviae and Przulj, 2008; Hayes et al., 2013)
in a variety of disciplines including bioinformatics (Vishwanathan et al., 2010; Shervashidze
et al., 2009), cheminformatics (Rupp and Schneider, 2010; Kashima et al., 2010), and im-
age processing and computer vision (Zhang et al., 2016, 2013). Given a network G, our
approach counts the frequency of each k € {3,4}-vertex induced subgraph patterns (See
Table 2). These counts represent powerful features that succinctly characterize the funda-
mental network structure (Shervashidze et al., 2009). Indeed, it has been shown that such
features accuratly capture the local network structure in a variety of domains (Holland and
Leinhardt, 1976; Faust, 2010; Frank, 1988). As opposed to global graph parameters such
as diameter for which two or more networks may have global graph parameters that are
nearly identical, yet their local structural properties may be significantly different.

While most previous work focused on global macro-level graphlet statistics (Shervashidze
et al., 2009; Ahmed et al., 2015), in this paper however, we focus on local micro-level graphlet
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statistics. Micro-level graphlet statistics x; of an individual edge e; € E in G (as opposed to
the global graph G) is important with numerous potential applications. For instance, they
can be used as powerful discriminative features {xi1,x2,...,x} for improving statistical
relational learning (SRL) tasks (Rossi et al., 2012) such as relational classification (Getoor
and Taskar, 2007), link prediction and weighting tasks (e.g., recommending items, friends,
web sites, music, events, etc.) (Liu et al., 2013), detecting anomalies in graphs (e.g., de-
tecting fraud, or attacks/malicious behavior in computer networks) (Noble and Cook, 2003;
Akoglu et al., 2014), among many others (Bhattacharya and Getoor, 2006; Schaeffer, 2007;
Rossi and Ahmed, 2015b). More generally, these edge graphlet counts provide a topologi-
cally rigorous characterization of the local structure surrounding an edge. See Figure 1 for
intuition on the problem solved in this work and potential use cases and applications.

In this paper, we propose an exact, fast, efficient, and parallel algorithm for computing
local graphlet statistics. Moreover, we combine our proposed algorithm with a statistical
unbiased estimation approach for computing local graphlet statistics approximately. The
proposed methods were shown to be extremely effective across a wide variety of networks
with fundamentally different structural properties. In particular, the estimation methods
are strikingly accurate and fast with little noticeable difference between the exact and
estimated graphlet counts. The paper is organized as follows. First, Section 2 provides
background (notation, key definitions) along with a formulation of the problem. Next,
Section 3 derives a flexible computational framework (for counting graphlets locally for each
edge in GG) that serves as a basis for the proposed methods. Section 4 provides a variety of
experiments demonstrating the effectiveness of the methods, and Section 5 reviews related
work. Finally, Section 6 concludes.

2. Local Graphlet Counting

This section formulates the local (micro! graphlet estimation problem, then derives a flex-
ible computational framework. Preliminaries are given in Section 2.1 and the problem
formulation is provided in Section 2.2.

2.1. Preliminaries

Let G = (V, E) be an undirected graph where V is the set of vertices and E is the set of
edges. The number of vertices is N = |V| and number of edges is M = |E|. We assume
all vertex and edge sets are ordered, i.e., V = {v1,v,...,v;, ..., v, } such that v;_; appears
before v; and so forth. Similarly, the ordered edges are denoted E = {ey, e, ..., €, ..., em }.
Given a vertex v € V, let I'(v) = {w|(v,w) € E} be the set of vertices adjacent to v in G.
The degree d,, of v € V is the size of the neighborhood |I'(v)| of v. We also define A(G) to
be the largest degree in G (See Table 1 for a summary of the key notation).

Given a graph G and an edge (v,u) € E, the edge-induced subgraph is simply H =
(W, E[W]) where W = T'(v) |T'(u) is the set of vertices adjacent to v and u and E[W] is
the set of edges between any pair of vertices r,s € W such that (r,s) € E. A graphlet
G; = (Vi, Ey) is a subgraph consisting of a subset Vi, C V of the k vertices from G =

1. The terms local and micro are used interchangeably and refer to the problem of computing graphlet
statistics for individual graph elements such as an edge or even a node.
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Table 1: Summary of notation. All sets are ordered. Whenever possible, we use standard
terminology in the literature.

