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A Examples of TS distributions

Example 1: Uniform distribution ⌘ ⇠ UBd(0,
p
d). The uniform distribution satisfies the concentration property

with constants c = 1 and c0 = e
d by definition. Since the set {⌘|uT⌘ � 1} \Bd(0,

p
d) is an hyper-spherical cap for

any direction u of Rd, the the anti-concentration property is satisfied provided that the ratio between the volume
of an hyper-spherical cap of height

p
d � 1 and the volume of the ball of radius

p
d is constant (i.e., independent

from d). Using standard geometric results (see Prop. 9), one has that for any vector kuk = 1

P(uT⌘ � 1) =

1

2

I1� 1
d

⇣d+ 1

2

,
1

2

⌘

, (9)

where Ix(a, b) is the incomplete regularized beta function. In Prop. 10 we prove that

I1� 1
d
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⌘

� 1
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p
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,

and hence we obtain p =

1
16

p
6⇡

. .

Example 2: Gaussian case ⌘ ⇠ N (0, Id). The concentration property comes directly from the Chernoff bound for
standard Gaussian random variable together with union bound argument. For any ↵ > 0, we have

P(k⌘k  ↵
p
d) � P(81  i  d, |⌘i|  ↵) � 1 � dP(|⌘i| � ↵).

Standard concentration inequality for Gaussian random variable gives, 8↵ > 0,

P(|⌘i| � ↵)  2e�↵2/2.

Plugging everything together with ↵ =

q

2 log

2d
� gives the desired result with c = c0 = 2. Let ⌘i be the i-th

component of ⌘ for any 1  i  d. Then ⌘i ⇠ N (0, 1). Since ⌘ is rotationally invariant, for any direction u of Rd

and an appropriate choice of basis, we have P(uT⌘ � 1) � P(⌘1 � 1). From standard Gaussian properties (see
Thm 2 of Chang et al. [2011]) we have

P(⌘1 � 1) =

1

2

erfc
✓

1p
2

◆

� 1

4

p
e⇡

which ensures the anti-concentration property with p =

1
4
p
e⇡

.

B Properties of convex function

Proposition 4. Let f : Rd ! R be a convex function and C be a closed convex set of Rd
. Then, on C, f reaches

its maximum on the boundary of C.

Proof. Let’s denote as int(C) and bound(C) the interior and the boundary of the closed convex set C respectively.
Assume that 9x? 2 int(C) such that f(x?

) > f(x) for any x 2 bound(C) and f(x?
) � f(y) for any y 2 int(C).

Then define y = x?
+ ✏(x? � x) for some x 2 bound(C). By definition of the open set int(C), 9✏ > 0 such that

y 2 int(C). Moreover, x? 2 [y, x] e.g.

x?
= (1 � t)x+ ty, t =

1

1 + ✏
2]0, 1[

Using the convexity of f on has

f(x?
)  (1 � t)f(x) + tf(y) < (1 � t)f(x?

) + tf(y)

f(x?
) < f(y)

which is impossible by assumption.
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Proposition 5. Let f : Rd ! R be a convex function. Let Bd(0, 1) be the unit d�dimensional ball and Sd(0, 1)
the associated unit sphere.

Given a point x 2 Sd(0, 1), define as H(x) the hyperplan tangent to Bd(0, 1) at the point x. H(x) split Rd
into

two complementary subspace G(x) and G?
(x) where G(x) does not contain the unit ball by convention.

Then for any x? 2 Sd(0, 1) such that f(x?
) � f(x) for all x 2 Bd(0, 1), one has

8y 2 G(x?
), f(y) � f(x?

)

Proof. We first notice that from Proposition 4 x? is well defined since the maximum is reached on the boundary.
The associated subspace G(x?

) is then

G(x?
) := {y = x?

+ u, u 2 Rd | uTx? � 0}.

We want to show that f(y) � f(x?
) for any y 2 G(x?

). We introduce the increasing sequence of subspace

Gn =

⇢

y = x?
+ u, u 2 Rd | uTx? � kuk

2(n � 1)

�

, n � 2.

For any y = x?
+ u in Gn, we associate

x = x? � 1

2(n � 1)

u

kuk .

