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Abstract

In this paper, we consider the problem of Bayesian filtering and inference for time series
data modeled as noisy, discrete-time observations of a stochastic differential equation (SDE)
with undetermined parameters. We develop a Metropolis algorithm to sample from the
high-dimensional joint posterior density of all SDE parameters and state time series. Our
approach relies on an innovative density tracking by quadrature (DTQ) method to compute
the likelihood of the SDE, the part of the posterior that requires the most computational
effort to evaluate. As we show, the DTQ method lends itself to a natural implementation
using Scala and Apache Spark, an open source framework for scalable data mining. We
study the performance and scalability of our algorithm on filtering and inference problems
for both regularly and irregularly spaced time series.

Keywords: Bayesian filtering, Bayesian inference, stochastic differential equations, Apache
Spark, Scala, Markov Chain Monte Carlo, Metropolis algorithm

1. Introduction

In this paper, we focus on the problem of Bayesian inference and filtering for time series.
The time series consist of noisy observations of a process that satisfies a stochastic differ-
ential equation (SDE). The drift and diffusion terms of this SDE contain undetermined
parameters. Our goal is to use the observations to infer both the time series of the SDE’s
actual state (the filtering problem) and the parameters in the drift/diffusion terms (the
inference problem). While there are existing packages (e.g., for use with the R language for
statistical computing) for solving either the inference problem or the filtering problem, we
are not aware of an existing package that solves both problems simultaneously in a Bayesian
fashion. The method and implementation described here is the first to make use of Apache
Spark, an open source framework for scalable data processing and machine learning on
computing clusters (http://spark.apache.org).

The problem we consider arises in many recent studies in neuroscience (Kneissler et al.,
2015) and systems biology (Sun et al., 2008). In these fields, advances in measurement
technology has led to large amounts of experimental data on biophysical processes. The
data often consist of noisy and/or incomplete time series measurements of the system’s state.
Due to intrinsic noise on the cellular scale, these processes are often modeled by SDE’s with
undetermined parameters. The task is then to use the data to infer these parameters and
the true states of the process.
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To solve the Bayesian inference and filtering problem, we develop a Metropolis algorithm
to sample from the joint posterior density of the state series and the SDE parameters. A
key bottleneck in the inference/filtering problem for SDE’s, identified by many authors, is
the evaluation of the conditional density of the state series given the parameters, i.e., the
likelihood function for the SDE. The exact likelihood function for the SDE can only be
computed in special cases when we can solve analytically for the SDE’s transition density.
Therefore, prior work has focused on approximating the exact likelihood, either through
analytical methods, numerical methods, or a combination of the two. For a thorough
review of past work on this problem, we refer the reader to Chen (2003); Sørensen (2004);
Iacus (2009); Barber et al. (2011); Fuchs (2013).

Consider the computation of the transition density pXtj+1
(xj+1|Xtj = xj , θ). Here Xt

stands for the state of a process that evolves forward in time via an SDE with parameter
vector θ. We let xj and xj+1 denote the true states of the system at times tj and tj+1. Let
p(x, t) denote the density function of Xt. Then one approach to approximating the tran-
sition density is to numerically solve the forward Kolmogorov (or Fokker-Planck) equation
with the initial condition p(x, tj) = δ(x − xj) up to time tj+1. Then p(xj+1, T ) will be a
numerical approximation of the transition density. The Kolmogorov equation is a linear
partial differential equation (PDE) with spatially-dependent coefficients.

Our approach is similar in that we also numerically track the density p(x, t) without
sampling. Instead of numerically solving a PDE, we track the density by applying quadra-
ture to the Chapman-Kolmogorov equation associated with a time-discretization of the SDE
(1a). We detail this density tracking by quadrature (DTQ) method in Section 2. As we
show, the DTQ method enables one to break the computation of the likelihood into a sum
of likelihoods involving consecutive pairs of observations (tj , xj) and (tj+1, xj+1) just as de-
scribed above. For each such pair, the DTQ method computes the likelihood using iterated
matrix multiplication. In Section 3, we show how these features of the DTQ method enable
it to naturally take advantage of the efficiency and parallelism of Apache Spark and Scala.