Number of nodes in the graph G

N
M Number of edges in the graph G
J  Set of selected edges via an arbitrary mechanism, e.g. a sampling procedure
K Number of selected edges

p; Sampling probability for edge e;

d, Degree of vertex v where d, = |T'(v)]

A Maximum degree of the graph G

T. Set of vertices that form a triangle with edge (v,u) € E.

Su  Set of vertices forming a 2-star (centered at vertex u) with edge (v,u) € E.

I'(e;) Edge neighborhood of e; = (v, u), also denoted as I'(v, u) for convenience. Let I'y(e;) be
the set of neighbors within h-hops of the edge e;. Note I'(e;) = I'n=1(e;).
W(-) Fast lookup table for checking edge existence in constant time (i.e., o(1))

G; The i induced subgraph, see Table 2. For convenience, we also use |G;| to denote the
frequency of graphlet G; in G. Similarly, let |G;(e;)| denote the frequency of graphlet G;
centered at e; € F.

X Let X € RM** be a matrix representing the local graphlet counts for all edges ej € I.
X;; Count of graphlet G; for edge e; € E

A vector of local graphlet counts for edge e; € E. For convenience, we also denote the
local graphlet counts for e; as X;, € R”.

(V, E) together with all edges whose endpoints are both in this subset Ey = {Ve € E|e =
(u,v) Au,v € Vi}. Let G*) denote the set of all possible k-vertex induced subgraphs and
G =G6@yU...ugW® is the union of all sets for any 2 < k < N. Given the graph G = (V, E)
and a set W = {wy,...,wi} CV of k-vertices (i.e. |W|= k), we define a k-graphlet as any
k-vertex induced subgraph G; = (W, E[W]) where G; € G,

It is important to distinguish between the two fundamental classes of graphlets, namely,
connected and disconnected graphlets (see Table 2). A k-graphlet G; = (Vi, E)) is connected
if there exists a path from any vertex to any other vertex in the graphlet G;, Yu,v €
Vi, 3Py—y : Uy ..., w,...,v, such that d(u,v) > 0 Ad(u,v) # oo and d(u,v) is the distance
(number of hops) between u and v. By definition, a connected graphlet G; has only one
connected component (i.e., |C| = 1). A k-graphlet G; = (V, E)) is disconnected if there
is no existing path from any vertex v € G; to any other vertex u € G;. The goal of this
work is to compute local edge-centric induced subgraph statistics for both connected and
disconnected graphlets of size k € {3,4}. As an aside, the terms graphlet, motif, induced
subgraph, and orbit have been used interchangeably in the literature.

2.2. Problem Definition

Now, we formally define the local edge-centric graphlet counting problems: Given a graph
G = (V,E), an edge e; = (v,u) € E, find the number of induced subgraphs (i.e., graphlets)
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Table 2: Summary of the graphlets of size k € {3,4}. Graphlets are arranged into sets of k-
graphlets and categorized into connected (left) and disconnected graphlets (right).
Connected graphlets are ordered from most dense to least, whereas disconnected
graphlets are arranged next to their corresponding complement connected graphlet
(on the left).

CONNECTED DISCONNECTED
kK—3 V G1 triangle . G4  3-node-independent

I_. Gy 2-star . G3  3-node-l-edge

9p)

E E G5  4-clique e « (15 4-node-independent

Pq *—e

s N Gg¢ chordal-cyclef e« « Gi4 4-node-l-edge

A

é k=4 N G- tailed-trianglet I_: G113 4-node-2-star

© D Gg 4-cycle e (12 4-node-2-edge
R Gy  3-star V: G117  4-node-1-triangle
I_I G10 4—path

T Diamond and chordal-cycle are interchangeable.
¥ Paw and tailed-triangle are interchangeable.

that are incident to e; and isomorphic to the graphlet pattern G; € G — i.e., |G;(e;)| (see
Table 2 for all graphlet patterns of size k = {3,4} nodes). For example, |G1(e;)| represents
the number of triangles incident to edge e; € E. Note that counting k-vertex graphlets
incident to any edge e; can be performed naively in O(AF~1) asymptotically, where A is
the maximum vertex degree in the graph. Clearly, the time complexity of the algorithm is
expensive for larger values of k and A. Therefore, we also provide an unbiased estimation
for the counts of graphlets incident to an edge e;.

