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Abstract

This paper presents a combination of strategies for conversion rate (CVR) prediction de-
ployed at the Yahoo! demand side platform (DSP) Brightroll, targeting at modeling ex-
tremely high dimensional, sparse data with limited human intervention. We propose a
novel probabilistic generative model by tightly integrating components of natural language
processing, dynamic transfer learning and scalable prediction, named Dynamic Transfer
Learning with Reinforced W ord M odeling (a.k.a. Trans-RWM ) to predict user conver-
sion rates. Our model is based on assumptions that: on a higher level, information can
be transferable between related campaigns; on a lower level, users who searched similar
contents or browsed similar pages would have a higher probability of sharing similar latent
purchase interests. Novelties of this framework include (i) A novel natural language mod-
eling specifically tailored for semantic inputs of CVR prediction; (ii) A Bayesian transfer
learning model to dynamically transfer the knowledge from source to the future target ;
(iii) An automatic new updating rule with adaptive regularization using Stochastic Gradi-
ent Monte Carlo to support the efficient updating of Trans-RWM in high-dimensional and
sparse data. We demonstrate that on Brightroll our framework can effectively discriminate
extremely rare events in terms of their conversion propensity.

Keywords: CVR Prediction, Natural Language Processing, Dynamic Transfer Learning,
Computational Advertisement.

1. Introduction

Display advertising has been the subject of rigorous research with extremely fast devel-
opment during the past decade. This area has generated billions of revenue, originated
hundreds of scientific papers and patents, saw a broad variety of implementations, yet the
accuracy of prediction technologies leaves to desire more. Our work is motivated by the
challenges from a world leading advertising platform Brightroll, which is the flagship of Ya-
hoo!’s programmatic ad buying application suite that provides access to Yahoo! and third
party inventories and capitalizes on relevant billions of users’ data. Such data access allows
us to find and target users across all available inventories while it is a big challenge to set
up a flexible complete model framework that can consistently integrate information from
different dimensions.

Advertisers in display advertising may design ad campaigns with different product goals
in mind. Usually, advertisers can start several campaigns and each campaign is associated
with a couple of ads. Some advertisers focus on building brand awareness for promoting
products targeting at specific users, which is similar to television and magazine advertise-
ment. Advertisers with this objective usually adopt cost-per-milli (CPM) model, which
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are priced in bundles of 1,000 impressions (or ads delivery). In such scenario, advertisers
are charged by the number of impressions that are shown irrespective of user actions and
the model performance is usually characterized by the demographic distribution of the tar-
geted audiences. If advertisers care more about immediate sales, they usually prefer pricing
types like cost-per-click (CPC) or cost-per-action (CPA). Actions may include credit card
application, online course registration or products purchase. Criterion to characterize the
performances of CPC and CPA models are click-through-rate (CTR) and conversion-rate
(CVR) respectively. Compared to clicks, actions may need the targeted audiences to spend
more efforts, thus CVR is usually much 10 to 100 times smaller compared to CTR and more
challenging to model. Advertisers can also be somewhere in between and care both future
and immediate sales thus adopt a mixture of the above pricing types.

In this paper, we focus on developing strategies for CVR prediction deployed on Brightroll.
There are several challenges in successfully deploying a large scale CVR prediction model
in practice (Mahdian and Tomak, 2007; Rosales et al., 2012; Chapelle et al., 2015). First,
usually only a very small portion of the users that click or have been shown ads eventually
convert. This constrains the modeling techniques to parsimoniously work with the data.
Second, user profiles are high dimensional and sparse, ranging from user demographics to
search queries and page browsing. Dealing with such different activities in the presence
of limited conversion information is non-trivial. To add to this, the data is highly volatile
due to cookie churn, changes in campaigns, variability in user interests and other temporal
effects that do not allow accumulating long-standing data. These challenges require the
modeling approach to have a quick start and dynamically adapt over time as new data
accumulate.

1.1. Contributions
In view of these challenges, we propose a novel approach for conversion prediction that relies
on two distinct sources of information: (a) The global features associated with the adver-
tising campaign, such as campaign specific conversion and retargeting pixels. Advertisers
instrument their ads with a pixel that gets triggered and stores the ad view information by
the user (e.g. in the browser cookie or some user data store) when a user gets exposed to
the ad on a publisher site. However, we can only get partial information of the pixel firing,
e.g., we only get access to the complete information of converters that are attributed to us
(e.g., conversions are lead by the ads that we showed before). For the left non-attributed
majority, we are only informed the action time that are not recognized at user level. We
use global features to characterize the external competitiveness and also the relationship
between campaigns that we serve. (b) We define information directly related to users and
user events as local features. We use local features to model the users’ purchase behaviors
and the key is that certain search queries or browsing content from certain user segments
are relatively higher related to specific brand conversions.