The central contribution of this paper is a DTQ-based Metropolis algorithm, and ensuing
implementation in Scala and Spark, to sample from the joint posterior of the parameters
and the state series given the observations. To clarify, we note that in our problem, the
data consists of noisy observations of the process Xt: we let yj denote the observation at
time tj . Equipped with the DTQ method, we develop a Metropolis algorithm to sample
from the joint posterior p(θ,x|y). Note that this is in contrast to numerous prior studies
that treat the state series x as a hidden or latent variable; in such approaches, the term
“posterior” is used to denote p(θ|y). The pomp R package implements such an approach
using particle filtering and particle Markov Chain Monte Carlo (King et al.). Our approach
treats the state series x as a parameter vector. This is necessary in situations where there is
significant and/or interdependent uncertainty in both the parameters and the state series.

In Section 4, we describe experimental tests of our algorithm using both regularly and
irregularly spaced time series. While there is further room for improvement, especially with
regards to the classical Metropolis accept/reject step used here, the tests show that our
current code does solve the Bayesian inference and filtering problem at a baseline acceptable
level. The tests also establish the scalability of the algorithm, both as a function of the
number of Spark processors and as a function of the length of the time series.

2



Scalable SDE Filtering and Inference

As far as computing the likelihood function of the SDE is concerned, the DTQ method is
most similar to the methods of Pedersen (1995) and Santa-Clara (1997). In these methods,
one also starts with the Chapman-Kolmogorov equation for the Euler-Maruyama scheme
applied to (1a). However, instead of evaluating the resulting integrals by deterministic
quadrature, Pedersen and Santa-Clara evaluate the integrals by Monte Carlo methods.
These methods involve generating numerical sample paths of the SDE at times in between
the observation times. Unless one generates sample paths conditional on both Xtj = xj
and Xtj+1 = xj+1, this approach is problematic.

The work of Aı̈t-Sahalia (2002) shares our goal of computing an accurate approxima-
tion of the exact transition density and resulting likelihood function. Instead of applying
quadrature, Aı̈t-Sahalia expands the transition density in a Gram-Charlier series and then
computes the expansion coefficients up to a certain order.

Other approaches that have been explored in the literature include likelihood-free meth-
ods such as Approximate Bayesian Computation (Picchini, 2014), variational methods (Ar-
chambeau et al., 2007b; Vrettas et al., 2015), and/or Gaussian processes (Archambeau
et al., 2007a; Ruttor et al., 2013). We reserve for future work a detailed comparison of
these methods to our method.

2. Statistical Method

The fundamental model considered in this paper is

dXt = f(Xt; θ)dt+ g(Xt; θ)dWt (1a)

Yt = Xt + εt (1b)

The first part of the above system (1a) is a stochastic differential equation (SDE) driven
by Brownian motion Wt. The second part (1b) models the observation process Yt by the
addition of noise εt to the state process Xt. In this work, we assume that εt is i.i.d.
(independent and identically distributed) Gaussian with mean 0 and variance σ2ε .

2.1. Inference Problem

Suppose that we have data of the form y = (y0, . . . , yL) where yj = Ytj , the observation at
time tj . Here t0 < t1 < · · · < tL is a sequence of times, not necessarily equispaced, at which
we collect observations. Using y, we seek to infer the following objects:

• the discrete-time path taken by the state process, x = (x0, . . . , xL). Here xj = Xtj ,
the state of the SDE at time tj .

• the parameter vector θ ∈ RN , and

• the variance σ2ε of the noise term εt.

We view this problem as a Bayesian inference problem, and our goal is to sample from
the posterior

p(x, θ, σ2ε |y) ∝ p(y |x, θ, σ2ε )p(x, θ, σ2ε ) (2)
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In the above expression, the left-hand side is the conditional density of the random variables
Xt0 , Xt1 , . . . , XtL , θ, σ

2
ε given the random variables Yt0 , Yt1 , . . . , YtL . To save space and make

our equations more readable, we will omit these random variables in what follows.
It is clear from (1b) that y is conditionally independent of θ given x and σ2ε . It is

also clear from (1b) that the observation/state pair at time tj is independent of all other
observation/state pairs. Hence we can write

p(y |x, θ, σ2ε ) =

L∏
j=0

p(ytj |xj , σ2ε ). (3)

Next, we examine the second term on the right-hand side of (2). It is clear that σ2ε is
independent of the other random variables, so we can write:

p(x, θ, σ2ε ) = p(x, θ)p(σ2ε ) = p(x|θ)p(θ)p(σ2ε ). (4)

Putting it all together, we have the following expression for the posterior:

p(x, θ, σ2ε |y) ∝

 L∏
j=0

p(ytj |xj , σ2ε )

 p(x|θ)p(θ)p(σ2ε ) (5)

From (1b), we have that ytj |xj , σ2ε is Gaussian with mean xj and variance σ2ε . The terms
p(θ) and p(σ2ε ) are priors. The only other term, p(x|θ), is the likelihood of θ under the
model (1a). We describe the computation of this likelihood next.