By definition of y (and hence u), we have

kxk2 = 1 +

1

2(n � 1)

2

� 1

2(n � 1)kuku
Tx?

= 1 +

1

2(n � 1)



1

2(n � 1)

� uT

kukx
?

�

 1,

which means that x 2 Bd(0, 1). Moreover let t = [2(n � 1)kuk + 1]

�1, t 2]0, 1[ one has x?
= (1 � t)x+ ty. Since

x 2 Bd(0, 1) then

f(x?
)  (1 � t)f(x) + tf(y)

 (1 � t)f(x?
) + tf(y)

)f(x?
)  f(y).

Since the statement of the proposition holds for any Gn, then we obtain the desired result for G by continuity of f .
Let y 2 G(x?

), y = x?
+ u. If uTx? > 0, then 9n � 2 such that y 2 Gn and the proposition is satisfied. Otherwise,

if uTx?
= 0, we introduce the sequences {un} and {yn} defined as:

un = u+

kuk
q

1 � 1
2(n�1)

2

x?

2(n � 1)

= u+

kunk
2(n � 1)

x?,

yn = x?
+ un.

By construction, yn 2 Gn and yn ! y as n ! 1. Since the f(yn) � f(x?
) for any n � 2 we obtain the desired

result taking the limit since f is continuous as a convex function on Rd.

Theorem 2 (A.D. Alexandrov). Let f : Rd ! R be a convex function, then it is twice differentiable almost

everywhere with respect to the Lebesgue’s measure.

Proof. This result is an extension of the Rademacher’s theorem for convex functions. A proof can be found in
Niculescu and Persson [2006], theorem 3.11.2.
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C Properties of support function (proof of Proposition 3 and Lemma 2)

We study the support function of a set C, which is a function fC : Rd ! R such that

fC(✓) = sup

x2C
xT✓ (10)

Those functions are at the core of convex geometry analysis.
Proposition 6. Let C ⇢ Rd

be a non-empty compact set and fC the associated support function. Then,

1. fC is real-valued and supx2C xT✓ is attained in C,

2. fC is convex,

3. fC is continuous on Rd
and twice differentiable almost everywhere with respect to the Lebesgue’s measure.

Proof. 1. This comes directly from the compactness of C: since C is bounded, the support function is real-valued
and since C is closed, the supremum is attained in C,

2. Let ✓1, ✓2 two vectors of Rd, and t 2 (0, 1). By definition of the supremum, since fC is real-valued:

fC(t✓1 + (1 � t)✓2) = sup

x2C

�

txT✓1 + (1 � t)xT✓2
�  t sup

x2C
xT✓1 + (1 � t) sup

x2C
xT✓2

3. The continuity is consequence of the convexity of fC on the open convex set Rd and the second order
differentiability comes from Alexandrov’s theorem 2.

Proposition 7. Let x(✓) 2 arg supx2C xT✓, denote as rfC(✓) and @fC(✓) the gradient (when it is uniquely

defined) and the sub-gradient of fC in ✓ 2 Rd
. Then,

1. for all ✓ 2 Rd
, x(✓) 2 @fC(✓),

2. their exists a null set N with respect to the Lebesgue’s measure such that x(✓) = rfC(✓) for all ✓ 2 Rd \ N ,

3. equivalentely, x(✓) = rfC(✓) where the equality holds in the sense of the distribution.

Proof. Thanks to proposition 6, we know that the supremum is attained in x(✓) 2 C. Moreover, Alexandrov’s
theorem guarantee that N is a null-set. Since the sub-gradient is reduced to a singleton where the function is
differentiable e.g. @fC(✓) = {rfC(✓)} for all ✓ 2 Rd \ N , one just need to show to x(✓) 2 @fC(✓) for all ✓ 2 Rd.
Since fC(✓) = maxx2C xT✓, their exist at least one x(✓) 2 C for which the maximum is attained i.e. x(✓)T✓ = fC(✓).
Moreover, for any ¯✓ 2 Rd, fC(¯✓) � x(✓)T¯✓ by definition. Therefore,

fC(¯✓) � x(✓)¯✓ � 0 := fC(✓) � x(✓)T✓

fC(¯✓) � fC(✓) + x(✓)T
�

¯✓ � ✓
�

, 8¯✓ 2 Rd

which is the definition of the sub-gradient.