We combine these two complimentary sources of information in a principled way and
propose Trans-RWM, a novel probabilistic generative model that tightly integrates com-
ponents of natural language processing, dynamic transfer learning and scalable prediction
to support learning from the extremely sparse and high-dimensional conversion data. In
summary, we make the following contributions in the paper:

1. We extend the word2vec (a.k.a, W2V, Mikolov et al. (2013a,b)) through the regular-
ized Bayesian co-clustering to learn more reinforced word representations.

2. We propose a novel model for Bayesian transfer learning where the knowledge is
dynamically transferred from source to the future target campaigns.
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3. We connect part 1 and 2 through a novel probabilistic generative framework, named
Dynamic Transfer Learning with Reinforced W ord M odeling (a.k.a. Trans-RWM )
to predict user conversion rates.

4. To automatically and efficiently learn Trans-RWM in the large scale sparse data on
Brightroll, we design a new updating algorithm using Stochastic Gradient Monte
Carlo.

2. Related Work
In this section, we briefly review W2V and transfer learning.
2.1. Word to Vector
We use global features to characterize the external competitiveness and relationship between
the campaigns and use local features to model the users’ purchase behaviors. Some of these
features are contextual, e.g., campaign descriptions, user online search and browsing history,
etc. Better word representations will help characterize the underlying action affinity that
might lead to better predictive capabilities.

The recently popular W2V model Mikolov et al. (2013a,b) is an interesting method for
learning distributed vector representations that can potentially capture a large number of
precise syntactic and semantic word embeddings. The W2V engine is targeted at maxi-
mizing the conditional probability of the words under their context in the corpus with the
skip-gram model (Mikolov et al., 2013a; Google):

1

T

T∑
t=1

∑
−c≤l≤c,l 6=0

log p(wt+l|wt), (1)

where c is the size of the training context, which can be a function of the center word wt.
Larger c includes more training samples leading to higher accuracy but lower efficiency of
model training. The original skip-gram formulations defines p(wt+l|wt) through the softmax
function:

p(wO|wI) =
exp(v′wO

T vwI )∑W
w=1 exp(v′w

T vwI )
, (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is
the number of words in the vocabulary. In this way, the vectors of the words are learnt
and the dot product between vectors of a word and its possible neighbors are maximized.
However, the exact solution of this formulation is impractical. Since the time complexity is
proportional to the size of W , which is often on the scale of 105 − 107.

Mikolov et al. (2013b) presented several extensions that improve both the quality of the
learnt vectors and the training speed. They propose hierarchical softmax and negative sam-
pling as computational efficient approximations of the full softmax. However, in practice,
we notice that distances among word vectors are very often not comparable if the delta
vectors are not in the same direction. In this paper, we extend the W2V model through the
regularized Bayesian co-clustering to learn more reinforced word representations. The reg-
ularization enforces the priors of word vectors using a rectangular lattice across the vector
space. Thus word vectors are more likely to be close to one of the lattice vertices after the
training instead of staying at any random location in the vector space. This helps remove
the ambiguity for measuring with small vector distances and thus more comparable. More
detailed derivations are given in section 3.2.1.
2.2. Transfer Learning
Pan and Yang (2010) gives a comprehensive survey for transfer learning. At a high level,
the idea of transfer learning includes (i) the learning (in part) is done for a task that differs
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from the real target task in either the sampling distribution of the examples, the features
describing the samples, the exact quantity being modeled (the “label”), or the functional
dependences between the features and the label, and (ii) that the knowledge obtained from
this alternative learning task is transferred to the real task, somehow used to improve the
learning in the target task. Only recently, Perlich et al. (2014) and Dalessandro et al. (2014)
introduced transfer learning to model post-view conversions through combining data from
general conversions to improve targeting performances across a large number of campaigns.
To help better understand how transfer learning works in practice, we give a visualization
in Figure 1 which shows the model updates in the dynamic evolving environment. Transfer
learning is particularly useful when we do not have sufficient amount of labeled training
data in some tasks, which may be very costly, laborious, or even infeasible to obtain. This
deals exactly with the CVR prediction challenges.

Transfer learning is defined formally as following: a classification task {X , p(X),Y, p(Y |X)}
composes a feature space X , a probability distribution p(X) with X ∈ X of feature space,
an outcome space Y, an objective function p(Y |X) where Y ∈ Y. Throughout this paper,
we will focus on the binary classification, with class labels Y ∈ {1,−1} denoting conversion
or not. In our particular situation, we refer to the current campaign data as the target and
the auxiliary data from other streams as the source. We generally assume that the source
and the target tasks share the same feature space X but ps(X) 6= pt(X) for all X and we
use superscript s and t to differentiate source and target. Outcome spaces Y are usually
different but related. In our problem, Ys represents conversion labels observing related
traffic from other campaigns and the campaign itself (if exists) in the past. Yt is derived
from the campaign conversions for the most recent time period. Yt become part of Ys as
time proceeds. We use the standard log-likelihood formulation and denote the sample
logistic loss function as

l(β) =
∑
i

li(β) =
∑
i

−yi log pi(β)− (1− yi) log(1− pi(β)), (3)

where pi(β) = 1/(1 + exp(−β′Xi)). Given the source data Ds = {Xs, Y s}, we optimize as

