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Abstract

Look-alike audience extension is a practically effective way to customize high-performance
audience in on-line advertising. With look-alike audience extension system, any advertiser
can easily generate a set of customized audience by just providing a list of existing customers
without knowing the detailed targetable attributes in a sophisticated advertising system.
In this paper, we present our newly developed graph-based look-alike system in Yahoo!
advertising platform which provides look-alike audiences for thousands of campaigns. Ex-
tensive experiments have been conducted to compare our look-alike model with three other
existing look-alike systems using billions of users and millions of user features. The exper-
iment results show that our developed graph-based method with nearest-neighbor filtering
outperforms other methods by more than 50% regarding conversion rate in app-install ad
campaigns.

1. Introduction

Using look-alike audience in on-line advertising campaigns helps an advertiser reach users
similar to its existing customers. It can be used to support many business objectives like
targeting users who are similar to a list of past purchasers, web service subscribers, installers
of particular apps, brand lovers, customers from customer relationship management (CRM)
systems, ad clickers, supporters for a politician, fans of a sports team, etc.

The advantage of look-alike audience extension technology is that it can dramatically
simplify the way to reach highly relevant people comparing to other targeting technologies
in on-line advertising. An advertiser can just upload a list of users to generate customized
audience without knowing any details about the user features used in an advertising system.

The input to a look-alike audience system is a list of user IDs (e.g., browser cookies,
addresses, phone numbers or any other identifiers') called “seeds”. The seed users can be
converters of advertiser’s past ad campaigns, or the existing customers who have stronger
purchasing power, etc. The output is a list of users who are believed to be look-alikes to
the seeds according to certain look-alike model. Then advertisers can target to show ads to
those identified look-alike audiences in ad campaigns. The efficacy of a look-alike audience
system is measured by multiple business concerns:

1. The original values of Personally identifiable information (PII), such as phone number, are not used.
Instead, the hashed and anonymized user IDs are used in the system.
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e Scalability - What is the maximum size of the look-alike audience output? What
are the upper and lower bounds of the seed amount that can lead to a reasonable size
of look-alike audience?

e Performance - How fast can the system generate a look-alike audience after adver-
tiser uploading the seed list? How much return on investment (ROI) lift can look-alike
audience achieve in a real ad campaign?

e Transparency - Is the system working as a black box or can it generate feedback
and insights during an ad campaign setup? How fast can these feedbacks and insights
be generated, in a few seconds or days?

In other words, there is no unique “best” design of a look-alike audience extension system
given different requirements on scalability, performance and model transparency. The main
contributions of our work are summarized as follows:

e We present a large-scale look-alike audience extension system from Yahoo!, where the
similar user query time is sub-linear to the number of query users. The core model
of this look-alike system is based on graph mining and machine learning technique
on pairwise user-2-user similarities. The system can score 3000+ campaigns, on more
than 3 billion users in less than 4 hours.

e Through extensive experiments using real-world app installation campaigns data, we
show that the recommended look-alike audience by our method can achieve more than
50% lift in app installation rate over other existing audience extension models.

e Furthermore, we also discuss the challenges and share our experience in develop-
ing large-scale look-alike audience extension system. We demonstrate that by using
weighted user-2-user similarity graph, the app installation rate can be further im-
proved by 11%.

In the rest of paper, we start with discussions on three existing approaches in Section 2,
which are used in experiments for performance comparisons; then in Section 3 we introduce
our nearest neighbor filtering based look-alike audience extension method. We present the
experiment results in Section 4, which is followed by discussions in Section 5. At last, the
related work are discussed in Section 6, and Section 7 has concluding remarks.

2. Existing Look-alike Methods & Systems

The look-alikeness between 2 users is measured by their features. A user u; can be char-
acterized by a feature vector, f; = (fi 1, , fix). In an on-line advertising system, each
feature f; could be continuous (e.g. time spent on a certain site), or in most situations,
categorical or binary (e.g. use of a certain mobile app or not). Features can come from
a user’s attributes, behaviors, social interactions, pre-build audience segments and so on.
Different companies may use different features to represent a user based on their businesses
and understanding of users. The dimension of a feature vector varies from thousands to
millions. In this paper, we consider the case where f;; € {0,1}, and continuous features are
bucketized into multiple binary features if needed.

Although the business motivation is simple and straightforward, we share the same view
of Shen et al. (2015) that there is a significant lack of prior work of look-alike audience
modeling in literature. To our best knowledge, look-alike systems being used in the on-line
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advertising industry can be categorized into three categories: simple similarity-based model,
regression-based model, and segment approximation-based model.