2.2. Likelihood Computation via Density Tracking by Quadrature

Here we describe how to compute the likelihood p(x|θ) under the model (1a). Our first step
is to apply a Markov property satisfied by (1a): the random variable Xtj+1 , given Xtj , is
conditionally independent of all random variables Xtj−k

for k ≥ 1. With this property, the
likelihood factors:

p(x|θ) = p(x0)
L−1∏
j=0

p(xj+1 |xj , θ). (6)

Each term in the product can be interpreted as follows: we start the SDE (1a) with the
initial condition Xtj = xj and fixed parameter vector θ. We then solve for the probability
density function (pdf) of Xtj+1 , and evaluate that pdf at xj+1. By following these steps, we
have calculated p(xj+1 |xj , θ).

We now outline a convergent method to compute the aforementioned pdf (Bhat and
Madushani, 2016). Because this method computes an approximation to the density via
iterated quadrature, we refer to the method as DTQ (density tracking by quadrature). The
first step of the method consists of discretizing (1a) via the Euler-Maruyama discretization.
When describing this discretization, we specialize to the case where we seek p(xj+1 |xj , θ).
That is, we take {τi}ni=0 to be a temporal grid such that τ0 = tj , τn = tj+1, and h =
(tj+1 − tj)/n > 0. Then, for 0 = 1, 2, . . . , n, we have τi = tj + ih. On this temporal grid,
the Euler-Maruyama discretization of (1a) is:

x̃i+1 = x̃i + f(x̃i; θ)h+ g(x̃i; θ)h
1/2Zi+1 (7)
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where {Zi}ni=1 is an i.i.d. family of Gaussian random variables, each with mean 0 and
variance 1. For i ≥ 1, we think of x̃i as a numerical approximation to Xτi . Note that
x̃0 = Xτ0 = Xtj which is constrained to equal the data point xj in this calculation.

The next step in deriving the DTQ method is to write down the Chapman-Kolmogorov
equation corresponding to (7). Let p(x̃i) denote the pdf of x̃i given the initial condition
x̃0 = xj . Then purely based on the laws of probability we can write:

p(x̃i+1) =

∫
x̃i

p(x̃i+1 | x̃i)p(x̃i) dx̃i. (8)

Inspecting (7), we see that conditional on x̃i, the pdf of x̃i+1 is Gaussian with mean x̃i +
f(x̃i; θ)h and variance g2(x̃i; θ)h. Let us define the function

G(a, b) =
1√

2πg2(b; θ)h
exp

(
−(a− b− f(b; θ)h)2

2g2(b; θ)h

)
. (9)

Then (8) becomes

p(x̃i+1) =

∫
x̃i

G(xi+1, xi)p(x̃i) dx̃i. (10)

The last step is to spatially discretize the pdf’s and the integration over x̃i. Let k > 0 be
constant; then zj = jk with j ∈ Z is an equispaced grid with spacing k. We represent the

function p(x̃i) by a vector pi such that the j-th component of pi is pji = p(x̃i = zj). We
then apply the trapezoidal rule to (10), resulting in

pj
′

i+1 =
∑
j

kG(zj′ , zj)p
j
i . (11)

We now truncate the spatial domain. Let M > 0 be an integer. We take both j, j′ ∈
{−M, . . . , 0, . . . ,M}; this means that each vector pi has dimension 2M + 1.

Now that we have a method to compute the required pdf’s, here is how we compute
p(xj+1 |xj , θ):

1. Because x̃0 = xj , we have that p(x̃0) = δ(x̃0 − xj). Inserting this in (10) with i = 0,
we obtain

p(x̃1) = G(x̃1, xj). (12)

Evaluating the right-hand side with x̃1 equal to each point in the spatial grid {zj}Mj=−M ,
we obtain p1.