βs = arg min
βs

Ns∑
i=1

lsi (β
s) + λsr(βs) (4)

where r(·) is a suitable regularization function and λs is its regularizer. Denote the target
data set as Dt = {Xt, Y t}. For the information transfer, βs is included in the loss function
and the target objective is optimized as following:

βt = arg min
βt

Nt∑
i=1

lti(β
t) + λtr(βt − βs). (5)

In order to meet the actual needs, we extend the above formulation to allow for incremental
updating as we do not have only one source and one target but a series of them. More
detailed derivations are given in Section 3.2.2.

3. The Proposed Framework
In this section, we describe the proposed Trans-RWM model for CVR prediction, which is a
probabilistic generative framework that jointly models global campaign competitiveness and
their relationship, purchase preferences discovery from users’ search and browsing history,
and dynamically transfer these knowledge across campaigns. The notations to be used is
summarized in Table 1. In Section 3.1, we will first formalize our sampling strategy which is
essential in training a generic CVR prediction model. In Section 3.2, we detailed the model
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Labeled 
  Users

Unlabeled 
   Users

P(c|t1) P(c|t1,t2)
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P(c|t1,t2,...T)

Figure 1: Transfer Learning Visualization: nodes represent users, edges stand for relationships be-
tween users and advertiser campaigns (edges exist if users converted for the advertiser campaigns
before); dark green and red nodes represent labeled converted and non-converted users; light green
and red represent previous interacted advertiser campaigns; gray nodes and edges stand for unla-
beled users; t1, t2, . . . , T are sequential time stamps. As time evolves, information is dynamically
transferred from the previous time stamps and model is updated accordingly.

Notation and Description

ai ith advertiser
pj jth publisher
uk kth user segment

zw,aipjuk The topic assignment of word w in users’ profile belonging to {ai, pj , uk}
πaipjuk Topic distribution of words belonging to {ai, pj , uk}

πai , πpj , πuk Topic distribution decompositions of advertiser, publisher and user dimensions
vw Vector representation for word w

xsi and xti Source and target user features respectively, including contextual information
of user online activity and user demographic information

ysi and yti Source and target user response respectively
βs and βt Source and target feature weights vectors respectively
qs and qt Source and target feature variances vectors respectively

Table 1: Notations used in Trans-RWM model

formulation and finalize this section with an efficient model updating algorithm in Section
3.3.

3.1. Sampling Strategy
Our goal is to train generic CVR prediction models to automatically serve hundreds of
campaigns running on Brightroll. Existing CVR prediction models are usually trained
based on attributed conversions, as well as the impressions from the same campaign shown
by the DSP. For example, in post-view scenario, impression events are treated as positive
training samples, if there are actions followed by and negative otherwise. However, in reality,
this sampling strategy is insufficient. Firstly, impressions from a specific campaign is ad
selection algorithm dependable and not representative of the non-converted users’ generic
behaviors. Secondly, considering only the winning impressions increase the selection bias in
the generated training dataset. This is because impressions are purchased through bidding
at public auctions. For one DSP, each bid typically contains only one ad, which has the
highest evaluation among all the possible ads could be served by this DSP. Thus, the winning
impressions and clicks are survivors from both external and internal competitions. Thirdly,
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for one DSP, the attributed conversions are only a small proportion of the total conversions.
To conclude, the fundamental shortage of the commonly used sampling strategy is the
partial audience representation. Here, we propose the following sampling strategy to mimic
the real time bidding environment of both external and internal competitiveness to select
samples that try to represent the whole population.

• CASE 1 Brightroll attributed conversions (positive samples): For these samples,
both global and local features are recorded when attributed impression or click hap-
pened. This CASE represents Brightroll attributed conversions.

• CASE 2 Global conversions but not attributed to Brightroll (positive samples): For
these samples, only global features can be recorded, and local features such as exact
impression time and contextual information when user converted are not available. For
each such sample, we randomly generate a time in the past click window (usually 3
days) or view window (usually 7 days) and use local features at that time for modeling.
This CASE represents global conversions.

• CASE 3 Brightroll generated campaign specific impressions or clicks but no conver-
sions (negative samples): Both global and local features are recorded when impression
or click happened. Down sampling rate is usually 1%. This CASE represents negative
samples that we reached before.

• CASE 4 No conversions and Brightroll did not generate campaign specific impres-
sions or clicks (negative samples): For each sample, we randomly generate a time in
the past view/click window and use global and local features at that time for model-
ing. Down sampling rate is usually 0.01%. This CASE represents negative samples
that we haven’t had a chance to reach.

Since conversions are rare, we choose a relatively large downsampling rates for CASE 3 and
4 (negative samples) according to our experience.

