JMLR: Workshop and Conference Proceedings 53:1-16, 2016 BIGMINE 2016

FPGASVM: A Framework for Accelerating Kernelized
Support Vector Machine Training using FPGAs

Mudhar Bin Rabieah MOB10@IMPERIAL.AC.UK
Christos-Savvas Bouganis CCB98@QIMPERIAL.AC.UK
Department of Electrical and Electronic Engineering

Imperial College London, UK

Editors: Wei Fan, Albert Bifet, Jesse Read, Qiang Yang and Philip Yu

Abstract

Support Vector Machines (SVM) are powerful supervised learnings method in machine
learning. However, their applicability to large problems, where frequent retraining of the
system is required, has been limited due to the time consuming training stage whose com-
putational cost scales quadratically with the number of examples. In this work, a complete
FPGA-based system for kernelized SVM training using ensemble learning is presented.
The proposed framework builds on the FPGA architecture and utilises a cascaded multi-
precision training flow, exploits the heterogeneity within the training problem by tuning
the number representation used, and supports ensemble training tuned to each internal
memory structure so to address very large datasets. Its performance evaluation shows
that the proposed system achieves more than an order of magnitude better results com-
pared to state-of-the-art CPU and GPU-based implementations, providing a stepping stone
for researchers and practitioners to tackle large-scale SVM problems that require frequent
retraining.

Keywords: SVM Training; FPGA; Large-scale training

1. Introduction

Support Vector Machines (SVMs) are powerful supervised learning methods in machine
learning Vapnik (1998), and they have been deployed to tackle diverse problems. For
example, they have been used successfully in many applications, such as: object recognition,
e-malil filtering, DNA sequencing and speech recognition Wang (2005).

Training on large datasets is a very challenging and time consuming process as the
computational complexity for many solvers is O(n?) where n is the number of training
points Bottou and Lin (2007). This hinders the applicability of such algorithms in situations
where the characteristics of the data change over time. As a result, the need for constant
retraining is desirable. Evidence of this can be seen in the google flu trend (GFT) where
the need for model retraining was emphasized Lazer et al. (2014).

To tackle the problem of high computational costs of SVM training, several algorith-
mic techniques have been proposed. For example, decomposition techniques transform
the training problem into a sequence of sub-problems known as working sets Bottou and
Lin (2007). At each iteration only the coefficients of the working set data are updated.
As a result, the memory requirements are reduced. Moreover, Ensemble training can be
used to transform the overall training dataset into smaller datasets that can be trained
independently and in parallel.

© 2016 M. Bin Rabieah & C.-S. Bouganis.

BIN RABIEAH BOUGANIS

Hardware improvements can contribute towards training acceleration. For example,
GPUs are used to accelerate computationally intensive parts such as the dot product op-
erations Athanasopoulos et al. (2011). Reconfigurable structures (e.g. FPGAs) are also
viable options for speeding up SVM training. Their heterogeneous hardware resources
allow for the exploitation of the different precision requirements of the training problem
which will increase the parallelization factor Graf et al. (2008); Cadambi et al. (2009);
Papadonikolakis and Bouganis (2008).

In this work, a complete FPGA-based system for accelerating nonlinear SVM training
is presented. Ensemble learning is proposed to address large datasets and take advantage
of available FPGA on-chip memory blocks. This approach allows each training subproblem
to fully realize the parallelization potential. In addition to ensemble learning, cascaded
multi-precision training flow is proposed by exploiting FPGA reconfigurability. This flow
exploits the higher parallelization factor at the lower precision phase, which produces a
reduced dataset for the higher precision phase to generate a more accurate model.

2. Background

2.1. Support Vector Machine

X,

Figure 1: Support Vector Machines

Support Vector Machines (SVMs) are supervised learning methods that construct a
hyperplane to classify data between two classes {-1,41} as shown in fig. 1. Given a set
of examples (z1,y1), (T2,92),..., (Tn,yn), where y; € {—1,+1} and z; € R For the
separable case, the hyperplane w is found by solving the following optimization problem:

1
min §||w||2, s.t. y;(wz; —b) > 1

The classification function is:
y = sign(wx — b)

For the non-separable case, slack variables £ are introduced to account for misclassified
data. Now, the separating hyperplane w is found by solving the following:

1
min §||w|| +Czi:§i, s.t. yi(wr; —b) > 1§, §>0

FPGASVM: SVM TRAINING FRAMEWORK

where C' is a constant to control the trade-off between the error and the simplicity of the
model w. The above optimization problem can be reformulated in the dual form as:

. 1
min Z ai—g Z oYyl T (4)
i

2%

stow=> gz, Y oiy;=0,0<0; <C
i i

where «; is the Lagrange multiplier. The dual formulation of SVM expresses the
separating hyperplane w in terms of the training points. Also, kernel functions can be
used instead of dot product operations, which will extend SVM to nonlinear cases.