2. With p1 in hand, we iterate (11) a total of n− 2 times. This takes us to pn−1.

3. Then, by (10), we have that the density of x̃i+1 evaluated at the data point xj+1 is

p(x̃i+1)

∣∣∣∣
x̃i+1=xj+1

=

∫
x̃i

G(xj+1, x̃i)p(x̃i) dx̃i.

Applying trapezoidal quadrature to the right-hand side, we have

p(xj+1 |xj , θ) ≈
∑
j

kG(xj+1, zj)p
j
n−1. (13)
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2.3. Metropolis Algorithm

Now that we understand how to compute the likelihood term, we return to the problem of
sampling from the posterior (5). We give a classical Metropolis algorithm that incorporates
the DTQ method described above for computing the likelihood. The fundamental idea here
is to construct a discrete-time, continuous-space Markov chain whose equilibrium density is
the posterior density (5). We then compute a sample path of this Markov chain beginning
at a particular initial condition in parameter space. The sample path consists of a sequence
of iterates; let xi, θi, and (σ2ε )i denote the i-th iterates of the respective parameters.

We now describe how to proceed from the i-th to the (i+1)-st iterate of the Markov chain.
To compute proposed iterates, we require access to random vectors/variables Zx ∈ RL+1,
Zθ ∈ RN , and Zσ ∈ R. Then the Metropolis algorithm is as follows:

• Generate proposals by combining old iterates with samples:

x∗i+1 = xi + Zx θ∗i+1 = θi + Zθ

log(σ2ε )
∗
i+1 = log(σ2ε )i + Zσ

The log transformation ensures that σ2ε > 0.

• Calculate the ratio

ρ =
p(x∗i+1, θ

∗
i+1, (σ

2
ε )
∗
i+1 |y)

p(xi, θi, (σ2ε )i |y)
. (14)

In practice, the denominator of this ratio has already been calculated at the previous
step; only the numerator must be calculated. To compute the numerator, we use (5)
together with the procedure from Section 2.2, including (12), (10), and (13).

• Let u be a sample from a uniform random variable on [0, 1]. If ρ > u, we accept the
proposal, setting xi+1 = x∗i+1, θi+1 = θ∗i+1, and (σ2ε )i+1 = (σ2ε )

∗
i+1. If ρ ≤ u, we reject

the proposal, setting xi+1 = xi, θi+1 = θi, (σ2ε )i+1 = (σ2ε )i.

3. Scalable Implementation

There are two elements to our strategy of implementing the MCMC algorithm from Section
2 in a scalable fashion. The first aspect has to do with representing the main DTQ step (11)
using Scala and Breeze. The second aspect has to do with using Apache Spark to evaluate
each term in the product (6) in a parallel, distributed fashion. Note that all of our codes
and data are available at https://github.com/hbhat4000/sdeinference/tree/master/

sparkdtq. The main code to perform MCMC inference is sparkdtq.sc. Also note that all
development and testing was carried out on a server with 24 effective cores (2 Intel Xeon
E5-2620 chips at 2.0 GHz), 16 GB of RAM, and 4 TB of disk space.

3.1. Scala/Breeze

A typical approach in computational statistics to implement (11) would be to view the
equation as matrix multiplication. Indeed, it is conceptually simple to view kG(zj′ , zj) as
the (j′, j) element of a (2M + 1)× (2M + 1) matrix G, in which case (11) can be written as

pi+1 = Gpi. (15)
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Multiplication by G steps the density forward by h units of time; for this reason, we refer
to G as the propagator.

The above approach, while mathematically correct, does not recognize the sparsity of
G. In fact, we have an accurate estimate of where the nonzero entries of G are located:
near the diagonal. From (9), we see that the argument to the exponential is zero when
a = b+ f(b; θ)h. If we suppose that f is smooth, then the mean-value theorem implies that
there exists ξ such that b = (a− f(0)h)/(1 + f ′(ξ)h). If f has bounded derivative (in this
context, equivalent to assuming f is Lipschitz), then this implies that b = a + O(h). The
upshot is that for fixed a, when b is near a, the exponential term in (9) will be maximal.
Similarly, we can conclude that for fixed a, when b is far from a, the exponential term in
(9) will be negligible. We have focused on the exponential term under the assumption that
the diffusion coefficient g, and hence the normalization term in (9), does not itself grow
exponentially. In practice, this and other assumptions made above are quite reasonable.