D Regret Proofs

We collect here the main tools that we need to derive the proof. We first recall the Azuma’s concentration
inequality for super-martingale.
Proposition 8. If a super-martingale (Yt)t�0 corresponding to a filtration Ft satisfies |Yt � Yt�1| < ct for some

constant ct for all t = 1, . . . , T then for any ↵ > 0,

P(YT � Y0 � ↵)  2e
� ↵2

2
PT

t=1 c2t
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Figure 5: Illustration of the probability of selecting an optimistic e✓t.

Proof of Lemma 1. We first bound the two events separately.

Bounding bE. This bound is a straightforward application of Proposition 1 together with a union bound argument.
Let �0 = �/(4T ), then

81  t  T, P
⇣

kb✓t � ✓?kVt  �t(�
0
)

⌘

� 1 � �0

from union bound, P
 

T
\

t=1

n

kb✓t � ✓?kVt  �t(�
0
)

o

!

� 1 �
T
X

t=1

P
⇣

kb✓t � ✓?kVt � �t(�
0
)

⌘

) P
 

T
\

t=1

n

kb✓t � ✓?kVt  �t(�
0
)

o

!

� 1 �
T
X

t=1

�0

) P
�

bE
� � 1 � T �0 = 1 � �

4

.

Bounding eE. This bound comes directly from the concentration property of the TS sampling distribution.
From the expression of e✓t = b✓t + �t(�

0
)V

�1/2
t ⌘t where ⌘t is drawn i.i.d. from DTS, we have

81  t  T, P
 

ke✓t � b✓tkVt  �t(�
0
)

r

cd log
c0d

�0

!

= P
 

k⌘tk 
r

cd log
c0d

�0

!

.

Then from Definition 1, we have

P
 

k⌘tk 
r

cd log
c0d

�0

!

� 1 � �0.

As before, a union bound over the two bounds ensures that

P( eE) � 1 � T �0 = 1 � �

4

.

Finally, a union bound argument between the two terms leads to

P( bE \ eE) � 1 � �

2

.
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Proof of Lemma 3. We need to study the probability that a e✓ drawn at time t from the TS sampling distribution
is optimistic, i.e., J(e✓) � J(✓?), under event bEt. More formally let

pt = P
�

J(e✓) � J(✓?)|Ft, bEt

�

.

Using the definition of bEt we have that ✓? 2 ERLS
t (i.e., the true parameter vector belongs to the RLS ellipsoid)

and then we can replace J(✓?) by the supremum over the ellipsoid as

pt � P
⇣

J(e✓) � sup

✓2ERLS
t

J(✓)
�

�

�

Ft, bEt

⌘

.

By recalling the definition of the TS sampling process, we can write e✓ =

b✓t + �t(�
0
)V

�1/2
t ⌘, where ⌘ ⇠ DTS and

for notational convenience, we define the function ft(⌘) = J(b✓t + �t(�
0
)V

�1/2
t ⌘). Let ✓t = arg sup✓2ERLS

t
J(✓) and

⌘t be the corresponding ⌘ (i.e., ⌘t is such that ✓t = b✓t + �t(�
0
)V

�1/2
t ⌘t). Since the supremum is taken within

ERLS
t , ⌘t belongs to the unit ball (i.e., ⌘t 2 Bd(0, 1)). As a result, we can rewrite the previous expression as

pt � P
⇣

ft(⌘) � ft(⌘t)
�

�

�

Ft, bEt

⌘

.

Since the function ft inherits all the properties of J , notably its convexity in ⌘, we know that the supremum on a
convex closed set is reached at least at one point ⌘̄t and that it belongs to the boundary (see Prop. 4), which in
our case corresponds to k⌘tk = 1. Moreover, let Ht(⌘t) be the hyperplane tangent to ⌘t. Ht(⌘̄t) splits Rd in two
complementary subspaces Gt and G?

t where Gt does not contain the unit ball by convention. Again, the convexity
of ft ensures that ft(⌘) � ft(⌘̄t) for all ⌘ 2 Gt as proved in Prop. 5. As illustrated in Fig. 5 the probability of
being optimistic is now reduced to the probability that ⌘ drawn from DTS falls into Gt, which corresponds to

pt � P
⇣

⌘ 2 Gt

�

�

�

Ft, bEt

⌘

.