Solving SVM training problem can be achieved through various methods Bottou and Lin
(2007). A commonly adopted method is decomposition method. An example of this class
is the Sequential Minimum Optimization (SMO) is a widely used decomposition algorithm.
Here, the working set consists of only two points at each iteration. Other ways of solving
the problem is by realizing the geometric interpretation of SVMs, which is also the basis
of this work due to its simple control structure and overhead.

2.2. Gilbert Algorithm

In Keerthi et al. (2000), it was shown that the the separable case of SVM is equivalent to
solving the nearest point problem between two convex hulls. As for the non-separable case,
it was suggested in Friess (1998) to modify the objective function to include the sum of the
squared errors. Thus, the objective function becomes:

1 2, C 2
min 3 ||wl|? + 2;@ (5)
st yi(wx; —b) > 1—¢&;,

In Friess (1998), it was shown that the above formulation is equivalent to the separable
case with the exception of the kernel definition. The kernel now is defined as: Iz:(xl, xj) =
k(x;,x;) + 6;5/C, where 6;; = 1 when i = j, otherwise it is 0. This is equivalent to adding
a constant to the diagonal of the kernel matrix which yields a valid kernel Shawe-Taylor
and Cristianini (2004).

In Martin (2005), Gilbert’s algorithm Gilbert (1966) was suggested to solve the nearest
point problem. Gilbert’s algorithm tries to find the point s* on a given secant hull S which
is the nearest to the origin. To describe the steps of Gilbert’s algorithm, we need to define
the following;:

Definition 1 Whenever there is a dot product operation, it can be replaced by a kernel function :
(z,y) & k(z,y)

Definition 2 The nearest point on the line segment connecting points a and b:

[Cl,b]* = (1 - /\)CL + Ab7 (6)
bt 0 < —(a,b— a) < b - al
r={o if —{a,b—a) <0 (7)

1 if Ib—al* < —{a,b—a)

BIN RABIEAH BOUGANIS

Definition 3 Support function:
gs(x) = maz(z, s,,) where sy, € S (8)
Definition 4 Contact function:
95(x) = smo where (z, $mo) = gs(x) (9)
Now, gilbert algorithm proceeds as follows:

Gilbert’s algorithm

choose random point wg € S

E=0

Repeat

k=k+1

find g§(—wg—1) as described in equation 9
wy = [wg—1, g§(wg—1)]".

Until ||wk - wk_1|| =0

RN e

Gilbert proved that as k — oo, ||wy, — s*|| = 0. In Martin (2005), it was observed that

wy converges to s* in angle faster than it does in norm. So, it was suggested that the angle

(wp,wr—1)

should be used as a stopping criteria: o = T Fig. 2 shows a visualisation of an

iteration of Gilbert’s algorithm.

wi[[[we—1 "

Figure 2: Visualisation of an iteration of Gilbert’s Algorithm

In order to make Gilbert’s algorithm applicable to SVM, the secant hull S is defined in
terms of the two classes X and Y:
S=X-Y;

Now, g&(—wg—1) can be decomposed as:
95(—wr-1) = gx (—wr-1) — gy (wr-1) (10)

2.3. Related Work

Most SVM implementations are targeting CPU platforms. This can be attributed to the
ease of developing software on such platforms. This has resulted in a plethora of machine

FPGASVM: SVM TRAINING FRAMEWORK

learning packages available freely to the community. Many of these packages target a
very broad range of algorithms. Examples of these packages include LIBSVM Chang and
Lin (2011) and SVM!9"? Joachims (1999). In these two packages, the original problem is
decomposed into smaller chunks. This allows the algorithm to only store the kernel matrix
for a manageable number of points at a time. In SVM"9" the algorithm is enhanced
by allowing the dataset to shrink. This is done by realizing that SVM produces sparse
solutions. So, SVM!9" will shrink the dataset to the points which it suspects that they
are support vectors.