Problem. (LocAL EDGE-CENTRIC GRAPHLET ESTIMATION) Given a graph G = (V, E)
and an edge e; = (v,u) € E, the local edge-centric graphlet estimation problem is to find

Xj — [ml T4 x5 10 :[;15]

where x; is an approximation of the exact local graphlet statistics denoted y ; for edge e; such
that x; ~ y; and thus D ( xj || y; ) is minimized as well as the computational cost associated
with the estimation. Moreover, x; is an unbiased estimate of y,;. Note that D ( x; || Yj )
can be any loss/distance function (such as kolmogorov-smirnov distance (Ahmed et al.,
2014b)). The aim of the local edge-centric graphlet estimation problem is to compute a fast
approximation of the graphlet statistics centered at (or incident to) an individual edge?.
See Figure 1 for further intuition on the problem and potential use cases.

2. Graphlets are estimated locally (at the micro-level), that is, per edge as opposed to globally.
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Local features
Graphlet
Decomposition

Figure 1: Local graphlet decomposition. Given a graph as input, the local graphlet decom-
position methods are useful for computing graph features which in turn can be
used for node and edge classification, relational representation discovery, role dis-
covery, among other statistical relational learning (SRL) tasks. Node color above
represents class labels. Notice that the edge features derived by the proposed local
graphlet decomposition method can easily be transformed into node features us-
ing techniques by Rossi et al. (2012) or used directly by SRL algorithms (Getoor
and Taskar, 2007).

3. Local Graphlet Framework

This section derives a flexible computational framework for the local graphlet counting
problem, and serves as a basis for the proposed exact and estimation methods. In particular,
Section 3.1 discusses the initial preprocessing steps that significantly improve the efficiency
of our method. Section 3.2 introduces the exact approach whereas the unbiased estimation
method for local edge graphlet counts is proposed in Section 3.3.

3.1. Preprocessing Steps

Our approach benefits from the preprocessing steps below and the useful computational
properties that arise.

P1 The vertices V = {vy,...,uy} are sorted from smallest to largest degree and relabeled
such that d(vi) < d(v2) < d(v;) < d(vn).

P2 ForeachI'(v;) € {T'(v1),...,I'(vn)}, the vertex neighbors in I'(v;) = {...,wj,..., wg, ...
are ordered s.t. j < k if f(w;) > f(wg). Thus, the set of neighbors I'(v;) are ordered
from largest to smallest degree and ties are broken by vertex id.

P3 Given an edge (v,u) € E, we ensure that d, > d, (i.e., v is always the vertex with
larger or equal degree).

P4 Let m be an ordering of the set of edges by an arbitrary graph property f(-) such that
k < j for e}, and e; if f(er) > f(e;), and ties are broken arbitrarily.

Clearly, the order that the preprocessing steps are performed is important. The above
preprocessing steps (P1 — P4) give rise to many useful properties and leads to significant
reduction in runtime. For finding the 4-cycles centered at an edge e; = (v, u) € E, we avoid
searching 5, completely, and instead search only S, which due to P3 is likely to be much
less expensive than searching S,. All the work above takes either O(N) or O(M) time and
is computed in parallel.
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Algorithm 1 Edge-centric family of Algorithms for local graphlet counts

Input:
a graph G = (V, E)
an ordered set of edges J = {e1, - ,ex} C F where K = |J| and ¢ = [K/m]
an edge sampling probability vector p = [p1 pK] for each e; € J. Note that if p is the vector of all

ones, then graphlets are computed exactly for each edge in J.

1: Compute preprocessing steps from Section 3.1

2: parallel for each e; € J in order do

3: Obtain exact local graphlet counts x; for e; via Alg. 2 or use Alg. 3 (with p;) to obtain a fast and
accurate unbiased estimation of the local graphlet counts x; for edge e;

4: Set X ;. to be ij

5. end parallel

-
6: return X = [X1 R R xK] consisting of the local graphlet counts x; for each edge e; € J

3.2. Exact Algorithm
Given a set of edges J C E where K = |J|, Alg. 1 computes X = [xl R XK]T
consisting of the local graphlet counts x; for each edge e; € J. The exact method for

deriving local graphlet counts x; centered at an individual edge e; is given in Alg. 2.