3.2. Model Formulation
Our proposed CVR prediction framework mainly consists of two parts: 1. A novel natural
language-based algorithm that extends from W2V and is specifically tailored for both global
and local features; and 2. A novel dynamic Bayesian transfer learning prediction framework
that includes global and local semantic features processed from part 1. We then propose a
probabilistic generative framework Trans-RWM to tightly integrate part 1 and 2.

3.2.1. Part 1: An Extension of W2V
W2V is a popular tool for word proximity processing. As defined in W2V (Mikolov et al.,
2013a), the objective of the skip-gram model is to maximize the average log probability:

L(v) =
1

T

∑
t=1

∑
−c≤l≤c,j 6=0

log p(wt+l|wt) =
1

T
log
∏
t=1

∏
−c≤l≤c,l 6=0

p(wt+j |wt), (6)

where c is the size of the training context, which can be a function of the center word wt.
In this paper, we consider the hierarchical softmax as introduced in Mikolov et al. (2013b).
More specifically, each word w can be reached by an appropriate path from the root of
the tree. Let n(w, l) be the l-th node on the path from the root to w and l(w) be the
length of this path. So n(w, 1)=root and n(w, l(w)) = w. In addition, for any inner node
n, let ch(n) be an arbitrary fixed child of n. Different from the original formulation, we
use the frequency that a fixed node n will be the child for w and the objective function is
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reformulated as (for simplicity, we discard the constant 1/T):

L(v) ∝ log
∏
w

l(w)−1∏
l=1

σ

(
#
{
n(w, l + 1) ∈ ch(n(w, l))

}
× v′n(w,l)vw

)

= log
∏
w

l(w)−1∏
l=1

σ
(
v′n(w,l)vw

)#{n(w,l+1)∈ch(n(w,l))}

where σ(vw) = 1/(1 + exp(−vw)) is the sigmoid function; vw and v′n are the “input” vector
representation for each word w and “output” vector representation for every inner node n of
the binary tree. We denote dwl the frequency that n(w, l + 1) ∈ ch(n(w, l)) and abbreviate
vn(w,l) as vwl. The above formulation can be simplified as following:

L(v) ∝ log
∏
w

l(w)−1∏
l=1

σ
(
v′wlvw

)dwl .

We can prove the following facts that are convenient for later model learning:
∂σ(vw)

∂vw
= σ(vw)(1− σ(vw)),

∂ log σ(vw)

∂vw
= 1− σ(vw),

∂L(vw)

∂v
=

l(w)−1∑
l=1

dwl
(
1− σ(v′wlvw)

)
vwl. (7)

For the contextual information that are collected in our scenario, there is a unique tuple
mapping {User, Publisher, Advertiser} (e.g., the specific user browsed a publisher web
page and purchased a product form the ads shown on the page) and the current set up of
W2V cannot easily include this important structure in the modeling. We also notice that
the resulting word vectors from W2V are very often not comparable if the delta vectors
are not in the same direction. With these limitations, we are considering the following
regularized multivariate mixture Lasso prior for vw that can help both embed the tuple
structure and also account for the sparsity of the individual word representation:

vw ∼
∑
i,j,k

πaipjukf(vaipjuk), (8)

where f(·) is the multivariate lasso distribution (West, 1992; Park and Casella, 2008):
f(vw) ∼ Normal-InverseGamma

(
0, σ21:q,

α
2 ,

α
2

)
and vw is a q dimensional vector. This is a

regularization prior that accounts for the sparsity of the individual word representation.
To include the tuple structure of {User, Publisher, Advertiser} we decompose πaipjuk as
following:

πaipjuk ∼ Beta
(
cπaiπpjπuk , c(1− πaiπpjπuk)

)
, (9)

where πai , πpj and πuk are the marginal probabilities of the aith Advertiser, pjth Publisher
ukth User segment respectively.

To conclude, in our formulation, the regularization enforces the priors of word vectors
using a rectangular lattice ({User, Publisher, Advertiser}) across the vector space. Thus
word vectors are more likely to be close to one of the lattice vertices after the training instead
of staying at any random location in the vector space. This helps remove the ambiguity for
measuring with small vector distances and makes the distances among the resulting word
vectors more comparable (the limitation of the original W2V). The tuple structure that

7



Yang Lu Qiu Han

is embedded in the modeling can help us achieve better performance through borrowing
information from related words according to their contexts.