Several implementations target graphical processing units (GPUs) to accelerate the
training process. In Athanasopoulos et al. (2011), the whole kernel matrix is calculated on
the GPU and passed on to the CPU. In Catanzaro et al. (2008), the MapReduce framework
was applied to the GPU to implement the algorithm applied in LIBSVM. The advantage
of using the MapReduce framework on a GPU instead of a cluster of computers is local
synchronization between GPU processors. Another example is GTSVM Cotter et al. (2011).
In this implementation, special attention was placed for sparse datasets (datasets with many
zero features). Here, vectors with similar sparsity patterns, are grouped sequentially. This
allows for a coalesced memory access.

Recently, FPGAs were also targeted as a means of acceleration. In Graf et al. (2008);
Cadambi et al. (2009), kernel operations were done as fixed point operations. Both imple-
mentations demonstrated that for many datasets, the solution’s accuracy was not affected.
Both implementations are used as a co-processor. The FPGA handles kernel evaluations,
whereas the rest of the learning algorithm is run on the CPU.

In addition to using fixed point operations, the kernel function could be sped up by
approximation. This approach was applied in Nagarajan et al. (2011). Here, the expo-
nential operation in the Gaussian kernel was replaced by the second-order Taylor series
expansion. In Papadonikolakis and Bouganis (2008), the kernel operation is divided be-
tween fixed point and floating point operations. The fixed point domain handles the dot
product between the attributes of the data point. This is fed to the kernel processor to
complete the evaluation of the function in the floating point domain.

In the previous implementations, the fixed structure of CPUs as well as GPUs hinder
their ability to exploit any heterogeneity within the training problem. As for the FPGA
implementations mentioned above, some implementations as in Graf et al. (2008); Cadambi
et al. (2009), only implement part of the training algorithm on the FPGA which reduces
the parallelization potential. In Papadonikolakis and Bouganis (2008), only the datapath
was mapped to the FPGA and no provision was made in the case when the dataset does
not fit the block rams available. Also, all the previously mentioned FPGA implementa-
tions do not exploit the reconfigurability of such structures. These are the issues that
our proposed framework addresses. It allows for custom precision per attribute. Also, for
homogeneous datasets, a multi-stage multi-precision flow is proposed. Finally, ensemble
learning is deployed to allow each training instance to fully fit the block rams.

3. Framework Overview

The proposed framework consists of both software and hardware modules. Fig. 3 shows
an overall view of the framework architecture. Hardware module (FPGA) is responsible
for running the gilbert algorithm to solve an SVM training instance. Software modules,
which run on the CPU, are responsible for preprocessing the data (SVM Data), generating
a customized hardware (SVM Configuration, Synth Tool), communication and setting up
the training process (SVM Train) and running the classification process (SVM Classify).
Customized hardware is generated by providing high level description of the train-
ing problem. This description includes kernel function used (RBF, polynomial ...) and

BIN RABIEAH BOUGANIS

Database Problem
Description

SVM Data

Scaled data

Synth Tool

A

Data & param

Training Parameters
—

SVM Train FPGA

Solution

A

SVM models

Misclassified data

v
Test Data
‘+ SVM Classify

Figure 3: Framework Overview

number and types of dataset attributes. Various types are supported by the proposed
framework including real-valued, categorical, boolean and integer. This allows for het-
erogeneous datasets where several data types coexist. Such high level description masks
the underlying hardware from the user which opens up the framework to non hardware
designers and provides a consistent front end regardless of the FPGA platform used.

Training process is managed through ”SVM Train” which is a multi-threaded program.
One thread runs interactively giving the user the ability to define the training parameters
at runtime. These parameters include: kernel parameters (e.g gamma for RBF kernels),
stopping criteria and regularization parameter C', which is passed to the FPGA along with
the training data. Another thread is responsible for receiving the solution from the FPGA.
This multi-threaded approach is used so that the module is not blocked waiting for the
FPGA to finish. This allows the module to prepare the next batch of data as soon as
it sends the current one which is used in ensemble learning. ”SVM Classify” module is
coupled with ”SVM Train” to allow tuning the parameters through performing validation
tests.

3.1. SVM Ensemble

FPGAs provide low latency high throughput on-chip memory blocks. These blocks could
be instantiated multiple times to accommodate multiple processing units, each with its own
memory. However, for many training problems, the memory requirements exceed the on-
chip memory available within the FPGA. A straightforward fix is to use external SDRAMs
to store the data. However, the associated control logic as well as the access scheme limits
the number of possible processing units instantiated which reduces the parallelization factor.