3.2.1. LOCAL 3-GRAPHLETS

The proposed approach derives all k-graphlets for k& € {3,4} using only the local edge-
based counts of triangles, cliques, and cycles, along with a few other constant time graph
and vertex parameters such as number of vertices N = |V, edges M = |E|, as well as
vertex degree d, = |I'(v)|. Given an edge e; = (v,u) € E from G, let z1, x5, and xg be the
frequency of triangles, cliques, cycles, and tailed-triangles centered at (or incident to) the
edge e; € E in the graph G, respectively. Note z; (or z;;, X;;) is the count of the induced
subgraph G; for an arbitrary edge e; (See Table 2). The local (micro-level) 3-graphlets for
edge e; are as follows:

o (1)
12 = (dy +dy — 2) — 2|T5) (2)
x3 =N —x9 — |Te| — 2 (3)
x4:(]§)—(m1+x2+x3) (4)

Further, notice that given z1 = |T¢| for e; = (v,u) € E, we can derive |S,| and |S,| (that
is, the number of 2-star patterns centered at u and v of e;, respectively) as:
|Sul = du — |Te| — 1 (5)
|Sy| = dy — |Te| — 1 (6)
Therefore, the number of two-stars centered at e; denoted x4 can be rewritten simply as

x9 = |Sy| + |Sy|. These 3-vertex induced subgraph statistics are then used as a basis to
derive the induced subgraphs of size k + 1 (i.e., 4-vertex graphlets).



ExAcT AND ESTIMATION OF LOCAL EDGE-CENTRIC GRAPHLET COUNTS

3.2.2. LocAL CONNECTED 4-GRAPHLETS

Recall that S, and S, are the number of 2-star patterns centered at u and v for edge e;
and can easily be derived in o(1) time using only d,,, d,, and the triangle count z;. Given
the frequency of 3-cliques (triangles) x; and 4-cliques x5 centered at e;, the local chordal
cycles xg centered at e; are as follows:

z6 = (’T;‘> — x5 (7)

Similarly, given the local 4-cycle count xg, we derive the local 4-path count z19 for edge e;
as follows:

xr10 = (|Sv’ : |Su|) — I8 (8)

Finally, given the local tailed-triangle count x7, we derive the local 3-star count xg for edge

e; as follows:
Sy Sy
x9—<|2|>+<|2|>—$7 9)

3.2.3. LocAL DISCONNECTED 4-GRAPHLETS

Disconnected graphlets are derived as follows:

T11 = |Te| : [N - (|Te’ + |Su| + |Sv| + 2)j|
212 = (|Sul +190]) - [N = (|Te] + [Sul +[Su] +2)]
x13=M— (|Te| +dy+dy+1)—0

vy = (Nf[\Tewﬂgu\Hssz] )

14
zis=(Y) = m (14)
=1

3.3. Statistical Estimation

A generalized and flexible framework for the local graphlet estimation problem is given in
Alg 3. In particular, Alg. 3 takes as input an edge e;, a graph G, a sampling probability p;,
and it returns the graphlet feature vector x; for edge e; € E. This generalization gives rise
to a highly flexible and expressive unifying framework and serves as a basis for investigating
this novel graphlet estimation problem. Moreover, the class of local graphlet approximation
methods have many attractive properties such as unbiasedness, consistency, among others.
The algorithm estimates local graphlet properties including local single-valued statistics
and multi-valued distributions (for a given edge or set of edges).

Given w € T, (or Sy, Sy), we propose selecting r € I'(w) (a neighbor of w) with
probability p; accordingly to an arbitrary weighted/uniform distribution F. Alg. 3 shows
how to efficiently obtain an unbiased estimate of the graphlet counts of size k € {3,4} for an
edge e; € E. First, we compute T, Sy, and S, in Lines 3-10. Afterwards, Eq. 1-4 compute
all graphlets of size k = 3 exactly. Next, we compute 4-cliques in Lines 11-16. In particular,
Line 11 searches each vertex w € T, in parallel. Given w € T, we select a neighbor r € I'(w)
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Algorithm 2 A generalized framework is described below for the local graphlet problem. Given
a graph G = (V, E), the algorithm returns the graphlet feature vector x; for edge e; € E.