Let ut be the vector defining the hyperspace Ht(⌘t), notice that the subspace ut is entirely defined by the filtration
Ft and the event bEt and it is thus independent from ⌘t. As a result, we obtain

pt � P
⇣

uT
t ⌘ � 1

�

�

�

Ft, bEt

⌘

� p,

where the last step immediately follows from property 1 of Def. 1 of the TS sampling distribution.

Finally, we show that this property is not affected, up to a second order term, by the high-probability concentration
event. It relies on the fact that the chosen confidence level �0 = �/4T is small compared to the anti-concentration
probability p of Def. 1. For sake of simplicity, we assume that T � 1/2p which implies that �0  p/2.
For any events A and B, one has

P(A \ B) = 1 � P(Ac [ Bc
) � P(A) � P(Bc

)

Applying the previous inequality to A := {J(e✓) � J(✓?)} and B := {e✓ 2 ETS
t } where ETS

t = {✓ 2 Rd | k✓�b✓tkVt 
�t(�

0
)} leads to

P(e✓t 2 ⇥

opt \ ETS
t |Ft, ˆEt) � p � �0 � p/2

Proof of Theorem 1. We first bound the two regret terms RTS
(T ) and RRLS

(T ).

Bound on RTS
(T ). We collect the bounds on each term RTS

t and obtain

RTS
(T ) 

T
X

t=1

RTS
t 1{Et}  4�T (�

0
)

p

T
X

t=1

E
⇥kx?

(

e✓)kV �1
t

|Ft

⇤

. (11)
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Since this term contains an expectation, we cannot directly apply Proposition 2 and we first need to rewrite to
the total regret RTS

(T ) as

RTS
(T )  4�T (�

0
)

p

✓ T
X

t=1

kxtkV �1
t

+

T
X

t=1

⇣

E
⇥kx?

(

e✓)kV �1
t

|Ft

⇤� kxtkV �1
t

⌘

| {z }

RTS
2

◆

. (12)

From Prop. 2, the first term is bounded as,

T
X

t=1

kxtkV �1
t


p
T

✓ T
X

t=1

kxtk2V �1
t

◆1/2


r

2Td log
�

1 +

T

�

�

.

We now proceed applying Azuma inequality 8 to the second term which is a martingale by construction. Under
assumption 1, kxtk  1 for all t � 1, so since V �1

t  1
�I one gets,

E
⇥kx?

(

e✓)kV �1
t

|Ft

⇤� kxtkV �1
t

 2p
�
, a.s.

This provides an upper-bound on each element of RTS
2 which holds with probability at least 1 � �

2 as

RTS
2 

r

8T

�
log

4

�
.

Bound on RRLS
(T ). The bound on RRLS is derived as previous results in [Abbasi-Yadkori et al., 2011b,

Agrawal and Goyal, 2012b]. We decompose the term in a sampling prediction error and a RLS prediction error

as follow

RRLS
(T ) 

T
X

t=1

|xT
t (
e✓t � b✓t)|1{Et} +

T
X

t=1

|xT
t (
b✓t � ✓?)|1{Et}

By definition of the concentration event Et,

|xT
t (
e✓t � b✓t)|1{Et}  kxtkV �1

t
�t(�

0
), |xT

t (
b✓t � ✓?)|1{Et}  kxtkV �1

t
�t(�

0
),

so from proposition 2,

RRLS
(T )  ��T (�

0
) + �T (�

0
)

�

r

2Td log
�

1 +

T

�

�

. (13)

Final bound. We finally plug everything together since from lemma 1 the concentration event holds with
probability at least 1 � �

2 . Using the bound on RTS
(T ) and a union bound argument one obtains the desired

result which holds with probability at least 1 � �.