In the proposed framework, the solution is provided by creating an SVM ensemble of
k problems where each problem can fit into available on chip memory. The main dataset
is divided into k groups each of the size N/k, where N is the total number of points in the

FPGASVM: SVM TRAINING FRAMEWORK

original dataset. This allows each training subproblem to fully realize the parallelization
potential. Fig. 4(a) shows an abstraction of SVM ensemble. Each group is fed to the
FPGA and a model for each group is created independently. These models are aggregated
(majority voting, weighted sum ...) at the classification phase. The user has the freedom
to invoke the ensemble mode even if the data fits the FPGA. This will give the user the
ability to create several models and produce a more accurate model Kim et al. (2002).

Fig. 4(b) shows timing diagram showcasing the ensemble training flow. Here, ”SVM
Train” module will create two threads running on the CPU: one for sending the parameters
and data while the other is for probing the FPGA for the solution. Thread 1 will create
the data groups and send it to the FPGA one by one. In case the FPGA is still not ready
to receive the data, these groups will wait in a queue until the FPGA signals that it is
ready to receive the next batch. Once the FPGA is done from training a single batch, it
will signal thread 2 that a solution is ready so it can read it and store it.

Svm Train module (thread 1
sending data and paramters)

TRY(X) | | TR (X)

TR (X)

Training model Test dataset

‘]

Training dataset
e T

(a) (0)

Svm Train module (thread 2
receiving solution)
—

Figure 4: On the left: (a) Svm ensemble abstraction. (b) Ensemble training flow

3.2. Cascaded Multi-precision Training

By exploiting the reconfigurability properties of FPGAs, multiple hardware instances with
different precisions are generated for the same problem. In this scenario, a cascaded training
flow is created as shown in fig. 5. At the lower precision phase, the training runs faster since
more processing units can be instantiated. The support vectors generated together with
misclassified data from this phase is then passed to a higher precision phase. At the higher
precision phase, less processing units is instantiated. This is mitigated by reducing the
number of data points at this phase since not all the original training data is passed along.
This scheme is guaranteed to converge to a feasible solution since the solution produced at
the lower precision phase satisfies the condition), a;y; = 0 which is a feasible solution.

This scheme has the potential of speeding up the training process if the reduction of
data points is significant. It also has the potential of reducing the final number of support
vectors as shown in the evaluation results.

4. Hardware Implementation

4.1. Top Level Architecture

In the proposed framework, the hardware module is responsible for executing Gilbert train-
ing algorithm. The top level compromises of several processing elements (PE), each with its

BIN RABIEAH BOUGANIS

training data SVM Trai_ni_ng support vectors + misclassified datg S.VM Traini_ng support vecfgrs
(Low Precision) (High Precision)

Figure 5: Low precision to high precision two stage training flow

own on-chip memory blocks. It, also, consists of ”lambda calculation” and ”angle monitor”
blocks to manage the next iteration and monitor the stopping criteria. All this is managed
through the main control unit.

Training SVMs using Gilbert algorithm constitutes three main tasks:

e projection task: This task involves finding g% (—wy—1) and ¢3 (wr—1) which are basically
equivalent to finding min(wy—1, ;) and max(wi—_1,;), where z; € X (class +1) and z; € Y’
(class -1). The complexity of this task is O(n) where n is the number of datapoints.

e calculate lambda: Here, lambda is calculated according to equation 7. The complexity of
this task is O(1).

e check stopping criteria: Here, the angle between wy and wg_; is calculated to check
whether the algorithm has reached the stopping criteria. The complexity of this task is O(1).

Parameters Control Unit Lambda
Calculation
I ‘

— n

Support Vectors

m — n

Support Vectors

— n

Support Vectors

v

Angle
Monitor

Figure 6: Top Level SVM Architecture

In all of the above operations, kernel operations are present; and in the case of projection
task, kernel operations are performed between one single point and all the training data
(hence the complexity of O(n)). At the top level, as shown in fig. 6, kernel operations are
done within processing elements (PE). The instantiation of multiple processing elements,
allows the system to distribute the data points between these elements. At each iteration
each processing element will compute its local maximum and minimum and pass them to

FPGASVM: SVM TRAINING FRAMEWORK

the next processing element. The last processing element will output the global maximum
and minimum.