3.2.2. Part 2: Bayesian Transfer Learning Model
As the positive labeled data are extremely sparse, we would like to design a framework
that can dynamically transfer the knowledge from source (or related campaigns) to the
target (or the current running campaign). Transfer learning is particularly useful when we
do not have sufficient amount of labeled training data in some tasks, which may be very
costly, laborious, or even infeasible to obtain. This deals exactly with the CVR prediction
challenges. However, the current transfer learning is not easy for incremental updating and
could not fit very well in our situation: as we do not have only one source and one target
but a series of them. A major advantage of Bayesian logistic regression is that it can be
naturally adapted to the online update setting. So to extend to the dynamic transfer learn-
ing, we accommodate the regularized Bayesian logistic regression in the transfer learning as
following. We first estimate {βs, qs} from the source dataset Ds = {Xs, Y s} through:

p(βs, qs|Ds) ∝
{ ns∏
i=1

p(ysi |xsi , βs, qs)
}
p(βs, qs), (10)

with

p(ysi = 1|xsi , βs) = Φ(βs′xsi ), (11)

and Φ(·) is the logistic link function Φ(z) = ez

1+ez . p(βs, qs|Ds) on the left hand side is the

required posterior distributions of βs and qs given the data set Ds,
{∏ns

i=1 p(y
s
i |βs, qs)

}
on

the right hand side is the likelihood of Ds and p(βs, qs) is the prior distribution. Equa-
tion (10) is equivalent to Equation (4), though the former will learn distributions of the
coefficients and the latter will only supply point estimations.

We then estimate the posterior of βt for the target dataset Dt = {Xt, Y t} using the
priors that we learnt from the source:

p(βt, qt|Dt, βs, qs) ∝
{ nt∏
i=1

p(yti |βt, qt)
}
p(βt, qt|βs, qs) (12)

Similarly, Equation (12) is equivalent to Equation (5) but supply distribution estimations.
Notice that we work in a dynamic environment, and as time proceeds, target data can
become source data and the way that we integrate transfer learning with penalized Bayesian
logistic regression gives us more flexibility.

Different penalties have been considered: Bayesian Lasso (Tibshirani, 1994; Park and
Casella, 2008) (a.k.a, L1) and Bayesian Tikhonov regularization or Ridge regression (Mar-
quardt and Snee, 1975) (a.k.a, L2). However, we could not get satisfactory results with
L1 penalty in reality and we believe that for dynamic updates the smoothness of L2 will
be more beneficial for our problem. The L2 penalty corresponds to the Bayesian logistic
regression with the normal distribution as the prior. The posterior distribution of βt and
qt are thus proportional to

nt∏
i=1

1

1 + exp
{
−ytiβt

′xti
} d∏
j=1

1√
2π/qtj

exp

{
−
qtj(β

t
j − βsj )2

2

}
(13)

where the prior βtj ∼ N (βsj , 1/q
s
j ) with βsj and 1/qsj being prior means and variances learnt

from the source data Ds.
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3.2.3. Dual Part Bridge: Model Generative Process
We connect Part 1 and Part 2 through the following probabilistic generative process. The
graphical representation of Trans-RWM is also presented in Figure 2, and the detail is
summarized as following:

1. For each word w that is assigned to {ai, pj , uk}th tuple:

(a) Draw the topic assignment of each dimension zw,aipjuk through

p(zw,aipjuk) ∼ Multinomial
(
πaipjukf(vaipjuk)

)
. (14)

(b) Draw the topic probability through

πaipjuk ∼ Beta
(
cπaiπpjπuk , c(1− πaiπpjπuk)

)
. (15)

(c) Draw the baseline distribution of the q dimensional vector representation from

f(vaipjuk
) ∼ Normal-InverseGamma

(
0, σ2

1:q,
α

2
,
α

2

)
. (16)

2. For each user i at target time t, draw a response variable

p(yti = 1|xti, βt) = Φ(βt
′
xti), (17)

where xti = (vti
′
,xuti

′
)′ and vti is user search and browsing related word vectors from

Step 1, xuti is user demographical information. Φ(·) is the logit link function.

3. Update the target coefficients distribution from

p(βt, qt|Dt) ∝
{ nt∏
i=1

p(yti |βt, qt)
}
p
(
βt, qt|βs, qs

)
. (18)

Given model parameters Θ = {{σ2}1:q, α, {vaipjuk}, βt, qt, βs, qs}, the joint probability of
the observed and hidden variable is

P
(
{zw,aipjuk

}I,J,Kaipjuk
, {xti, yti}|Θ

)
=

∏
w∈{ai,pj ,uk}

p(πaipjuk
|πai

, πpj
, πuk

)p(zw,aiujpk
|πaipjuk

, vaipjuk
)p(vaipjuk

|σ2
1:q, α)

×
∏
i

p(yti |xt
i, β

t)p(βt, qt|βs, qs). (19)

3.3. Model Learning: Stochastic Gradient Monte Carlo
In Brightroll, we have to deal with billions of bid requests each day, so algorithm effi-

ciency is critical. Although the Markov Chain Monte Carlo (MCMC) algorithm is straight-
forward for Trans-RWM, efficiency problems will arise in our situation to scale to such
high dimensions. We adapt the Stochastic Gradient Monte Carlo (SGMC, Welling and Teh
(2011)) for Trans-RWM and derive some fundamental steps for the updating as follows.
The complete steps are listed in Algorithm 1. First, with Facts (7) we can show that the
gradient for the baseline distribution of {ai, pj , uk}th word vector cluster is:

g(v∗ijk) =
∑

w∈{ai,pj ,uk}

l(w)−1∑
j′=1

dwj′
(
σ(v′wj′vw)− 1

)
vwj′ +

p∑
t=1

σ2t v
∗
ijk,t (20)