Because of the decay of the Gaussian, for each fixed j′, the (j′, j) element of G need not
be computed for all j. We fix a window size γ > 0 and then only compute G(j′,j) for those
j that satisfy both −M ≤ j ≤ M and j′ − γ ≤ j ≤ j′ + γ. We choose γ large enough such
that each density pi+1 is correctly normalized, i.e., such that k

∑
j p

j
i is sufficiently close to

1. In all of our tests, we have been able to choose γ �M while maintaining normalization
to machine precision.

The main DTQ step (11), as it is implemented in Scala using the window parameter
γ, is represented graphically in Figure 1. The code implementing this step makes use of
the Breeze library (https://github.com/scalanlp/breeze) for numerical linear algebra
in Scala. For additional efficiency, we utilize Breeze’s support for the Intel Math Kernel
Library (MKL).

Let us explain the procedure diagrammed in Figure 1. In the Metropolis algorithm given
in Section 2.3, each time we must evaluate the numerator of ρ in (14), we must evaluate the
likelihood function for a particular choice of x and θ. For this choice of θ, we evaluate each
row of the propagator matrix G over a window of size 2γ+1. These rows are represented by
the pink rectangles; there are 2M+1 such rows. Because each such row has the same size, we
store the resulting collection as a Breeze DenseVector of DenseVector. This computation,
which comprises the upper half of Figure 1, occurs once per Metropolis step.

To implement (15), we must now multiply the propagator matrix by the vector repre-
senting the pdf at time step i. This matrix-vector product can be equivalently described as a
collection of 2M+1 vector-vector dot products, where each vector is of size 2γ+1. To gener-
ate the vectors to dot against collection of propagator vectors (already computed), we apply
a windowing technique. Namely, for each element pji of the pdf vector pi, we construct a

window of size 2γ+1 around the element pji : the window consists of (pj−γi , . . . , pji , . . . , p
j+γ
i ).

Of course, it is understood here that pci = 0 whenever |c| > M . In this way, we build a
collection of windowed pdf vectors, represented in Figure 1 as the lower-right stack of blue
rectangles. As above, the collection consists of 2M + 1 vectors, each of size 2γ + 1.

With the propagator collection denoted by propagator and the collection of windowed
pdf vectors denoted by allwins, the Scala and Breeze syntax for computing all required
dot products at once is, simply

px = propagator dot allwins (16)
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This line of code completes the implementation of (15). To iterate the procedure, we apply
the windowing procedure—diagrammed in the lower half of Figure 1—to px, store the
resulting collection in allwins, and then repeat (16).

The entire procedure diagrammed in Figure 1 makes use of functional programming
techniques—specifically, Scala’s map construct—to entirely avoid explicit loops. Addition-
ally, note that this procedure is inherently more efficient than using a sparse matrix repre-
sentation for the propagator matrix; we know where the nonzero entries belong, so we do
not need to allocate either space or time to this task.

3.2. Spark

Spark enables parallel/distributed computation using the notion of a resilient distributed
dataset (RDD). Since the main bottleneck in our Metropolis algorithm is the computation
of the likelihood p(x | θ), we turn to the question of converting the state time series x into
an RDD. We think of this time series as a sequence of pairs (tj , xj) as depicted in the top
line of Figure 2. When we examine (6), we see that to compute a given term in the product,
we need access to neighboring pairs (tj , xj) and (tj+1, xj+1).

Hence, we map the original sequence of pairs, labeled as
−→
tx in Figure 2, to tslices,

a Scala Array where each element is a vector of neighboring pairs. We convert this array
to an RDD, tslicesRDD, using Spark’s sc.parallelize method. When we subsequently
use a map operation to compute the log likelihood log p(xj+1 |xj , θ) term corresponding to
each element of tslicesRDD, the computation takes place in parallel. Spark automatically
distributes the propagator and the θ vector. For a non-equispaced time series problem, each
calculation of p(xj+1 |xj , θ) will take more (respectively, less) time when tj+1 − tj is larger
(respectively, smaller). Again, Spark automatically assigns tasks to workers to compute the
overall log likelihood efficiently.