The processing elements are connected in a stacked manner to reduce the interconnec-
tion complexity as the control unit just needs to pass the parameter to the first processing
elements and it will propagate from to next and so on. The drawback of such scheme,
is that it will introduce a delay of Npg cycles, where Npg is the number of processing
elements instantiated.

The (lambda calculation) block is responsible for calculating A according to equation 7.
Again, any dot product operation is done utilizing the processing elements, which leaves
the (lambda calculation) block with just some simple floating point scalar operations. The

(angle monitor) block is responsible for calculating m
criteria. Again, similar to (lambda calculation block), any dot product operations are
performed using the processing elements.

The training time can be modelled as follows:

which is used as a stopping

) . N
time = iter <7M + #PE + t>\+angle) * Ckaeriod + tcomm;

where iter is the number of times the loop body of the algorithm is executed, N is
number of training points, # PE is the number of processing elements instantiated, txtangte
is the time needed to evaluate A and check whether the angle convergence has been met,

clkperiod 1s for clock period, and tcomm is the time needed to transfer the data to/from the
board.

4.2. Processing Element

Fig. 7 shows the architecture of the Processing Element. As mentioned earlier, processing
elements performs kernel operations required for the projection task as well as for calculat-
ing the norms. The kernel computation is divided between fixed and floating point domains
in a similar fashion to what was proposed in Papadonikolakis and Bouganis (2010). The
dot product operations that appear in the kernel function are performed in fixed point.
The rest of the kernel operations are done in floating point. For example, the RBF ker-
nel can be expressed as: k(zj,x;) = e lej—ail® = g=(@j2; -2, @it@i2) To achieve
maximum throughput, each attribute within the dataset is fed directly to a dedicated mul-
tiplier. Also, each attribute can have its own precision. This will allow for a heterogeneous
dataset. To optimize the hardware utilization of the dot-product tree, the multipliers are
ordered with respect to their precisions in ascending order. Unlike Papadonikolakis and
Bouganis (2010), each processing element updates the solution (SVs cache) corresponding
to the training points it processes. This makes the solution update runs in parallel with
the projection task.

Also, caching is used to speed up the overall algorithm (Kernel Cache). At each it-
eration, k(wyg,x) is calculated to perform the projection task. This is a very expensive
computation since from equation (4): wy = >, a;yix; = k(wg, x) = >, ayyik(xi, x). As a
result, as the algorithm progresses, k(wg,) becomes more challenging due to the increased
number of support vectors. This can be solved by observing the recursive nature in which
wy, 18 computed:

wy = [wr—1,g5(wr—1)]"

(1 — Nwg—1 +)\g}g(wk_l)

(1 = Nk(wk-1,2) + Ak(g5(wi-1),)
(1 = X)cache + Mk(gs(wk—1),)

= k(wg,x)

BIN RABIEAH BOUGANIS

Xi, Xj Kernel lambda Max Kernel Min Kernel

X sv SVs

- Update Cache
I +

X
.

X

g

Dataset °

wemery | |1 () {rers]

Kernel
Cache

Kernel
Processor

Cache
Update

o—

4,;)_.'

Fixed-point domain Floating-point domain

Max/Min Kernel

Max Kernel Min Kernel

Figure 7: Processing Element Architecture

Now, only two kernel operations are required since

k(gs(wr—1),7) = k(gx (—wr—-1),7) — k(g5 (wr—1),)

In addition to performing the kernel operations, each PE contains comparators to
perform the operations min(wg_1,z;) and max(wy_1,z;). Each PE compares its local
minimum and maximum with the previous PE in the stack. The output is passed to the
next PE. The last PE produces the global maximum and minimum.

5. Evaluation Results

The FPGA system is implemented on Xilinx board ML605. The maximum operating
frequency of the core of the system is 150Mhz. However, the overall system is clocked down
to 62.5Mhz to match the reference clock of the PCI port instantiated. The communication
between the PC and FPGA board is carried through PCI port. RIFFA Jacobsen et al.
(2012) framework is used to facilitate the communication between our IP core and PCI
endpoint on the board.

5.1. Training and Accuracy

Three datasets were tested, namely: adult, forest covertype Bache and Lichman (2013)and
MNIST data sets Lecun and Cortes. The tests were performed on our system as well as
SVM'9ht Joachims (1999), GPUSVM Catanzaro et al. (2008) and GTSVM Cotter et al.
(2011). SVM'9"* was run on an Intel Core i7-3770 machine with 16GB RAM on board.
Both GPU implementations were run on Nvidia Quadro K4000 GPU.