2.1. Simple Similarity-based Look-alike System

A straightforward method to find look-alike users is to compare all pairs of seed users and
available users in the system, then determine look-alikeness based on distance measure-
ments. A simple similarity-based look-alike system can use direct user-2-user similarity to
search for users that look like (or in other words, be similar to) seeds. The similarity between
two users, u; and u; is defined upon their feature vectors sim(f;, f;). Cosine similarity (for
continuous features, Equation 1) and Jaccard similarity (for binary features, Equation 2)
are two possible measures.
f; - £
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The similarity between a given user u; (with feature vector f;) and seed user set S =
{u; : £;}, could be calculated as the similarity of this user to the most similar seed user, i.e.
sim(f;, S) = max sim(f;, £5) (3)

J
A more complicated method is probabilistic aggregation of user-2-user similarity mea-

sures. This method only works with those user-2-user similarities that are strictly limited
between 0 and 1. A pairwise similarity is treated as the probability of triggering a “look-
alike” decision. Therefore, the similarity from a user to seed set can be measured as:

sim(f;, 8) = 1— [] (1 - sim(£;, £;)) (4)
£,

The simple similarity-based method is easy to implement on a small scale. It also has
the advantage to leverage the information carried by all seeds in the user feature space.
However, this method has a couple of the main concerns. The first is scalability because
calculating pairwise similarities among a large number of users is not a trivial task. The
brute force solution has computational complexity O(kM N), for N candidate users and
M seeds with k features on average per user. In a typical online advertising market, there
are billions of candidate users and more than tens of thousands of seeds with hundreds of
features per user. The second concern is different features of seed users are treated equally,
and the model does not distinguish their power of identifying the most relevant candidate
users. For example, the predicting power for ad clicks or conversions is not considered.
Therefore, some less relevant candidate users may be regarded as look-alike users due to
similarity from less important features.

(2)

Sim]accard(fia fj) =

2.2. Regression-based Look-alike System

Another type of look-alike audience systems for online advertising is built with Logistic
Regression (LR) Qu et al. (2014). For a given user u; who has a feature vector f;, a logistic
regression model can be trained and model the probability of being lookalike to seeds as:
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“Seeds” are usually treated as positive examples. Whereas, there are several options to
select negative examples. The simplest negative example set can be a sample of the non-seed
users. This is not the best choice since the potential ad converters may also be included in
the non-seed users. Another choice is to process ad server logs and find out the users who
have seen advertiser’s ads in the past but did not convert. However, it suffers from the cold-
start problem. If the seeds are from a new advertiser, or will be used for new ad campaigns,
there are no users who have seen the ads. When the number of features is large, feature
selection is conducted by imposing an L; regularization to the loss function to reduce the
number of non-zero values in the final model. In practice, machine learning packages, such
as Vowpal Wabbit, provide a flexible and scalable solution for training logistic regression
on a large scale (e.g., with millions of features) on Hadoop clusters and predicting such
probabilities for a massive amount of users.

The advantage of this modeling methods is that information carried by seeds are com-
pressed into a model (e.g. a B) and there is no need to remember the feature vectors of
seeds for scoring users to be a look-alike or not. Apart from the huge benefit, there are
some potential caveats for applying regression modeling methods to the look-alike problem.
LR is a linear model, although a lot of conjunctions, cross or other dependencies can be
embedded into the features, it may not be perfect and efficient for clustering users. We
implement an LR based look-alike system for comparison with our proposed system.

p(u; is a lookalike to seeds|f;) =

2.3. Segment Approximation-based Look-alike System

Another type of look-alike system is based on user segment approximation, where user
segments can be user characteristics such as user interest categories. For example, if a
user likes NBA games, this user is considered to belong to Sports segment. In comparison
to other methods, a segment approximation-based system uses pre-built user segments as
user features. The general idea of segment approximates based method is to find out top
segments that are “shared” by as many seed users as possible.

Here we discuss one the most recent published segment approximation based method
from Turn Inc, Shen et al. (2015). In their approach, each user is represented as a bag of
segments, u; = {¢;1,--+ ,cix}. The optimization goal for look-alike audience extension is,
given an advertiser’s provided segment set C' (i.e., the segments that appear in seed users),
to recommend new users with a segment set C’, satisfying following three properties:

sim(aud(C), aud(C")) > a (5)
per f(aud(C")) — per f (aud(C)) > S (6)
laud(C U C")| > |aud(C)| (7)

where aud(C) is the set of users who have any of the segments in C, per f(aud(C)) is the
performance of users aud(C') regarding ad click-through-rate or conversion-rate. Intuitively,
the above criteria mean that: (1). the extended audience set aud(C") is “similar” enough
(in terms of user overlap) to the seed audience aud(C) (Eq. 5); (2). The performance of the
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extended audience set aud(C’) should be better compared to the seed audience set (Eq. 6);
(3). And the size of the extended audience set aud(C") should be much larger than the seed
audience (Eq. 7).