E Hyperspherical cap and beta function

Proposition 9. Let Vd(R) be the volume of the d�dimensional ball of radius R and let V cap
d (h) the volume of

the hyperspherical cap of heigh h = R � r > 0. Then,

V cap
d (h) =

1

2

Vd(R)I1�( r
R )2

✓

d+ 1

2

,
1

2

◆

where Ix(a, b) is the incomplete regularized beta function.

Proof. The proof can be found in Li [2011].

Proposition 10. Let Ix(a, b) is the incomplete regularized beta function,

8d � 2, I1� 1
d

✓

d+ 1

2

,
1

2

◆

� 1

8

p
6⇡
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Proof. The incomplete regularized beta function can be expressed in terms of the beta function B(a, b) and the
incomplete beta function Bx(a, b) where

Bx(a, b) =

Z x

0
ta�1

(1 � t)b�1dt

B(a, b) = B1(a, b)

Ix(a, b) =
Bx(a, b)

B(a, b)

Hence we seek for a lower bound on B1� 1
d

�

d+1
2 +

1
2

�

and an upper bound for B
�

d+1
2 +

1
2

�

.

1. Let first find an lower bound for the incomplete beta function. Since t ! t
d�1
2
(1 � t)�1/2 is positive and

increasing on [0, 1], for any d � 2,

B1� 1
d

✓

d+ 1

2

,
1

2

◆

�
Z 1� d

2

1� 3
2d

t
d�1
2
(1 � t)�1/2dt

� 1

2d

✓

3

2d

◆�1/2

(1 � 3

2d
)

d�1
2

� 1p
6d

(1 � 3

2d
)

d�1
2

� 1p
6d

(1 � 3

2d
)

d
2

From the increasing property of x ! (1 � ↵
x )

x for any ↵ < 1 the sequence
n

(1 � 3
2d )

d
2

o

d�2
is increasing and

B1� 1
d

✓

d+ 1

2

,
1

2

◆

� 1p
6d

(1 � 3

2 ⇥ 2

)

2
2
=

1

4

p
6d

2. Now we seek for an upper bound for B
�

d+1
2 +

1
2

�

. Since B(a, b) = �(a)�(b)
�(a+b) one has:

B

✓

d+ 1

2

+

1

2

◆

=

�

�

1
2

�

�

�

d+1
2

�

�

�

d
2 + 1

�

=

p
⇡

�

�

d+1
2

�

�

�

d
2 + 1

�

From Chen and Qi [2005] we have the following inequalities for the gamma function 8n � 1:

�(n+ 1/2)

�(n+ 1)

 (n+ 1/4)�1/2

�(n+ 1/2)

�(n+ 1)

� (n+ 4/⇡ � 1)

�1/2

Together with �(x+ 1) = x�(x) and treating separately cases where d is even or not, one gets 8d � 2

�

�

d+1
2

�

�

�

d
2 + 1

�  2p
d

3. Using the obtained upper and lower bound we get:

I1� 1
d

✓

d+ 1

2

,
1

2

◆

�
p
d

2

p
⇡ ⇥ 4

p
6d

� 1

8

p
6⇡
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F Generalized Linear Bandit

We present here how to apply our derivation to the generalized linear bandit (GLM) problem of Filippi et al.
[2010]. The regret bound is obtained by basically showing that the GLM problem can be reduced to studying the
linear case.

The setting. Let X ⇢ Rd be an arbitrary (finite or infinite) set of arms. Every time an arm x 2 X is pulled, a
reward is generated as r(x) = µ(xT✓?) + ⇠, where µ is the so-called link function, ✓? 2 Rd is a fixed but unknown
parameter vector and ⇠ is a random zero-mean noise. The value of an arm x 2 X is evaluated according to its
expected reward µ(xT✓?) and for any parameter ✓ 2 Rd we denote the optimal arm and its optimal value as

x?
(✓) = argmax

x2X
µ(xT✓), JGLM

(✓) = sup

x2X
µ(xT✓). (14)

Then x?
= x?