The adult dataset contains 32K training points with 14 heterogeneous features; whereas,
the forest covertype contains 522K training points with 54 heterogeneous features. Forest

10

FPGASVM: SVM TRAINING FRAMEWORK

covertype was transformed into a binary classification problem by training class 2 versus
all the others. The MNIST dataset contains 60K training points with 784 homogeneous
features. It was converted into a binary problem by training the data for class odd versus
even. For all the datasets, the kernel used was the Gaussian kernel.

The adult dataset fits completely in the FPGA; whereas covertype and MNIST does
not fit which require the use of SVM ensemble mode. From the forest dataset, an ensemble
of 13 SVMs was created; whereas, for the MNIST dataset an ensemble of 27 SVMs was
created for the full precision case (8-bits per attribute). The aggregation scheme for both
is majority voting.

Table 1, shows a summary of the training time results compared to the other implemen-
tations (data preparation and setup times are not included for all implementations). Test
error is computed as the ratio of misclassified data to the overall number of testing points.
Power consumption of the FPGA implementation was estimated using XPower from Xilinx
with a switching probability of 0.5. The power consumption of the other CPU as well as
GPU implementations is reported from the data sheets of Intel Core i7-3770 and Nvidia
Quadro K4000 GPU. The deviation in the number of support vectors can be attributed
to the different algorithms implemented for each implementation. Reducing the number
of support vectors has the benefit of speeding up the classification process (classification
function scales linearly with the number of support vectors). The FPGA implementation
shows significant speed ups compared to the other implementations. For the adult dataset
where it can fit the FPGA, the speed-up ranges from 8x to 160x. For forest covertype, the
speed ups ranges from 80x to 2880x. As for MNIST dataset, the speed ups ranges from
11.6x to 343.8x%.

For the MNIST dataset, several tests were performed. The first was for the full precision
case (8 bits per attribute). The second was for a low precision case (4 bits per attribute).
The Third was for two stage training scheme (Low precision = 4bits, High precision =
8bits). It is obvious that the low precision case achieves the best training time. However,
it suffers slightly in accuracy. The cascaded scheme achieves similar results to the full
precision case in terms of accuracy. However, it takes slightly more time in training. This
is due to the fact that the transition from the low precision to high precision phase did not
result in a significant reduction in the number of points (support vectors and misclassified
data were 49444 points). However, the final tally of the number support vectors was
reduced. For the full precision case, the power consumption estimation is less due to the
fact that only one processing element was instantiated and it is not possible to fully utilize
the FPGA resources.

5.2. Timing Analysis

If setup time is included, the the overall end to end training time increases. This setup time
includes the processing of data into fixed point values, configuring the training parameters
(kernel parameters, regularization parameter ...), preparing data buffers and configuring
communication channels between PC and the FPGA. However, the cost of setup time is
only considerable at the start of the training process . Fig. 8 shows the data preparation
time with respect to communication overhead between the FPGA and the PC (communi-
cation between SVM train module and FPGA) and the FPGA training time. It is clear
that for small datasets (e.g Adult) the setup time becomes more considerable. As for the
communication overhead, it is negligible except for the case of MNIST. This can be at-
tributed to the fact that the dataset has many attributes which greatly reduce the number
of points in each ensemble.

Fig. 9 shows the speed ups with respect to the number of processing elements in-
stantiated under the assumption that the underlying FPGA resources are large enough

11

BIN RABIEAH BOUGANIS

Table 1: Summary of results

’Data Set ‘ Implementation ‘Test Error(%)‘Training Time|speed up‘SVs ‘Power‘
Adult SVMUight 14.8 80s 1x 18152 [T7TW
(C =1,v=0.05) GPUSVM 17.2 98 16x 18344 |8OW
GTSVM 15 4s 20x 19138 |8OW
FPGA 16.8 0.5s 160x 17845 |6W
Forest Covertype SVMFight 13.9 43200s 1x 277102(7TW
(C =10,v=0.125) GPUSVM 13.9 1850s 23.4x 277402|80W
GTSVM 29.9 1200s 36x 278564|80W
FPGA 14 15s 2880x 2944906 W
MNIST SVMUight 4.6 2062.75s Ix 43733 [TTW
(C =10,v=0.125) GPUSVM) 425.7s 4.8x 43731 |SOW
GTSVM 4.7 70s 29.5x 43584 |80W
FPGA (8 bits) 4.8 6s 343.8x 46671 [5.7TW
FPGA (4 bits) |5 3s 687.6x 47812 |6W
FPGA (4 + 8 bits)|4.8 8s 257.8x 43882 |5.85W
MNIST (full precision)
Setup Time