There can be many segments that satisfy the above properties so a scoring function is
needed to distinguish the importance of segments. Shen et al. (2015) discussed a greedy
approach, which is an application of the set cover algorithm, and a weighted criteria-based
algorithm. For any newly recommended category (or segment) ¢peq, they calculate a score
by combining the three functions (Eq. 5, 6, 7) above:

score < sim(aud(cpew), aud(C)) X per f(aud(cpew)) X nov(aud(cpew)|laud(C))  (8)

where nov(aud(cpew)|aud(C)) (corresponds to Eq.7) measures the proportion of users
from this new category that are not in seed users. Based on this score, the authors sort all
existing user segments and recommend top-k segments to the campaign for user targeting
(for more details, refer to Shen et al. (2015)).

Segment approximation works well when the pre-built segments quality is high and
have good coverage. It is particularly the case for big branding advertisers, but maybe
less useful for small advertisers. The pre-build process also introduces another computation
pipeline which may delay the look-alike audience generation. We implemented the algorithm
described above, as another method for large-scale comparisons.

3. Graph-Constraint Look-Alike System

In this section, we present the details of our developed graph-constraint look-alike system,
which takes advantages of both simple similarity and regression-based methods. First, a
global user-2-user similarity graph is built, which enables us to limit candidate look-alike
users to the nearest neighbors of seeds. Then the candidate users are ranked by their feature
importance specific to ad campaigns.

Training and scoring look-alike audience per ad campaign against all users is a low-
efficiency process. A typical look-alike audience size is 1 to 10 million, which is about 0.1%
to 1% in a 1 billion user pool. Scoring a lot of irrelevant users wastes a significant amount
of computation resources. Also, training to get feature weights against the 99% irrelevant
users faces a challenging user sampling problem. We propose to generate look-alike audience
in two phases, namely global graph construction and campaign specific modeling.

3.1. Phase I: Global Graph Construction

In this phase, a user-2-user similarity graph is built for all available users in the system,
where an edge between two users indicates their Jaccard similarity (Eq. 2). The goal is to
find look-alike candidates for a particular set of seeds using this global graph. The core
formulation of our approach is a pairwise weighted user-2-user similarity, defined as:
£/ Af;
= TR R (9)
[ | > (1651

where fj, fj are feature vectors of users u; and u;. The weight matrix A can incorpo-
rate the importance of linear correlations for both individual features and pairwise feature
combinations. For example, a pairwise weighted user-2-user similarity is a weighted cosine
similarity if the weight matrix A is diagonal. A non-diagonal matrix A can model pairwise

sim(fi, fj)



Ma WEN X1A CHEN

feature combinations. Higher order feature combinations are rarely observed to be useful
in a large and sparse feature space. Therefore, our feature modeling is only limited to indi-
vidual and pairwise features to avoid over-engineering a look-alike system. The scale of the
weight matrix is determined by the total number of features which is relatively smaller in
comparison to the total number of users. This property allows us to build a specific weight
matrix for each ad campaign to leverage more tuning power on features.

The challenges of building the global user-2-user similarity graph live in both the high
complexity of user pairwise similarity computation (O(N?)) and similar user query (O(N)).
To approach these challenges, we use the well-known Locality Sensitive Hashing (LSH) to
put similar users into the same clusters by reading user data in one pass and enable similar
user query in sub-linear time. Here we briefly introduce the background of LSH.