(✓?) is the optimal arm associated with the true parameter ✓? and JGLM
(✓?) its optimal value. At

each step t, a learner chooses an arm xt 2 X using all the information observed so far (i.e., sequence of arms and
rewards) but without knowing ✓? and x?. At step t, the learner suffers an instantaneous regret corresponding
to the difference between the expected rewards of the optimal arm x? and the arm xt played at time t. The
objective of the learner is to minimize the cumulative regret up to a finite step T ,

RGLM

(T ) =

T
X

t=1

�

µ(x?,T✓?) � µ(xT
t ✓

?
)

�

. (15)

Assumptions. The assumptions associated with this more general problem are the same as in the linear bandit
problem plus one regarding the link function. Formally, we require assumption 1, 2 and 3 and add:
Assumption 4 (link function). The link function µ : R ! R is continuously differentiable, Lipschitz with constant

kµ and such that cµ = inf✓2Rd,x2X (xT✓) > 0.

Technical tools. Let (x1, . . . , xt) 2 X t be a sequence of arms and (r2, . . . , rt+1) be the corresponding observed
(random) rewards, then the unknown parameter ✓? can be estimated by GLM estimator. Following Filippi et al.
[2010] one gets, for any regularization parameter � 2 R+,

b✓GLM

t = arg min

✓2Rd
k

t�1
X

s=1

�

rs+1 � µ(xT
s ✓)
�

xsk2V �1
t

, (16)

where Vt is the same design matrix as in the linear case. Similar to Prop. 1, we have a concentration inequality
for the GLM estimate.
Proposition 11 (Prop. 1 in appendix.A in Filippi et al. [2010]). For any � 2 (0, 1), under assumptions 1, 2, 3

and 4, for any Fx
t -adapted sequence (x1, . . . , xt, . . .), the prediction returned by the GLM estimator

b✓GLM

t (Eq. 16)

is such that for any fixed t � 1,

kb✓GLM

t � ✓?kVt  �t(�)

cµ
, (17)

and

8x 2 Rd, kµ(xT
b✓GLM

t ) � µ(xT✓?)k  kµ�t(�)

cµ
kxkV �1

t
,

kxT
b✓GLM

t � xT✓?k  �t(�)

cµ
kxkV �1

t
,

(18)

with probability 1 � � (w.r.t. the noise sequence {⇠t}t and any other source of randomization in the definition of

the sequence of arms), where �t(�) is defined as in Eq. 5.

The Asm. 4 on the link function together with the properties of the GLM estimator implies the following:

1. since the first derivative is strictly positive, µ is strictly increasing and x?
(✓) = argmaxx2X xT✓ so we retrieve

the optimal arm of the linear case (and the support function),
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2. the concentration inequality of the GLM estimate involves the same ellipsoid as for the RLS (multiplied by a
factor 1

cµ
).

These two facts suggest to use then exactly the same TS algorithm as for the linear case (with a � multiplied by
a factor 1

cµ
).

Sketch of the proof. From the previous comments, making use of the property of µ, one just need to reduce
the GLM case to the standard linear case.

RGLM

(T ) =

T
X

t=1

�

µ(x?✓?) � µ(xT
t ✓

?
)

�

,

=

T
X

t=1

�

µ(x?✓?) � µ(xT
t
˜✓t)
�

+

T
X

t=1

�

µ(xT
t
˜✓t) � µ(xT

t ✓
?
)

�


T
X

t=1

�

µ(x?✓?) � µ(xT
t
˜✓t)
�

+

T
X

t=1

kµkxkV �1
t

k˜✓t � ✓?kVt .

The second term is bounded exactly as RRLS
(T ). To bound the first one, we make use of the fact that

µ(x?✓?) � µ(xT
t
˜✓t)  kµ

�

J(✓?) � J(˜✓t)
�

, ifJ(✓?) � J(˜✓t) � 0,

µ(x?✓?) � µ(xT
t
˜✓t)  cµ

�

J(✓?) � J(˜✓t)
�

, otherwise.

Following the proof of the linear case, with high probability, for all t � 1,

J(✓?) � J(˜✓t)  2�t(�
0
)

cµp
E
�kxtkV �1

t
|Ft

�

.