Notice that vw = v∗ijk if zw,ijk = 1. And the Hessian matrix is:

H(v∗ijk) =
∑

w∈{ai,pj ,uk}

l(w)−1∑
j′=1

d2wj′v
′
wj′Rvwj′ + σ2I, (21)
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Algorithm 1 Trans-RWM Updating Algorithm

Input: xti: High dimensional local and global features;
yti : Labels for i = 1, 2, · · · , nt

1: for t = 1, . . . , T do
2: for Iterations Until Convergence do

Input: Words collected for each record which are naturally connected to {User, Pub-
lisher, Advertiser}.

3: for Iterations Until Convergence do
4: Update πijk through:

πijk ∼ Beta
(
cπaiπpjπuk +

∑
zw,ijk,

c(1− πaiπpjπuk) +N −
∑

zw,ijk
)

Output: zw,ijk = 1 if vw is assigned to {ai, pj , uk}th cluster and N the total number
of observations.

5: Update zw,ijk as following:

p(zw,ijk| · · · ) ∝ πijkf(V ∗ijk)

6: f(v∗ijk) can be formulated as following through scale mixture normal distribution:

v∗ijk,t ∼ N(0, σ2t ), for t = 1, . . . , p,

σ21:p ∼ IG(α/2, wα/2).

Input: The gradient in Eq(20) and Hessian matrix in Eq(21)
7: The baseline distribution of {ai, pj , uk}th cluster is:∏

w∈{ai,pj ,uk}

l(w)−1∏
c=1

σ
(
v′wcv

∗
ijk

)dwjf(v∗ijk)

Output: vw = v∗ijk if zw,ijk = 1
8: end for
9: Update the posterior distribution of vt with the results from Laplace approximation.

Update xti with vt.
Output: βt is updated through Eq (25) and qtj is updated through Eq (26).
10: end for
11: end for

where σ2 = {σ2t }
p
t=1 and R = diag(σ(vw)(1 − σ(vw)). We use Laplace approximation to

update v∗ijk as:

v∗ijk ∼ MN
(
g(v∗ijk), H(v∗ijk)

)
. (22)

The following steps are repeated until convergence:

{v∗ijk}i = {v∗ijk}i−1 −H(v∗ijk)
−1g(v∗ijk). (23)

Second, a major advantage for the Bayesian logistic regression is that it can be naturally
adapted to the online update setting with Laplace approximation. With the normal prior
distribution βtj ∼ N (βsj , 1/q

s
j ), the posterior log-likelihood can be rewritten as

nt∑
i=1

log
{

1 + exp
(
−ytiβt

′
xti

)}
+

d∑
j=1

qtj(β
t
j − βsj )2

2
(24)
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Figure 2: Generative Model Visualization: w, {yt, xt}, and {xs, ys} are observations, the left are
parameters that need to learn.

up to some constant. Laplace approximation yields a normal posterior distribution which
could be used as a prior distribution for the next source data. In this way we could se-
quentially update the model through the training of each time stamp. In particular, the
posterior distribution of βt is still normal distribution with mean

βt = arg min
βt

nt∑
i=1

log
(

1 + exp
(
−ytiβt

′
xti

))
+

d∑
j=1

qsj (β
t
j − βsj )2

2
(25)

and variance

qtj = qsj +
nt∑
i=1

xtij
2
pti(1− pti), pti = (1 + exp(−βt′xit))−1. (26)

We generalize the SGMC for Trans-RWM in Algorithm 1. To deploy on Brightroll, we
implement through Spark and its optimization package L-BFGS 1 by developing efficient
and encapsulated interface to integrate Spark and Trans-RWM to tackle large datasets.
Convergence of βtj is done through checking if ‖∇p(βtj |Dt

t)‖ = 0. And for practical reasons,
we will always employ a tolerance parameter when checking this condition.

4. Experimental Results
In this section we demonstrate empirically the improvements induced by Trans-RWM. The
analyses have been conducted experimentally on the whole platform with significant perfor-
mance lifts. Due to the reason of confidentiality, we could not report all campaign results
from Brightroll. But in order to have a better understanding of the approach performance
and the benefits it brings in, we report results from 50 different randomly chosen campaigns,
belonging to a wide variety of advertisers from different industries. Different campaigns have
very different CVRs and CPA goals and thus possess various inherent predictabilities. A
quick summary goes as follows: 1) Global features can help characterize the external com-
petitiveness, the relationship between campaigns, and thus are very helpful for the effective
information transfer; 2) Incorporate user online activity similarities (local features) into
their ad response prediction modeling indeed brought in improvements; 3) Using the Trans-
RWM which transfers distributions of the coefficients achieves better results compared to
with no transfer learning (Chapelle et al., 2015) or transferring point estimators alone (Da-
lessandro et al., 2014). In all of these experiments, we perform and report experimental
results conducted on data from each individual campaign. The source and target data sets
used are specific to each particular campaign.