3.1.1. MiNHAsH LocALITy SENSITIVE HASHING (LSH)

Using LSH Rajaraman et al. (2012), each user is processed once in two steps. The first
step is using a set of hash functions to transform a user feature vector into a similarity-
preserving signature, which consists of a much smaller amount of values than original user
feature vector. Then the second step is to assign the user to clusters based on the signature.
Signature values are grouped to create clusters of users who are similar to each other (above
a predefined similarity threshold) with a bounded probability. At query time when given
an input user, we can hash this user to find out the clusters it falls into and the users in
those clusters are the candidate similar users. Both cluster construction and the retrieval
of similar users are per user based process without pairwise user operations. Therefore,
LSH dramatically simplifies the simple similarity-based look-alike system. Below we use
MinHash LSH as an example to discuss the details of those two steps:

e MinHash. Hashing technique is used in LSH to reduce user feature space while
preserving their original similarity with high probability. Different choices of hashing
schemes can be applied, such as using random projection to approximate cosine sim-
ilarity and using MinHash to approximate Jaccard similarity etc. In our case users’
Jaccard similarities are computed on their binary features, so MinHash is used:

homin (£;) = argmin  h(x)
ze(1,..,K), fiz=1

where f; is a K-dimensional feature vector of user u;, = is the index of features in f;.
Hash function h(x), [h: (1,...,K) — R]| maps the index of a feature into a random
number. A function Ay, (f;) is then defined as the feature index that has the minimal
hash value, and hy,i(f;) is called the hash signature. It can be proven that MinHash
preserves Jaccard similarity (refer to Chapter 3 of Rajaraman et al. (2012)), which
means that the probability of two users having the same MinHash value equals to the
their Jaccard similarity:

Sim]accard(fiy fj) =P (hmm(fz) = hmzn(fj))

In other words, if two users’ Jaccard similarity is r, and a total of H MinHash functions
are used to hash the two users independently. Then the two users are expected to
have H - r signatures identical.
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e LSH. Signatures generated by H Minhash functions form an H dimensional vector.
Signatures for all N users form an N-by-H matrix, known as signature matrix Rajara-
man et al. (2012). As H < K, the signature matrix can be considered as a dimension
reduction result from the raw user-feature matrix, which is a N-by-K matrix.

Using the H-dimensional signatures, LSH method provides various flexible ways to
cluster similar users into buckets for retrieval purposes. The most popular approach is
the “AND-OR” schema, where H signature dimensions are partitioned into b bands.
Each band consists of r signature dimensions, where b x r = H. Users are clustered
into the same bucket only if they have the same r-dimensional signature within a
band. A user can only fall into one bucket in a band. Therefore each user has b
buckets in total. If a seed user is found to fall into bucket b;, all users in b; can be
retrieved as its look-alike candidates, which is a small amount of users compared to
the whole user population. The retrieved candidate users can be then scored for exact
ranking if needed. The values of b and r are usually determined empirically based
on application data similarity distribution, and the desired the item-2-item similarity
threshold.

The LSH technique introduced above can be used to reduce the complexity of the system
implementation. After conducting MinHash LSH, each user u; has a list of bucket ids
generated by the hash signatures. Candidate look-alike users for a campaign can then be
generated by looking up the hash signatures of all the seeds and merging their similar users
fetched from the global graph. A reasonable good size of candidates varies from 5x to 10x
of the final look-alike audience. A too small candidate set may have risks of missing good
look-alike users that may not be selected to the candidate list. A too large candidate set
increase the cost of computations in Phase II. When the number of candidate users fetched
from the graph is small (e.g., due to a small amount of seeds), one can use regression or
segment approximation-based methods to ensure the desired size of look-alike audience. In
the rest of this paper, we only consider the cases that sufficient number (e.g., more than 10
million) of candidate users can be fetched.

3.2. Phase II: Campaign Specific Modeling

In this phase, the goal is to train a simple campaign-specific model and refine the audience
candidates from Phase I. The candidates are scored by the campaign-specific feature weights,
and top ranked users are selected as the final look-alike audience.

Different ad campaigns may care about different user features. A retail store’s ad cam-
paign may care more about users’ location rather than their education. An insurance ad
campaign cares more about users’ financial status than their social status. An optimized
weight matrix (Eq. 9) for an ad campaign can ignore the irrelevant features and help gen-
erate look-alike audience that can lead to a better return-on-investment for ad dollars.

Intuitively a relevant feature should have more power to distinguish seeds from other
users. There are many off-the-shelf methods and algorithms for feature selection, feature
ranking, and modeling labeled data. The popular ones are simple feature selection and
linear model, e.g. logistic regression (with regularization), or decision trees. Here, we
discuss a simple feature selection method as an example because the simple method is a
non-iterative feature selection method which can be run very efficiently. Also, it gives a
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reasonably good performance in a sparse user feature space in comparison to linear models
and other complicated methods. However, other methods are still highly recommended if
computational cost and response time are not the bottlenecks.