Forest Cover Type

Adult

0% 10% 20% 30% 40%

50%

70% 80%

100%

Figure 8: Setup and communication times overhead

® Communication
M Training Time

FPGASVM: SVM TRAINING FRAMEWORK

(Equation 11 was used to estimate the training time when it is not possible to instantiate
the number of processing elements required). Increasing the number of processing elements
will reduce the time to complete the projection task within Gilbert algorithm. However,
all other operations are not affected. As a result, speed ups saturates (or roll-off) when the
number of processing elements is large compared to the number of training points. In such
cases each processing element handles only a few data points, which leads other operations
(lambda and angle calculations) to dominate the training time. Also, the stacked manner
in which the processing elements are connected adds a delay in these situations.

60

0 20 40 60 80 100 120 140

Processing Elements

—e—Adult —@—Forest Covertype MNIST (8bits)

Figure 9: Speed ups with respect to number of processing elements instantiated

5.3. Hardware Utilization

Table 2 shows the FPGA resource utilization with respect to each dataset. For the MNIST
dataset (8 bits per attribute), only a single processing element was instantiated due to
the fact that the dataset has many attributes (a single processing element will cause the
training module to occupy 46% of the slices). For the adult and forest covertype, more
processing elements were instantiated because of the low number of attributes within the
datasets.
For the MNIST dataset, the precision of the data was changed to study the effects on
hardware utilization for a single processing element. For 6 and 4 bits cases, the percentage
of occupied slices allows for the instantiation of a second processing element. Also, since
the BRAM utilization is lower, more data points can be loaded. Furthermore, for both
cases, the training accuracy was almost the same (test error 4.8% for 6-bits and 5% for
4-bits).

Fig. 10 shows the number of processing elements instantiated with respect to the num-
ber of attributes (8-bits per attribute). It is clear that dimensionality redections trechniques
can be of great benefit in maximizing the number of processing elements instantiated.

13

BIN RABIEAH BOUGANIS

Table 2: Hardware Utilization

Data Set Processing Elements|FPGA Slices FPGA Slice FPGA Slice BRAMS
Instantiated occupied | Registers LUTS
Adult 20 93% 41% 81% 70%
Forest Covertype 20 96% 36% 76% 87%
MNIST (8 bits per attribute) 1 46% 17% 29% 88%
Table 3: Effect of data precision on hardware utilization
Precision | FPGA Slices | FPGA Slice | FPGA Slice | BRAMS
occupied Registers LUTS
8-bits 46% 17% 29% 88%
6-bits 38% 14% 24% 68%
4-bits 32% 11% 19% 46%
30
25
g 2
5
uo15
% 10
£ s
o - —
0 100 200 300 400 500 600 700 800 900

Number of Attributes

Figure 10: Number of processing elements instantiated with respect to number of attributes
(8-bits per attribute)

14

FPGASVM: SVM TRAINING FRAMEWORK

6. Conclusion

In this paper, a complete FPGA-based system for accelerating nonlinear SVM training has
been presented. The proposed framework utilises a cascaded multi-precision training flow,
exploits the heterogeneity within the training problem, and supports ensemble learning.
Performance evaluations shows that the proposed system outperforms other implementa-
tions across different datasets while still maintaining comparable accuracy.

References

Andreas Athanasopoulos, Anastasios Dimou, Vasileios Mezaris, and Ioannis Kompatsiaris. Gpu
acceleration for support vector machines. In Procs. 12th Inter. Workshop on Image Analysis for
Multimedia Interactive Services (WIAMIS 2011), Delft, Netherlands, 2011.

K. Bache and M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.
uci.edu/ml.

Léon Bottou and Chih-Jen Lin. Support vector machine solvers. Large scale kernel machines, pages
301-320, 2007.

Srihari Cadambi, Igor Durdanovic, Venkata Jakkula, Murugan Sankaradass, Eric Cosatto, Srimat
Chakradhar, and Hans Peter Graf. A massively parallel fpga-based coprocessor for support vector
machines. In Field Programmable Custom Computing Machines, 2009. FCCM’09. 17th IEEE
Symposium on, pages 115-122. IEEE, 2009.

Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. A map reduce framework for program-
ming graphics processors. In Workshop on Software Tools for MultiCore Systems, 2008.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011.