4. Results

We present results on artificial data sets. The model used to generate these data sets is the
Ornstein-Uhlenbeck SDE together with an observation process:

dXt = θ1(θ2 −Xt)dt+ θ3dWt (17)

Yt = Xt + εt. (18)

Specifically, we apply the Euler-Maruyama discretization to (17) with a time step of κ =
10−6. Suppose our temporal grid consists of tj = n(j)κ, where n(0) = 0, and n(j+1) > n(j).
In some of the examples we pursue, n(j) will be deterministic and the temporal grid will
be equispaced, while in other examples, n(j) will be stochastic and the temporal grid will
be non-equispaced. Either way, we take n(j) to have expected value 2 × 105, so that the
average difference between temporal grid points tj+1 − tj is 0.2.

We then start at a random initial condition by sampling X0 from a Gaussian random
variable with mean 0 and variance 1. We step forward one step at a time (with time step
κ), saving the numerical solution Xt at points in time corresponding to the temporal grid
points {tj}Lj=0. We label the points we save as (x0, x1, . . . , xL) =: x, and then perturb them

8
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Figure 1: In order to implement the matrix-vector multiplication in (15) in a scalable way,
we make use of the structure of the propagator matrix G. Instead of computing
all entries of this matrix, we compute and store only those entries that are close
to the diagonal—the pink rectangles in the upper half of the diagram. The blue
rectangles in the lower half of the diagram correspond to windowed versions of
the pdf vector pi. In both cases, there is one windowed vector per row; the row
numbers go from −M to M as labeled. Both the pink and blue rectangles corre-
spond to vectors of length 2γ+1, with γ �M . The matrix-vector multiplication
Gpi then corresponds to a collection of 2M + 1 vector-vector dot products. This
representation of (15) makes efficient use of Scala, Breeze, and the Intel MKL.
For more details, see the description in Section 3.1.

via (18) to generate y. In particular, we set yj = xj + Z where Z is normally distributed
with mean 0 and variance σ2.

The DTQ method described in Section 2.2 has four internal parameters: the time step h,
the spatial grid spacing k, the spatial grid cutoff M , and the decay width γ of the Gaussian
kernel G. For the tests described below, we will give the value of h that was used. All other
parameters are as follows: k = h0.75, M = dπ/k1.5e, and γ = 25.
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Figure 2: We use Spark to parallelize the computation of the likelihood (6). We accomplish
this by converting the original time series (for states x, not observations y) from
a vector of pairs to an array where each element is a vector of consecutive pairs.
The original vector of pairs is labeled as

−→
tx, and the Scala Array of consecutive

pairs is tslices. This latter object can be easily converted into a Spark RDD;
subsequent map operations on this RDD are executed in parallel.

4.1. Equispaced Time Series

In the first set of experiments, we follow the procedure outlined above to generate artificial
data y with the temporal grid defined by tj = n(j)κ = (0.2)j. The ground truth for the
parameters consists of θ = (0.5, 1, 0.25) and σ2 = 0.01. In addition to the other parameters,
we focus on inferring θ1 and θ2; we fix θ3 = 0.25 throughout. In the Metropolis algorithm,
we take as initial conditions x0 = y, θ = (1, 0.1, 0.25), and σ2ε = 1.

For priors for θ1 and θ2, we use Gaussian densities with respective parameters (µ =
0.5, σ = 1) and (µ = 2, σ = 10). For σ2ε , we use an exponential prior with parameter λ = 1.

In the Metropolis algorithm, we take all proposal random variables to be independent
Gaussians. In particular, Zx is a collection of L+ 1 independent Gaussians, each with pa-
rameters (µ = 0, σ = 0.02), Zθ consists of two independent Gaussians, each with parameters
(µ = 0, σ = 0.05), and Zσ consists of a Gaussian with parameters (µ = 0, σ = 0.02). These
distributions have been chosen, via trial and error, to yield a Metropolis acceptance rate
that is between 20− 40% in all tests we have conducted.

For two values of the DTQ internal time step (h = 0.02 and h = 0.01), we apply the
Metropolis algorithm to generate 10, 000 samples of the posterior (5). Note that h = 0.02
implies M = 257 and h = 0.01 implies M = 559; hence γ = 25 gives at least a 10-fold
reduction in computational effort.