A simple feature selection method calculates a diagonal weight matrix A, where A; ; =
0, fori# j,1<14,5 <L and A;; is the importance of the feature j calculated from a set
of seeds S and a set of comparing users U. Let us denote the proportion of users in seeds

that has feature j as p; = %, and the proportion of users in the comparing user set
U that has feature j as ¢; = %

The seeds set S is provided by advertisers. But there are multiple options for composing
user set U, such as the users who have seen ad impressions from the advertisers but did not
click or convert, or the whole pool of candidate users. The benefit of the latter method is
that the computed g; can be shared across all campaigns to improve system efficiency.

There are several options for evaluating feature importance through univariate analysis,
such as mutual information Battiti (1994), information gain Lewis and Ringuette (1994) and
information value (IV) Siddiqi (2012). The advantage of these methods is that they assume
independence of features such that features can be evaluated independently of each other in
distributed manner. Based on our experience, these different methods yield similar results.
Therefore, in this paper, we take IV as the example implementation, which measures the
predictive power of a feature. The importance of the binary feature? j is calculated as:

1- .
Ay = (pj — qj) log (fj( ;1(]1)) , ifp; > 0.5
’ 0, otherwise

The directional filter p; > 0.5 is optional that enforces only positive features will be selected,
which means those features are more significant in seed users than in other users. Negative
features can be used to discount a user’s rank, and it is one of our future exploration
directions. The positive features for a particular campaign can be ranked by their IV
values where features with higher values have more predictive power. Furthermore, those
top-ranked features can be displayed to advertisers to provide transparency of the model.
To further motivate our proposed IV based method, we can look at the predicted hyper-
plane for classification in logistic regression (with standardized features) Hilbe (2015):

K
Z Biz; =C
i=0

Where C'is a constant. Further, the probability of being positive or negative-labeled can
be obtained. If the features, x;’s are binary, those estimated Bi’s are (roughly) a measure of
the impact of the log-odd ratio given a presence/absence of the feature f; ;. In such situation
(i.e. features are binary), the estimated Bi’s are of the same scale and is a measure of the
importance of the corresponding feature. In other words, a ranking of the absolute value of
these Bi’s corresponds to a ranking of the feature importance.

Following almost exactly the same logic mentioned above for logistic regression, the user
scoring method falls into the following framework:

2. In our system, we only consider binary features, where continuous features are bucketized to create
binary features as well.
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Figure 1: System Architecture and Pipeline
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where 3;’s are a measure of the variable importance; 5, are a second order measure, a
measure of the interactions of the variables. One realization of the above campaign-specific
scoring framework is based on IV values, the score of a user for a specific campaign c is,

s(fi,c) = Z Ajifij (10)
1<G<K

Note that the above scoring (Eq. 10) is unbounded. Although in our final audience
recommendation, we only need to use this score to rank candidate audience and recommend
a specific amount of audience, it will be useful to rank the audience and let advertisers
control and leverage the size of the recommended audience and the “quality” of the audience.
If one wants to derive a “normalized” score, i.e. to create a mapping from the raw score to

a score with range in [0, 1].

s() = s(fi) = [0, 1]

A candidate for this is to use a sigmoid function s(t) = He%m. It is possible to use this
normalized score to determine a threshold that top-N users can be selected without sorting.

3.3. System Design and Pipeline

Our graph-constraint look-alike system is running in production at Yahoo! and generating
thousands of look-alike audience sets. The sketch of the system is depicted in Figure 1,
which contains four major components:

Construct global user graph. The system periodically builds global user graph based
on user-2-user similarity. When global graph builder (component 1 in Figure 1) is triggered
to run, it loads configured user features from user profile service for each user, and calls our
in-house LSH package to hash users into different buckets. If two users’ similarity is above
our configured threshold, they may be found hashed into the same bucket in multiple bands
of the min-hash table. After processing all users, a map-reduce job is run to group users
by bucket ids, such that users fall into the same bucket can be stored together to enable
efficient user query.
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Collect candidate users. Look-alike audience extension system takes a list of seed
user ids as input. Component 2 hashes all seed users features and uses the hash signatures
to find out the buckets those seed users fall into. Users in those buckets are all merged into
the candidate user set. At the end of seed extension process, user profile service is queried
for candidate users, and the output user id with feature data are saved on HDFS.

Compute feature importance. To compute feature importance, component 3 reads
global user count and seed user count for each feature. Then it calculates feature impor-
tance and saves the results on HDFS. The global feature distribution can be shared by all
campaigns to make the feature importance learning very efficient.