Andrew Cotter, Nathan Srebro, and Joseph Keshet. A gpu-tailored approach for training kernelized
svms. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 805-813. ACM, 2011.

T. Friess. Support Vector Neural Networks: The Kernel-Adatron with Bias and Soft-Margin. Tech-
nical report, UK, 1998. URL http://www.google.com/search?client=safari&rls=en-us&q=
Support+Vector+Neural+Networks:+The+Kernel-Adatron+with+Bias+and+Soft-Margin&ie=
UTF-8&0e=UTF-8.

Elmer G Gilbert. An iterative procedure for computing the minimum of a quadratic form on a
convex set. STAM Journal on Control, 4(1):61-80, 1966.

Hans P Graf, Srihari Cadambi, Venkata Jakkula, Murugan Sankaradass, Eric Cosatto, Srimat
Chakradhar, and Igor Dourdanovic. A massively parallel digital learning processor. In Advances
in Neural Information Processing Systems, pages 529-536, 2008.

Matthew Jacobsen, Yoav Freund, and Ryan Kastner. Riffa: A reusable integration framework for
fpga accelerators. In Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th
Annual International Symposium on, pages 216-219. IEEE, 2012.

Thorsten Joachims. Making large scale svm learning practical. 1999.

15

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.google.com/search?client=safari&rls=en-us&q=Support+Vector+Neural+Networks:+The+Kernel-Adatron+with+Bias+and+Soft-Margin&ie=UTF-8&oe=UTF-8
http://www.google.com/search?client=safari&rls=en-us&q=Support+Vector+Neural+Networks:+The+Kernel-Adatron+with+Bias+and+Soft-Margin&ie=UTF-8&oe=UTF-8
http://www.google.com/search?client=safari&rls=en-us&q=Support+Vector+Neural+Networks:+The+Kernel-Adatron+with+Bias+and+Soft-Margin&ie=UTF-8&oe=UTF-8

BIN RABIEAH BOUGANIS

S Sathiya Keerthi, Shirish Krishnaj Shevade, Chiranjib Bhattacharyya, and Krishna RK Murthy.
A fast iterative nearest point algorithm for support vector machine classifier design. Neural
Networks, IEEE Transactions on, 11(1):124-136, 2000.

Hyun-Chul Kim, Shaoning Pang, Hong-Mo Je, Daijin Kim, and Sung-Yang Bang. Support vector
machine ensemble with bagging. In Pattern recognition with support vector machines, pages 397—
408. Springer, 2002.

David M Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani. The parable of google flu:
traps in big data analysis. 2014.

Yann Lecun and Corinna Cortes. The MNIST database of handwritten digits. URL http://yann.
lecun.com/exdb/mnist/.

Shawn Martin. Training support vector machines using gilbert’s algorithm. In Data Mining, Fifth
IEEFE International Conference on, pages 8—pp. IEEE, 2005.

Karthik Nagarajan, Brian Holland, AlanD. George, K.Clint Slatton, and Herman Lam. Accelerat-
ing machine-learning algorithms on fpgas using pattern-based decomposition. Journal of Signal
Processing Systems, 62(1):43-63, 2011. ISSN 1939-8018. doi: 10.1007/s11265-008-0337-9. URL
http://dx.doi.org/10.1007/s11265-008-0337-9.

Markos Papadonikolakis and C Bouganis. A heterogeneous fpga architecture for support vector
machine training. In Field-Programmable Custom Computing Machines (FCCM), 2010 18th IEEE
Annual International Symposium on, pages 211-214. IEEE, 2010.

Markos Papadonikolakis and C-S Bouganis. A scalable fpga architecture for non-linear svm training.
In ICECE Technology, 2008. FPT 2008. International Conference on, pages 337-340. IEEE, 2008.

John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cambridge university
press, 2004.

Vladimir N Vapnik. Statistical learning theory. 1998.

Lipo Wang. Support Vector Machines: theory and applications, volume 177. Springer Science &
Business Media, 2005.

16

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1007/s11265-008-0337-9

	Introduction
	Background
	Support Vector Machine
	Gilbert Algorithm
	Related Work

	Framework Overview
	SVM Ensemble
	Cascaded Multi-precision Training

	Hardware Implementation
	Top Level Architecture
	Processing Element

	Evaluation Results
	Training and Accuracy
	Timing Analysis
	Hardware Utilization

	Conclusion