1: procedure LOCALGRAPHLET(G, €; = (v, u))

2: Initialize variables

3: parallel for each w € I'(v) do

4: if w# u then S, + S, U{w} and ¥(w) = A\;

5: parallel for each w € I'(u) and w # v do

6: if ¥(w) = X1 then

7 Te <+ Te U{w} and set ¥(w) = A3 > triangle
8: Sv + Su \ {w}

9: else Sy <+ Sy U{w} and set ¥(w) = A2 > wedge
10: parallel for each w € T, do

11: for r € T'(w) do

12: if ¥(r) = A3 then Set x5 < x5 + 1 > local 4-clique
13: Set ¥(w) to A4

14: parallel for each w € S, do

15: for r € I'(w) do

16: if ¥(r) = A1 then set xg + x5 + 1 > local 4-cycle
17: if ¥(r) = A2 then set 27 + a7 +1 > local tailed-tri
18: if ¥(r)=Xs thenset o<+ o+1

19: Set ¥(w) to 0

20: parallel for each w € S, do

21: for r € I'(w) do

22: if ¥(r) = A1 then set 27 a7 +1 > local tailed-tri
23: if ¥(r) =MXs thenseto <+ o+1

24: Set ¥(w) to 0

25: Derive local 3-graphlets for e; via Eq.1-4

26: Use Eq.7-9 to derive the local connected 4-graphlets for e; and disconnected 4-graphlets via Eq.10-14.

27: return x, where z; is the estimate of graphlet G; for e;

with probability p; according to an arbitrary weighted/uniform distribution function F. In
this paper, we select r uniformly at random. Then, we check if 7 is of type A3 (from Line 8),
as this indicates that r also participates in a triangle with e = (v,u), and since r € T'(w),
then {v,u,w,r} is a 4-clique. We use Horvitz-Thompson estimator to obtain the unbiased
estimate of 4-clique counts for edge e; (Ahmed et al., 2014a). Thus, the count of 4-cliques
for edge e; is weighted by its sampling probability. Line 16 ensures that the same 4-clique is
not counted twice. Further, 4-cycles are computed in Lines 17-24 as well as a fraction of the
tailed-triangles. The remaining tailed-triangles are computed in Lines 25-31. As an aside,
o is also computed (Lines 17-31) and used for estimating x13 for graphlet Gi3 (Eq. 12).
Finally, the remaining graphlets {xg,...,z15} are estimated in o(1) time (Eq. 7-14) using
knowledge from the previous steps. Notably, Alg. 3 gives rise to an efficient exact method,
e.g., if p; = 1 and selection is performed without replacement.

Observe that vertices can also be selected directly from T¢, S,, and S,. However, that
approach does not share the same guarantees w.r.t. time and space. For instance, suppose
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Algorithm 3 A general unbiased local graphlet estimation framework. Given a graph G, and a
sampling probability p;, the algorithm returns the graphlet feature vector x; for e; € E.

1 procedure LOCALGRAPHLETESTIMATION(G, €; = (v,u), p;)
2 Initialize variables

3 parallel for each w € I'(v) do

4 if w # u then

5 Sy < Sy U{w} and ¥(w) = A1

6 parallel for each w € I'(u) and w # v do

7 if ¥(w)= A1 then

8 Te + Te U{w} and set ¥(w) = A3 > triangle
9 Sy + Su \ {w}

10 else Sy + Sy U{w} and set ¥(w) = A2 > wedge
11 parallel for each w € T, do

12 Set d}, = dw - pj

13 fori=1,...,d, do

14 Select a vertex r € I'(w) via an arbitrary distribution F

15 if W(r) = A3 then Set z5 + x5 + (dw/dl,) > local 4-clique
16 Set ¥(w) to Ag

17 parallel for each w € S, do

18 Set d}, = dw - pj

19 fori=1,...,d,, do

20 Select a vertex r € I'(w) via an arbitrary distribution F

21 if ¥(r) = A1 then set zg < xg + (dw/dl,) > local 4-cycle
22 if ¥(r) = X2 then set x7 < z7 + (dw/d),) > local tailed-tri
23 if W(r) = X4 then set 0 « o + (dw/d,)