Since the r.h.s is strictly positive one can bound the first part of the regret, independently of the sign by,

T
X

t=1

�

µ(x?✓?) � µ(xT
t
˜✓t)
�  2kµ�T (�

0
)

cµp

T
X

t=1

E
�kxtkV �1

t
|Ft

�

.

Finally, the same proof as in the linear case leads to the following bound for the Generalized Linear Bandit regret.
Lemma 4. Under assumptions 1,2,3 and 4, the cumulative regret of TS over T steps is bounded as

RGLM

(T )  kµ
cµ

�

�T (�
0
) + �T (�

0
)(1 + 2/p)

�

r

2Td log
�

1 +

T

�

�

+

2kµ�T (�
0
)

pcµ

r

8T

�
log

4

�
(19)

with probability 1 � � where �0 = �
4T .

G Regularized Linear Optimization

We consider here the Regularized Linear Optimization (RLO) problem as an extension of the Linear Bandit
problem. Given a set of arms X ⇢ Rd and an unknown parameter ✓? 2 Rd, a learner aims at each time step
t = 1, . . . , T to select action xt 2 X which maximizes its associated reward xT

t ✓
?
+ µc(xt) where µ is a known

constant and c an arbitrary (yet known) real-valued function. Whenever arm x is pulled, the learner receives
a noisy observation y = xT✓? + ⇠. As for LB, we introduce the function f(x; ✓) = xT✓ + µc(x), and denote as
x?

(✓) = argmaxx2X f(x; ✓) and J(✓) = maxx2X f(x; ✓) the optimal action and optimal reward associated with ✓.
The regret is therefore defined as RRLO

(T ) =
PT

t=1 f(x
?
(✓?); ✓?) � f(xt; ✓

?
).

Since this problem is just the regularized extension of the Linear Bandit, the TS algorithm is similar to Alg. 1
where rt is replaced yt and xt = argmaxx2X f(x, e✓t). Under the same assumptions, the regret shares the same
bound and our line of proof holds. First, we decompose the regret

R(T ) =

T
X

t=1

⇥

(f(x?
(✓?); ✓?) � f(xt;

e✓t)) + (f(xt;
e✓t) � f(xt; ✓

?
))

⇤

=

T
X

t=1

⇥

J(✓?) � J(e✓t)
⇤

| {z }

=RTS(T )

+

T
X

t=1

⇥

xT
t
e✓t � xT

t ✓
?
⇤

| {z }

=RRLS(T )

.
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Since Prop. 1 holds thanks to the linear observations yt, RRLS
(T ) is bounded as in the LB. Finally, to bound

RTS
(T ), one just need to ensure that Prop. 3, Lem. 2 and Lem. 3 hold.

The convexity of the function f with respect to ✓ implies the convexity of J : 8x 2 X , 8✓, ✓0 2 Rd, 8↵ 2 (0, 1),

J(↵✓ + (1 � ↵)✓0) = max

x2X
f(x;↵✓ + (1 � ↵)✓0)  max

x2X

�

↵f(x; ✓) + (1 � ↵)f(x; ✓0)
�  ↵J(✓) + (1 � ↵)J(✓0).

Then, J is real-valued and convex which implies its continuous differentiability thanks to Alexandrov’s theorem.
As a consequence, the first step of the proof holds.
The equality between the gradient rJ(✓) and the optimal arm x?

(✓) can be derived as in Prop. 7: for any
✓, ¯✓ 2 Rd, by definition, J(✓) = f(x?

(✓); ✓) and J(¯✓) � f(x?
(✓); ¯✓). Then,

J(¯✓) � f(x?
(✓), ¯✓) � 0 := J(✓) � f(x?

(✓), ✓),

J(¯✓) � J(✓) + f(x?
(✓), ¯✓) � f(x?

(✓), ✓) = J(✓) + x?
(✓)T

�

¯✓ � ✓
�

, 8¯✓ 2 Rd,

which is the definition of the sub-gradient. Finally, the almost everywhere differentiability of J ensures the
sub-gradient to be a singleton and hence equals the gradient. Therefore, Lem. 2 holds and so is step 2.
Finally, since the optimism just relies on the convexity of J and on the over-sampling, it is satisfied in the RLO
and step 3 holds. As a result, we obtain the same regret bound as in the LB.