Score and recommend audience. As the last procedure of look-alike audience ex-
tension system, component 4 reads two data sets from HDFS: top K feature list and their
importance score, and candidate users and their features. It iterates through all candidate
users and scores users by the campaign specific feature importance. As a final step, all
candidate users are ranked, and top NN users ids are sent to user profile service to update
user profiles for campaign targeting.

4. Experiment & Evaluation

In this section, we evaluate look-alike models using back-play tests on real mobile app install
campaigns data, where the goal of the campaigns is to get new app installers while meeting
the advertiser’s target cost-per-install.

4.1. Evaluation Methodology

In app install campaigns, advertisers (usually the app developers) want to get more users
to install their apps while meeting their target cost per install. In our evaluations, we focus
on the user targeting side and measure how accurate the targeted audience is for specific ad
apps. The problem of which app ad should be served to the targeted user at impression time
is out of the scope of this paper, and it should be handled at downstream by ad selection
algorithms. As running online campaigns for experiments is costly, the performance of a
look-alike model can be evaluated by using off-line back-play tests.

Depending on their objectives, advertisers have many choices to put together a seed
user list to use a look-alike system. For example, an advertiser may select users who made
in-app purchases in the recent past as seeds and use look-alike to find similar users who
may potentially also make in-app purchases. Another example is that an advertiser can put
together some existing installers as seeds and aim to find similar users who may install the
app. In our experiments, we try to simulate the second scenario using the following steps:

1. Fix a date tp, collect the installers from ¢y to t; (e.g., t1 —tp = 1 month) as seed
users for an app.

2. Use a look-alike audience extension system to extend seed users into a look-alike
audience with size n.

3. Calculate the performance (app installation rate) of recommended audience in the
test period (t1,t9] (e.g., toa —t1 = 2 weeks).
4. Compare different look-alike systems’ performance by varying audience size n.

10
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4.2. Data and Evaluation Metrics

User features. If app developers use the SDK? provided by Yahoo!, app installation and
use are tracked and recorded. We also derive user app usage features (e.g., a user is likely to
be interested in which categories of apps) from this data to construct user feature vectors.
The global graph is built on a user profile snapshot right before the testing period, which
includes more than a billion mobile users. The user features include apps installed, app
categories, app usage activities, and app meta information. These same features are also
used for the simple similarity-based method and logistic regression method in comparison.
When we compare with segment-approximation based method, user app interest categories
(e.g., Sports, Adventure Games, etc.) are used as the segments.

Seeds. From Yahoo! advertising platform, we sampled 100 apps which have more than
10,000 converters per month. For each app, the seeds were app installers in May 2015. The
testing examples are active users in the first two weeks of June, where new installers of the
test apps are positive examples and non-installers as negative examples.

Performance metric. We use installation rate (IR) to measure the percent of recom-
mended audience (A) that install the target app (P) in the testing period. It is computed
as: IR(P,A) = %, where [ is the set of new installers from A. Note that in conventional
conversion rate computation the denominator is the number of impressions, whereas here
the denominator is the number of unique recommended users. The motivation is that we
want to capture whether the recommended audience is more likely to install the ad app,
without considering ad serving time decisions.

4.3. Experiment Results

To compare the installation rate (I R) of different methods, we compute IR at various rec-
ommended audience sizes. For graph-constraint model and the logistic regression model,
each candidate audience has a score from the model so that we can rank all the users and
take the top-n scored users for evaluation. The candidate audience output from Phase I of
our graph-constraint method already have similarity to seeds larger than the pre-configured
threshold. Therefore, for the simple similarity-based method, we randomly sample n users
from the candidate set to avoid pair-wise user similarity computation between seeds and
candidate users. For segment-approximate based model, there is no rank among the candi-
date users, and we randomly sample n users from the candidate set.

Figure 2 shows the weighted average of installation rates for all four methods. The
axises are normalized by constants to comply with company policy. The evaluations were
conducted on audience size in the scale of millions. GCL is our proposed graph-constraint
look-alike model (section 3.2). LR is logistic regression model (section 2.2), where seed
users are positive examples and non-seed users are used as negative examples (the same
way to compose training data as the GCL model). Since the majority of users are non-
seed users, so downsampling was done on negative samples. JaccardSim is the simple
user similarity based method (section 2.1). Segment is the segment approximation method
(section 2.3). We can see from the plot that GC'L model performs best among the models in
comparison, as audience size increases the installation rate decreases. JaccardSim model’s

3. https://developer.yahoo.com/flurry/
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Figure 2: Weighted Average Installation
Rate Comparison on 100 Apps.
Axises are scaled by constants.