We discard the first 100 samples as burn-in samples. Using the 9900 remaining samples,
we plot the posterior densities for θ1, θ2 and log10 σ

2
ε in Figure 3. In this paper, all density

plots use a Gaussian kernel with the “nrd” (or normal reference rule) bandwidth (Scott,
2015). The density in blue (respectively, black) corresponds to the samples produced using
the DTQ method with h = 0.02 (respectively, h = 0.01). The red vertical lines indicate the
ground truth values for each parameter.

Overall, we see that the Metropolis algorithm does a reasonable job of inferring the
parameters. For the Ornstein-Uhlenbeck model (17), Bayesian inference is non-trivial when

10
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the temporal spacing between observations is sufficiently large. Keeping in mind the loga-
rithmic scale for the density of the third parameter, we still conclude that our method has
the greatest room for improvement here. As we show below, however, the mean inferred
value of σε is consistent with the observation series y and the mean inferred state series x.
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Figure 3: Posterior densities for the inference/filtering problem with equispaced time series
(t,y). Each density is calculated on the basis of 9900 post-burn-in Metropolis
samples computed using the indicated value of the internal DTQ time step pa-
rameter h. Overall, we see reasonable agreement between the ground truth values
(indicated by red vertical lines) and the posterior densities.

4.2. Non-equispaced Time Series

In this next set of experiments, we follow a nearly identical procedure to that described in
Section 4.1. The main difference is that the temporal grid is defined by tj = n(j)κ where n(j)
is uniformly distributed on the integers between 4× 104 and 4× 105 − 4× 104. Effectively,
this generates a time series with minimum, mean, and maximum spacings tj+1 − tj of,
respectively, 0.04, 0.2, and 0.36. We use the same priors and Metropolis initial conditions
as in Section 4.1. We change the proposal distributions slightly. The parameters for Zx and
Zσ are now (µ = 0, σ = 0.01), while for Zθ the parameters are still (µ = 0, σ = 0.05). For
two values of the DTQ internal time step (h = 0.02 and h = 0.01), we apply the Metropolis
algorithm to generate 10, 000 samples of the posterior (5). Again, we discard the first 100
samples as burn-in samples.

Using the samples thus obtained, and using the same procedure described in Section 4.1,
we plot the posterior densities for θ1, θ2 and log10 σ

2
ε in Figure 4. Overall, as compared with

Figure 3, we see improved agreement between the ground truth values and the posteriors
for θ2 and log10, while the posterior for θ1 is still reasonably accurate.
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Figure 4: Posterior densities for the inference/filtering problem with non-equispaced time
series (t,y). Each density is calculated on the basis of 9900 post-burn-in Metropo-
lis samples computed using the indicated value of the internal DTQ time step
parameter h. Overall, we see reasonable agreement between the ground truth
values (indicated by red vertical lines) and the posterior densities.

Using precisely the same data, priors, and initial conditions, we used the particle MCMC
method from pomp (King et al.) to produce 10000 post-burn-in samples from the posterior
p(θ1, θ2, log σε|y). The mean of this posterior is (0.00539,−0.765,−2.088). Only the final
estimate is acceptable; the estimates for θ1 and θ2 are highly inaccurate. Here we have
given an initial guess for x0 = y0 ≈ 0.280, exactly what we do in our method. If we instead
provide a bit of external assistance to pomp and guess x0 = 0, the true mean of the X0 used to
generate the artificial data, we obtain an excellent posterior mean of (0.477, 0.973,−1.986).
Though further testing is required, we believe these results indicate that our method may
be a viable alternative to the more established methods implemented in pomp.

We turn to the filtering results, focusing on the post-burn-in samples of x generated
with DTQ parameter h = 0.01. In Figure 5, we plot the original non-equispaced observation
series y in red. We have plotted in grey each of the 9900 samples of the state series x; the
mean of these samples is plotted in black. We see that the Metropolis sampler does indeed
explore a number of different trajectories for the state series, and that the mean inferred
state series corresponds to a smoothed version of the original observation series.