1. https://spark.apache.org/docs/1.2.0/mllib-optimization.html
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Chapelle et al. (2015) (a.k.a, Max Ent) and Dalessandro et al. (2014) (a.k.a, Transfer
Learning) are the methods that are most similar to ours in design. We will not compare
with typical strategies such as combining samples from the target campaigns and other
related campaigns with different weights for model training, since it is a simplified case of
transfer learning and significant improvements over these baselines were already noticed
in Dalessandro et al. (2014). Compared to Max Ent and Transfer Learning, there are
several fundamental differences and extensions in our work. First, they do not use global
features as we defined to neither characterize the external competitiveness nor campaign
relationship. Second, neither Max Ent nor Transfer Learning considers modeling users’
online activities and proposes a probabilistic generative model by tightly integrating users’
purchase preferences from online activities to conversion prediction. Third, Dalessandro
et al. (2014)’s work transfers point estimations of coefficients while in our framework, we
automatically include their distributions. Chapelle et al. (2015)’s work does not include
information from source but only from target data. Fourth, neither work has proposed
a comprehensive sampling strategy that can mimic the real time bidding environment of
both external and internal competitiveness. In order to show the benefits induced by the
above four extensions and improvements, we will focus on the importance of users’ interests
transfer in Section 4.1 and the transfer sensitivity of source campaigns in Section 4.2.

4.1. Importance of Users’ Interests Transfer
In this subsection, we focus on studying the effects by including the semantic information
that we learnt from the user search and browsing history.

Our first set of experiments was conducted on data from a single time frame spanning
two time periods. We carefully chose 10 related campaigns and for each campaign created
three data sets: (1) a source data set Ds0 in period τ0, (2) a target data set Dt0 in period τ0
and (3) a target data set Dt1 in period τ1. In this scenario periods τ0 and τ1 are disjoint but
consecutive. The sources here are extracted from data other than the target campaign (e.g.,
the other 9 campaigns). With this set up, we can consider that the source data are reliable
and informative for target data. We perform the experiments on Max Ent, Transfer Learning
and Trans-RWM with and without semantic information. For the “semantic” variant, we
train the whole model of Equation (19) with Ds = {X s,Ys} and Dt = {X t,Yt}. For the
“non-semantic” variant, we will only consider Dsu = {X su ,Ys} and Dtu = {X tu,Yt}. To recap,
xti = (vti

′
,xuti

′
)′, where vti is the contextual information of user search and browsing, xuti is

user demographical information. xuti ∈ X tu, xti ∈ X t and xusi ∈ X su , xsi ∈ X s.
We first collect the users’ online history from Brightroll, tokenize and stemming the

query phrases into tokens. Then, the online history tokens for each user in the previous 30
days are combined together to form the profile document of the user, which are recorded
in our campaign logs that compose the training corpus for Trans-RWM. We use AUC to
compare the model performances (McMahan et al., 2013; He et al., 2014). AUC is defined
as the algorithms’ areas under the receiver operating characteristic (ROC) curve, which is
usually used to quantify the quality of the predicted ranking that results from the algorithm
according to the predicted probability.

For this set of experiments we use a 3x3 factorial design to examine the modeling.
The first variant is the “Semantic” information. For the “Semantic” variant, we use
the complete information Ds and Dt and use the partial information Dsu and Dtu for the
“Non Semantic” variant. The second experimental factor is whether or not we use transfer
learning. For the “Transfer Learning” variant, we first learn βs and qs as in Equation (4)
using the source data Ds. We then use Dt and βs, qs as in Equation (5) to optimize βt and
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qt. This is similar to Transfer Learning(Dalessandro et al., 2014). For the “No Transfer”
(control) variant, we only train Equation (5) using Dt and do not include βs and qs from
Ds. This set up is the same as Max Ent(Chapelle et al., 2015). The third design factor
represents the coefficients distribution transfer. For the “Distribution” variant, we train
Trans-RWM and for the “No Distribution” variant, we train Transfer Learning which only
transfers point estimators.

First, we look at the improvements induced by the Semantic information included in
the model Trans-RWM. Improvements are calibrated using the increments of AUC. On av-
erage, around 15.34% of users have search or browsing history. In general, the larger the
proportion of users that have search or browsing history, the more increments of AUC will
be induced by Trans-RWM. In Figure 3, the benefits from the Semantic information is also
obvious by comparing the results of Trans-RWM with and with no Semantic information
where Trans-RWM always achieves better AUC compared to Trans-RWM with no Seman-
tic information. In Figure 3, we also report the 4 model performances of the 10 campaigns.
Overall, Trans-RWM outperforms all the other competitors. Transfer Learning ranks next
to Trans-RWM and we believe that transferring the Distributions of the coefficients will
give us more benefits compared to transferring the point estimators alone where the latter
will not always be robust. Notice that we train Transfer Learning with complete informa-
tion (including semantic data). Trans-RWM with no semantic information usually ranks
the 3rd overall which means lacking the users’ online activity information diminishes even
more model performances (or the “Transfer” variant is more important compared to “Dis-
tribution” variant in practice). Max Ent ranks the worst and it is clear that both “Transfer
Learning” and “Semantic” variants are necessary in CVR prediction where the conversions
are extremely sparse.