24 Set ¥(w) to 0

25 parallel for each w € S, do

26 Set d, = dw - p;

27 fori=1,...,d, do

28 Select a vertex r € I'(w) via an arbitrary distribution F

29 if ¥(r) = \; then set 7 + a7 + (dw/d,’w) > local tailed-tri
30 if ¥(r) = A4 then set 0 < o + (dw/d),)

31 Set ¥(w) to 0

32 Derive local 3-graphlets for e; via Eq.1-4
33 Use Eq.7-9 to derive the local connected 4-graphlets for e; and disconnected 4-graphlets via Eq.10-14.
34 return x, where z; is the estimate of graphlet G; for e;

w € S, is sampled and I'(w) is searched, thus, |I'(w)| = A in the worst case (which is fairly
likely), and thus O(A(|T.| + |Su| +|Su])), which is no different than the exact method.

4. Experiments

In this section, we investigate the effectiveness of the proposed exact and estimation meth-
ods from Section 3 for the local graphlet counting problem. In particular, Section 4.1
demonstrates the efficiency of the exact method and a few different exact variants. Finally,
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Section 4.3 provides the space and time complexity of the methods. We have also released
all codes® and graph data sets* are also available for download (Rossi and Ahmed, 2015a).

4.1. Exact methods

This section investigates the runtime performance of the following exact variants derived
from Alg. 2 including:

(a) 3-graphlets: a method that derives all the connected and disconnected 3-graphlets
from a single quantity representing the triangles (3-cliques) centered at edge e; € E.

(b) clique-based graphlets: a method that finds only 4-cliques and the other 4-graphlets
that are directly derived from that quantity.

(c) cycle-based graphlets: a method that finds only 4-cycles and the other 4-graphlets
that are directly derived from that quantity.

(d) tailed-triangles: a method for finding tailed-triangles for each edge in G directly.

(e) all {3,4}-graphlets: a method that finds all graphlet counts from Table 2 for each
edge in G.

We denote the graphlets derived from (b) and (c) as the class of clique-based and cycle-
based graphlets. All the exact variants find the frequency of the connected and disconnected
3-graphlets, which are then used as a basis for deriving the others extremely efficiently. This
result is largely inspired by the recent state-of-the-art global graphlet counting algorithm
proposed by Ahmed et al. (2015, 2016).

See Table 3 for results. Note that (b)-(e) (last four columns of Table 3) all include
the time it takes to compute all 3-graphlets (first column in Table 3), as these are used to
derive the others efficiently. Observe that in most cases, the class of 4-clique graphlets are
orders of magnitude faster than the others including graphlets based on 4-cycles. The only
exception appears to be brain-mouse-retl as the runtime of 4-cliques is very close to that of
4-cycle-based graphlets. Nevertheless, in all cases, the runtime of 4-cliques and 4-cycles is
orders of magnitude faster than tailed-triangles (third column in Table 3).

Unfortunately, there is no direct method for comparison, since existing local exact meth-
ods are limited to counting graphlets for each node (i.e., are node graphlet counting meth-
ods) (Marcus and Shavitt, 2012; Hoc¢evar and Demsar, 2014), whereas our approach reveals
edge graphlet features and counts for individual edges in the graph. Nevertheless, our ap-
proach was found to be significantly faster than existing local node graphlet methods such
as FANMOD (Wernicke and Rasche, 2006) and RAGE (Marcus and Shavitt, 2012). More-
over, in many large network problems, these methods failed to finish after running for 12
hours. However, in the case of smaller networks (that these methods could handle), our
approach was found to be 10-1000 times faster, even despite the fact that these methods
count graphlets for each node, as opposed to each edge — a fundamentally more challeng-
ing problem. For instance, our approach leads to a 498x improvement in runtime over
RAGE (Marcus and Shavitt, 2012) and a 19324 x improvement over FANMOD (Wernicke and
Rasche, 2006) for an email communication network (ia-email-EU).