Figure 3: Installation Rate Comparison
of 4 Example Apps. Axises are
scaled by constants.

performance remains relatively stable across different sizes of audiences, which reflects the
average installation rate of users similar to seeds. When audience size is small, top ranking
users identified by GC'L performs more than 50% better than the average similar users.

At smaller recommended audience sizes, the L R model performs better than JaccardSim
model and Segment based model. It seems the top features play a key role. When the audi-
ence size increases the LR model performance goes down dramatically. This may be due to
the sparsity of user features (e.g., apps installed), when none of the apps plays a significant
role in the LR model, its effect is down to random user picking. As the audience size gets
larger and there is more noise in the larger candidate set.

Figure 3 shows 4 example apps installation rate comparisons from different categories.
Since segment based method does not rank users, so we take all the recommended audience
by segment based method and select the same amount of top audiences from the logistic
regression model and our graph-constraint look-alike model. For all methods in comparison,
they work better for entertainment and action game apps than social apps. Our hypothesis
is that users usually do not frequently install new social apps, and they stably use the apps
where their friends are, so it is hard to get relevant features to predict what additional social
apps they will install. On the opposite, users are more likely to explore new entrainment
apps (new sources of entertainment), and play new action games when the already installed
games are done or got stuck. Therefore, there are more user signals related to those types
of apps, and look-alike models can pick up those signals to make better predictions.

5. Discussions

Our look-alike system is a running product at Yahoo!, where the production pipeline can
score 3000+ campaigns (using about 3000 mappers on 100 nodes), on more than 3 bil-
lion users (with millions of features in total) within about 4 hours. In empirical on-line
campaigns, these generated look-alike audiences are driving up to 40% improvements in
conversion rates and up to 50% reduction in cost-per-conversion compared to other tar-
geting options like demographic or interests*. It is challenging to develop an efficient and
effective large-scale look-alike system, in this section we share some experiences in tuning
a look-alike system and running on-line look-alike audience targeting campaigns.

4. https://advertising.yahoo.com/Blog/GEMINI-CUSTOM-AUDIENCE-2.html

12


https://advertising.yahoo.com/Blog/GEMINI-CUSTOM-AUDIENCE-2.html

A SUB-LINEAR, MASSIVE-SCALELOOK-ALIKE AUDIENCE EXTENSION SYSTEM

4.5%—

H GCL 4.5%
4.0%| \ k1 GCL-TFIDF weighted H GCL-all seeds
| 4.0% F4 GCL-n seeds
8 3.5%¢ ¢ F4 GCL-3n seeds
= 98 3.5% 4 -GCL-5n seeds
c 3.0% & i 4 GCL-10n seeds
S £ 3.0% \\‘.I\ GCL-20n seeds
8 25% = o, F1 GCL-30n seeds
g = 2.5%f oY F{ GCL-40n seeds
£20% £ B
£ 2.0% e

2 3 4 5 6 1.0%
1

Audience Size 2 3 4 5 6

. . . Audience Size
Figure 4: Installation rate improvement

achieved by weighted global-
graph.  Audience sizes are in
millions. Axises are scaled by
constants.
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Weighted LSH. Intuitively, users with similar app usage behaviors should be more sim-
ilar than users who use apps quite differently even if they have the same apps installed. For
example, given three users ui, us and ug, and they all have a sports app installed. u; and
u9 use this app more than ten times a day, while user u3 uses this app only once a week.
For these three users, intuitively us should be more similar to u; than uz. To encode this
key observation, we compute tf-idf weight for each feature of a user, where each user is
treated as a document, and the intensity of a feature is treated as the frequency of a word.

MinHash LSH discussed in Section 3.1.1 approximates Jaccard similarity between two
sets of items. To extend LSH to encode weighted Jaccard similarity, several prior works
proposed different methods Chum et al. (2008); Ioffe (2010); Manasse et al. (2010). One
straight-forward method is: suppose w; is weight of feature ¢, and w; is integer. One can
generate w; replicas of feature ¢ to replace the original feature, then proceed with LSH on
the transformed feature sets. It can be shown the MinHash LSH on the transformed item
sets approximates weighted Jaccard similarity.

In our scenario, the feature weights are real values. So the approaches discussed above
is not directly applicable. We adopted the approach proposed in Chum et al. (2008) to do
a transformation on the original MinHash value to encode feature weight: f(X;) = %,
where w; is the weight of feature f;, X; is the original MinHash value normalized to (OZ, 1).
Intuitively, when feature weight w; is larger, the hashed value f(X;) is smaller, so feature
fi is more likely to be selected as the signature, and two users are more likely to have the
same hash function signature if both of them have this feature with higher weights.