In Figure 6, we again plot the original non-equispaced observation series y in red and
the mean inferred state series x in black. This time, however, we add/subtract the mean
inferred value of σε to y to obtain error bars associated with each observation. These error
bars are plotted in grey. The idea behind this plot is that if (1b) holds, then given the
symmetry of the random variables εt, it should also be true that Xt = Yt + ε′t, where ε′t
has the same distribution as εt. To be self-consistent, the observation series should, at least
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Figure 5: We plot the observations (in red) together with each of the samples of the state
series x. Each such sample is a grey curve, and the mean of all such grey curves
is plotted in black. We refer to the black curve as the mean inferred state series.

most of the time, lie within one (inferred) standard deviation σε of the (inferred) state
series. The plot in Figure 6 confirms that this is the case.
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Figure 6: We plot the observations (in red) together with the mean inferred state series
(in black). The error bars (grey) are computed by adding/subtracting the mean
inferred value of σε to/from the observation series y. Note that the mean inferred
state is typically within one σε of the corresponding observation.
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4.3. Scaling

We have conducted tests to explore the relationship between running time and L, the length
of the observation series. For each L ∈ {124, 250, 500, 2500}, and for each h ∈ {0.02, 0.01},
we have generated a time series of the indicated length, run our inference/filtering code,
and recorded the amount of time T required to generate 1000 Metropolis samples of the
posterior. The results are plotted in the left panel of Figure 7 with log-transformed axes.
For each set of points, we fit a line of the form log T = β0 + β1 logL, which corresponds
to the law T = eβ0Lβ1 . The solid lines in the left panel of Figure 7 correspond to this
latter law, plotted on the same log-transformed axes. For the h = 0.02 line, we obtain
β1 = 0.9092; for the h = 0.01 line, we obtain β1 = 0.9639. These results are consistent with
O(L) temporal scaling.
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Figure 7: Left panel: For each indicated value of L, we have generated a time series of
length L, run our inference/filtering code, and recorded the amount of time T
required to generate 1000 Metropolis samples of the posterior. We fit lines to
log T as a function of logL—both the lines and the original data are plotted on
log-transformed axes. The slopes of the lines are less than 1, consistent with O(L)
temporal scaling. Right panel: For a non-equispaced time series of length 2501,
we ran our code with ν Spark processors where ν ∈ {3, 6, 12, 24}. We recorded T ,
the time required to generate 10 Metropolis samples of the posterior. We fit lines
to log T as a function of log ν—both the lines and the original data are plotted
on log-transformed axes. The slopes of the lines are close to −0.5, suggesting
O(ν−1/2) scaling.

We have also explored how the running time of our code changes as we change the
number ν of Spark processors. We begin with a non-equispaced time series of length 2501.
For each ν ∈ {3, 6, 12, 24} and each h ∈ {0.02, 0.01}, we recorded the time T required to
generate 10 Metropolis samples. For each set of points, we fit a line of the form log T =
β0 + β1 log ν. Both the raw data and lines are plotted on log-transformed axes in the right
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panel of Figure 7. For the h = 0.02 line, we obtain β1 = −0.4164, while for the h = 0.01
line, we obtain β1 = −0.4699. These results suggest O(ν−1/2) scaling.

5. Discussion and Conclusion

The results from Section 4 show that while decreasing the value of the DTQ internal step
h does change the sampled values and the plotted densities, the change is not significant.
We believe much greater gains (in terms of agreement between the posterior modes and the
ground truth values) would be achieved by improving both the proposal strategy and the
vanilla Metropolis accept/reject step; such ideas have been pursued successfully by Fuchs
(2013) and others, and we seek to implement these improvements in future work. For now,
however, we conclude that the implementation described in this paper does indeed perform
Bayesian filtering and inference at a baseline acceptable level.

Aside from improving the Metropolis algorithm, we see three main areas for improve-
ment. First, we have yet to test and tune our implementation on a large-scale, distributed
Spark cluster. Second, we believe we can derive large gains in performance by adapting our
algorithm to work in a streaming fashion. Specifically, instead of inferring the entire state
series x at once, as we currently do, we can proceed one step a time through the temporal
sequence of observations. Third, we have already begun to incorporate the DTQ method
into an adjoint method suitable for computing gradients of the likelihood. This will enable
us to apply techniques such as stochastic gradient descent or Hamiltonian Monte Carlo to
our inference problem for either fast MLE/MAP point estimation or accelerated sampling
from posteriors. These steps, and possibly others, will become necessary as we adapt our
methods to multi-dimensional time series problems, a task we have already begun.
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