3. www.github.com/nkahmed/pgd
4. www.networkrepository.com
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Table 3: Results comparing different exact variants.

CLASS OF GRAPHLETS (SEC.) all k € {3,4}
GRAPH 3-graphlets 4-clique 4-cycle tailed-tri graphlets
soc-flickr  0.11 6.75 18.23 73.93 80.67
soc-gowalla 0.01 0.2 0.47 3.85 4.05
socfb-MIT  0.003 0.06 0.27 0.75 0.81
socfb-Texas84 0.02 0.44 2.2 9.01 9.45

4.2. Estimation methods

We proceed by first demonstrating the effectiveness of the proposed methods for estimating
the frequency of both connected and disconnected graphlets up to size k = 4. Given an
estimated count x; of an arbitrary graphlet G; € G for edge e; € E, we consider the
relative error: ]D)(Ii I yz) = my%y” where y; is the actual count of G;. The relative error
indicates the quality of an estimated graphlet statistic relative to the magnitude of the
actual statistic. Results are shown in Table 4. We compute the relative error between
the actual GFD (i.e., graphlet frequency distribution) (and count) from the exact method
and the estimated GFD (and count); and find in all cases that the difference is extremely
small (Table 4). In addition, Kolmogorov-Smirnov (KS) statistic and Normalized L; are
used to quantify the the average relative error across the full spectrum of connected and
disconnected graphlets. KS-statistic quantifies the maximum vertical distance between the
actual cumulative distribution functions (CDF) F' and the estimated F as Dgg (F| F )=

max, ||[F(z) — F(x)|| where z represents the range of the random variable. Normalized L;
is computed over the counts directly (as opposed to the various distributions) and measures

the average relative error between y and x as D, (y || x )= ﬁ > ‘yi;”‘. The KS and
Ly error for a variety of graph problems are shown in Table 5, and found to be extremely
small. Thus, the estimation methods have excellent accuracy and the difference between
the estimated and actual statistic is small and in most cases the difference is insignificant.
In addition to the excellent accuracy, the estimation methods are between 900-1000K times

faster with probability p; = 0.001, and thus extremely fast for large networks.

4.3. Complexity

Time and space complexity of Alg. 1 is given below.

4.3.1. TIME

The computational complexity is summarized in Table 6. Note that just as before, we only
need to compute a few graphlets and can directly obtain the others in constant time. To
compute all local graphlets for a given edge, it takes: O(Aub(|5u| + S| + |Te|)> where
Ayp is the maximum degree from any vertex in S,, Sy, and T.. Alternatively, we can
place an upper bound A, on the number of neighbors searched from any vertex in S, Sy,
and T,. We achieve this by using sampling and estimation (as we show in Alg. 3). This
allows us to reduce the time quite significantly. The intuition is that for vertices with large

11
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Table 4: Local graphlet estimation experiments. The average relative error for the top-1000
edges with largest degree (d, + d,,) are reported below using p. = 0.01. We also
used a lower bound of = 100. This implies that if a search vertex (e.g., w € Sy,)
has less neighbors than the lower bound g, for a particular class of graphlets (e.g.
4-cycles), then estimation is not used, as the benefit is minimal. We also corrected
for over- and under- estimation whenever possible using local lower and upper
bounds for the expected frequency of a particular graphlet. The results below are
for networks with significantly different structural characteristics.

RELATIVE ERROR

graph K N N I:I N I_I
soc-gowalla GFD <1074 <10~* <1074 <10~* <1074 <10~*
COUNT  0.008 0.008 0.001 0.006 <10~4 0.0003
socfb-Texas84 GFD  0.001 0.001 0.001 0.001 0.001 0.001
COUNT  0.031 0.075 0.013 0.042 0.002 0.002

Table 5: KS-statistic and L1 results for local graphlet estimation. These measures allow us
to quantitatively compare errors among networks as they provide a single quanti-
tative measure of the error across all graphlets estimated (as opposed to the error
of estimating a single graphlet).

graph KS L1
soc-gowalla 0.0002 <10~4
socfb-Texas84 0.002 0.001

neighborhoods we only need to observe a relatively small (but representative) fraction of it
to accurately extrapolate to the unobserved neighbors and their structure.