4.2. Transfer Sensitivity of Source Campaigns
In this subsection, we focus on studying the effects of the transfer sensitivity of the source
campaigns. In Section 4.1, 10 campaigns are selected with care so the source data are
reliable and informative. In this section, we randomly choose 50 campaigns and would like
to see how different models perform when the source information is mixed together.

We extensively compare Trans-RWM with Max Ent and Transfer Learning from different
aspects that should be paid most attention for online performances. These measures include
AUC, CVR and business performance index (BPI). In online A/B testing, total spending
and eCPA (expected cost for each action) are the two most important criterion. In order
to quantify the performance that can reflect these two criterion in a consistent way, we
proposed the following BPI:

BPI =
rev.test + (cost.ctrl− cost.test)

rev.ctrl
. (27)

where rev.test and rev.ctrl are calculated through number of conversions multiplied by
CPA goal and cost.test and cost.ctrl are mainly inventory costs. BPI characterizes the
profit margin improvement.

We run the Max Ent, Transfer Learning and Trans-RWM dynamically for 20 days using
the complete data (including semantic information) and report AUC, CVR and BPI in
Figure 4. Data before day t are considered as source data Ds and data on day t are
considered as target data Dt. As we can see, at very beginning, the performances of Max
Ent, Transfer Learning and Trans-RWM are mixed together. However, as time goes on,
Trans-RWM achieves more and more improvements compared to Max Ent and Transfer
Learning. Overall, Trans-RWM ranks the best, Transfer Learning ranks the second and
Max Ent ranks the worst. Especially there is almost no change for the performances of Max
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Figure 3: Users Interests Transfer Comparison Reports: overall, Trans-RWM with complete infor-
mation ranks the first, Transfer Learning with complete information ranks the next, Trans-RWM
with no semantic information ranks the 3rd and Max Ent ranks the worst. “Transfer” variant is
more important compared to “Distribution” variant in practice.

Ent over the time, while both Transfer Learning and Trans-RWM can identify more useful
information as time proceeds. From these results, we can generalize several conclusions.
First when comparing to Transfer Learning, the positive effects of transfer learning alone
wears off overtime compared to Trans-RWM, although Transfer Learning is indeed effective
for improving campaign performances especially in early stages of the campaigns. Two
possible reasons here: point estimations are not robust and sufficient compared to carried
over distributions; dynamic transfer is critical in CVR prediction. Second, the benefits
of CVR and BPI are more pronounced after deploying Trans-RWM compared to Transfer
Learning. Third, as time proceeds, Trans-RWM can discriminate reliable source information
and incur more benefits even though the source information are mixed together at very
beginning.

5. Conclusions

In this paper we propose a novel two-stage modeling framework Trans-RWM for CVR
prediction. This work has several key contributions. First, the newly proposed natural
language modeling results in a good improvement in the quality of the learnt word and
phrase representations. By extending the W2V model through learning sparser word repre-
sentations while borrowing information across similar clusters, word vectors are more likely
to be close to one of the lattice vertices after the training instead of staying at any random
location in the vector space. This helps to remove the ambiguity for measuring with small
vector distances and makes the distances among the resulting word vectors more compa-
rable. Second, we propose a dynamic Bayesian transfer learning model accompanied with
an automatic new updating rule using Stochastic Gradient Monte Carlo to dynamically
transfer the knowledge from source to the future target. This is motivated by the goal
of transferring knowledge dynamically instead of training expensive models. Trans-RWM
learning provides an attractive framework for representing, learning, and reasoning about
shared information. Our focus here is on producing a scalable, accurate, and robust sys-
tem. We have achieved that through tightly integrating components of natural language
processing, dynamic transfer learning and scalable prediction to support learning from ex-
tremely sparse, high-dimensional data with adaptive regularization in a very efficient way.
To our knowledge, this is among the pioneering works that consider applying these impor-
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Figure 4: Dynamic Transfer Sensitivity of Source Campaigns: the positive effects of Transfer Learn-
ing wears off overtime compared to Trans-RWM; the benefits of CVR and BPI are more pronounced
after deploying Trans-RWM compared to Transfer Learning; Trans-RWM can discriminate reliable
source information and incur more benefits even though the source information are mixed together
at very beginning.
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tant components in the context of CVR prediction, which arguably the learning setting
where Bayesian methods may have the most impact.
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