We use this weighted LSH scheme to build a weighted global graph, and the campaign
specific modeling is the same as Section 3.2. Figure 4 compares the performance of weighted
graph-constraint look-alike model with the non-weighted model on the same 100 ad apps
(see Section 4.2). We can see that when considering user feature weights, audience generated
from weighted graph consistently has about 11% lift in installation rate.

Seed size effect. The number of seed users input to look-alike system will affect the
number of direct neighbors (or similar direct users) that can be found. By varying the
size of the input seed set, we can empirically observe the trade-offs between recommended
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audience size and expected installation rate performance. Figure 5 show the 100 campaigns
weighted average performance at different sizes of seed sets. A small number n = 1000
is used as the base value, and we sample k£ x n seeds for each of the 100 ad apps. We
can see that as the number of seeds increases: (1). For a fixed amount of recommended
audience, larger seed size generates better performance. This is because when seed user size
is small, noise is stronger than signal. (2). The maximum size of recommended audience
increases, but performance decreases. This is expected in that the more seed users, the more
neighbor users can be found in the graph. But meantime more noise are introduced into
the model, hence the performance at the maximum number of users decreases. (3). The
improved performance and the maximum number of recommended audience do not change
much when seed user size reaches 40n. This value could be used to make suggestions to
advertisers as how large the seed size should be to have more freedom in performance and
audience reach trade-off. But a rule of thumb is that more seeds are better regarding both
installation rate and audience size. However, an optimal choice of the seed size depends on
many factors, such as campaign, users features, etc.

6. Related Work

The most related prior work is Turn’s audience extension system Shen et al. (2015), the
authors proposed a systematic method to generate extended audience using weighted cri-
teria algorithm, which is briefly described in Section 2.3 and employed in experiments for
comparison. In that work, users are extended on predefined segments, so the quality of ex-
isting segments in the targeting system is critical. Aly et al. (2012) describes a large-scale
system to classify users for campaigns, where the goal is to predict the likelihood of a user
to convert to an existing campaign. As pointed out by Shen et al. (2015), there is a lack of
prior work of audience extension system in the literature. Our proposed method approaches
audience extension problem at the individual user level.

Behavioral targeting is an area that focuses on inferring users interests from past be-
haviors, with the assumption that users’ past interests can help improve prediction and
recommendation tasks. Barford et al. (2014) conducted a large-scale study to analyze the
relationship between users’ online profiles and the ads shown to them. They showed that
user profile targeting is widely used. Ahmed et al. (2011) introduced a large-scale dis-
tributed system to infer users’ time varying interests. In recommender systems, Kanagal
et al. (2012) combined taxonomies and latent factors to predict users purchase behavior;
Ahmed et al. (2013) proposed a content based latent factor model to infer user preferences
by combining global and individual users preferences. Using the trending deep learning
technique, Djuric et al. (2014) proposed to use hidden conditional random field model to
model users online actions, such as click and purchase. These prior work are orthogonal to
our proposed system, where the learned user interests and preferences can be converted to
user feature vector as input the look-alike system for further improvements.

To deal with a large number of objects, especially when objects pairwise distances is
important, hashing techniques are heavily used to improve efficiency. The locality sensitive
hashing Slaney and Casey (2008) used in our proposed look-alike system was also applied
to many areas, such as detecting duplicate images Chum et al. (2008); Kulis and Grauman
(2009); extracting topics from a collection of documents Gollapudi and Panigrahy (2006);
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web page clustering Haveliwala et al. (2000), genomic sequence comparison Buhler (2001);
3D object indexing Matei et al. (2006). In our look-alike system, LSH is used as the initial
step to cluster users at a coarse level. After user filtering at this step, campaign specific
model ranks the candidate audience which has a larger impact on the final performance.

7. Conclusion

In this paper, we present a large-scale look-alike audience extension system from Yahoo!,
where the similar user query time is sub-linear. The core model of this look-alike system
is based on graph mining and machine learning technique on pairwise user-2-user simi-
larities. Through extensive evaluations on app installation campaigns, we show that the
recommended look-alike audience by our method can achieve more than 50% lift in app
installation rate over other audience extension models. Furthermore, we also discuss the
challenges and share our experience in developing look-alike audience extension system. One
of our future work is to leverage the real-time campaign feedback signals into the continuous
optimization process to improve look-alike campaigns.
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