4.3.2. SPACE

Given an edge e;, our approach requires the frequency of triangles x3, 4-cycles xg, tailed-
triangles x7, and 4-cliques x5, and from these we can derive all other graphlets of size
k € {3,4} directly in o(1) time. Thus, Alg. 1 takes O(4M ) only space to store the graphlets.
Therefore, our algorithm is space-efficient, since the counts of all other graphlets can be
derived from the few ones stored. Moreover, since the algorithm is parallelized via M
independent edge neighborhood computations, then the graphlet counts for each edge are
computed by exactly one worker, and therefore no extra space is required as the worker
stores the counts for e; in the k™ position. However, each worker requires a hash table
of size N. Nevertheless, if memory is limited, one can leverage cuckoo filters (Fan et al.,
2014), bloom filters, or any other space-efficient probabilistic data structure. Furthermore,
instead of the hash table, one can use binary search over the set of triangle vertices T, and
the set of 2-star vertices S, (and S,).

12
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Table 6: Computational complexity

Global Local Graphlet
O(K AT max) O(Auw - |Te]) 4-clique
O(Aub - |Sul) 4-cycle
O(K A Smax) 0 (1] + 15.])) tailed-tri
O(KA(SmaX"‘TmaX)) ub(‘S | + ‘ v| ‘TeD) all

5. Related Work

Exact algorithms: While there have been a number of exact methods for the global
graphlet counting problem, i.e., counting all graphlets in the graph G (Wernicke and Rasche,
2006; Marcus and Shavitt, 2012), there are significantly fewer methods for the local graphlet
problem (Wernicke and Rasche, 2006), even despite its fundamental importance. This is
likely due to the fact that counting graphlets locally is even more computational challenging
(in terms of both time and space) than the global graphlet counting problem, which has
only recently seen algorithms capable of handling large networks with hundreds of millions
of vertices (Ahmed et al., 2015, 2016). However, all such methods for the local graphlet
counting problem focus on counting graphlets centered around a vertex. In contrast, our
approach counts the local graphlets that surround an edge. Edge graphlet features are by
definition more descriptive and powerful than those counted on the vertices. This property
arises when there are far more edges than vertices, and thus, each edge captures more
information. An alternative view that may be useful for intuition is that edges and vertices
can be thought of as parameters in a model, which in our case the model can be viewed
as the graph. Therefore, a model with more parameters is obviously able to represent
the data better, and in the same manner, counting graphlets for each edge as opposed
to vertex represents the graph more closely. We also posit that the vertex counts for an
arbitrary graphlet G; can be derived from the edge counts of the same graphlet pattern Gj,
however, the converse is not true by applying the above result. Moreover, nearly all of the
existing vertex methods focus only on connected graphlets, whereas this work derives the full
spectrum of graphlet patterns for each edge consisting of both connected and disconnected
graphlets®.

Estimation techniques: There have been a number of recent approximation methods for
counting graphlets globally over the entire graph (Rahman et al., 2014b,a). However, this
work is the first to formulate the local graphlet estimation problem, along with extremely
accurate, efficient, and unbiased local graphlet estimation methods. The methods are largely
inspired by the work of Ahmed et al. (2014a).

Parallel algorithms: Unfortunately, existing methods for counting local graphlets are
all sequential. This work is the first to demonstrate the significant speedups that can be
achieved using an effective parallelization strategy. We expect that future research will
further expand on the capabilities of the proposed parallel algorithm, as well as adapt
existing methods for computing graphlets in parallel.

5. Disconnected graphlets are known to be important — e.g., Shervashidze et al. (2009) found that discon-
nected graphlets are essential for correct classification.

13



AHMED WILLKE ROSSI

6. Conclusion

This work proposed efficient exact and estimation methods for the local graphlet count-
ing problem. The methods were shown to be extremely effective across a wide variety of
networks with fundamentally different structural properties. In particular, the estimation
methods are strikingly accurate and fast with little noticeable difference between the exact
and estimated graphlet counts. Additionally, all methods were also parallelized and shown
to scale well as the number of processing units increases.
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