
Thompson Sampling for Linear-Quadratic Control Problems

A Control theory

A.1 Proof of Prop. 2

1. When ✓> = (A,B) is not stabilizable, there exists no linear control K such that the controlled process
xt+1 = Axt +BKxt + ✏t+1 is stationary. Thus, the positiveness of Q and R implies J(✓) = Tr(P (✓)) = +1.
As a consequence, ✓> /2 S.

2. The mapping ✓ ! Tr(P (✓)) is continuous (see Lem. 1). Thus, S is compact as the intersection between a
closed and a compact set.

3. The continuity of the mapping ✓ ! K(✓) together with the compactness of S justifies the finite positive
constants ⇢ and C. Moreover, since every ✓ 2 S are stabilizable pairs, ⇢ < 1.

A.2 Proof of Lem. 1

Let ✓T = (A,B) where A and B are matrices of size n⇥ n and n⇥ d respectively. Let R : Rn+d,n ⇥Rn,n ! Rn,n

be the Riccati operator defined by:

R(✓, P ) := Q � P +ATPA � ATPB(R+BTPB)

�1BTPA, (12)

where Q,R are positive definite matrices. Then, the solution P (✓) of the Riccati equation of Thm. 1 is the
solution of R(✓, P ) = 0. While Prop. 2 guarantees that there exists a unique admissible solution as soon as ✓ 2 S,
addressing the regularity of the function ✓ ! P (✓) requires the use of the implicit function theorem.
Theorem 2 (Implicit function theorem). Let E and F be two banach spaces, let ⌦ ⇢ E⇥F be an open subset. Let
f : ⌦ ! F be a C1-map and let (x0, y0) be a point of ⌦ such that f(x0, y0) = 0. We denote as dyf(x0, y0) : F ! F
the differential of the function f with respect to the second argument at point (x0, y0). Assume that this linear
transformation is bounded and invertible. Then, there exists

1. two open subsets U and V such that (x0, y0) 2 U ⇥ V ⇢ ⌦,

2. a function g : U ! V such that g(x) = y for all (x, y) 2 U ⇥ V .

Moreover, g is C1 and dg(x) = �dyf(x, g(x))�1dxf(x, g(x)) for all (x, y) 2 U ⇥ V .

Since R is positive definite, the Riccati operator is clearly a C1-map. Moreover, thanks to Thm. 1, to any ✓ 2 S,
there exists an admissible P such that R(✓, P ) = 0. Thanks to Thm. 2, a sufficient condition for ✓ ! P (✓) to be
C1 on S is that the linear map dPR(✓, P (✓)) : Rn⇥n ! Rn⇥n is a bounded invertible transformation i.e.

• Bounded. There exists M such that, for any P 2 Rn⇥n, kdPR(✓, P (✓))(P )k  MkPk.

• Invertible. There exists a bounded linear operator S : Rn⇥n ! Rn⇥n such that SP = In,n and PS = In,n.

Lemma 5. Let ✓T = (A,B) and R be the Riccati operator defined in equation (12). Then, the differential of R
w.r.t P taken in (✓, P (✓)) denoted as dPR(✓, P (✓)) is defined by:

dPR(✓, P (✓))(�P ) := AT
c �PAc � �P, for any �P 2 Rn⇥n,

where Ac = A � B(R+BTPB)

�1BTP (✓)A.

Proof. The proof is straightforward using the standard composition/multiplication/inverse operations for the
differential operator together with an appropriate rearranging.

Clearly, dPR(✓, P (✓)) is a bounded linear map. Moreover, thanks to the Lyapunov theory, for any stable matrix
kAck2 < 1 and for any matrix Q, the Lyapunov equation AT

c XAc � X = Q admits a unique solution. From
Thm. 1, the optimal matrix P (✓) is such that the corresponding Ac is stable. This implies that dPR(✓, P (✓)) is
an invertible operator, and ✓ ! P (✓) is C1 on S.
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Therefore, the differential of ✓ ! P (✓) can be deduced from the implicit function theorem. After tedious yet
standard operations, one gets that for any ✓ 2 S and direction �✓ 2 R(n+d)⇥n:

dJ(✓)(�✓) = Tr(dP (✓)(�✓)) = Tr(rJ(✓)T�✓),

where rJ(✓) 2 R(n+d)⇥n is the jacobian matrix of J in ✓. For any �✓ 2 R(n+d)⇥n, one has:

rJ(✓)T�✓ = Ac(✓)
TrJ(✓)T�✓Ac(✓) + C(✓, �✓) + C(✓, �✓)T, where C(✓, �✓) = Ac(✓)

TP (✓)�✓TH(✓). (13)

Proposition 5. For any ✓ 2 S and any positive definite matrix V , one has the following inequality for the
weighted norm of the gradient of J :

krJ(✓)kV  kAc(✓)k22krJ(✓)kV + 2kP (✓)kkAc(✓)k2kH(✓)kV .

Proof. For any ✓ 2 S and any positive definite matrix V 2 R(n+d)⇥(n+d) . Applying (13) to �✓ = V rJ(✓) leads
to:

rJ(✓)TV rJ(✓) = Ac(✓)
TrJ(✓)TV rJ(✓)Ac(✓) + C(✓, V rJ(✓)) + C(✓, V rJ(✓))T,

where C(✓, V rJ(✓))T =

�
V 1/2H(✓)

�T
V 1/2rJ(✓)P (✓)Ac(✓). Let hA,Bi = TrATB be the Frobenius inner product,

then taking the trace of the above equality, one gets:

krJ(✓)k2V = krJ(✓)Ac(✓)k2V + 2

⌦
V 1/2H(✓), V 1/2rJ(✓)P (✓)Ac(✓)

↵
.

Using the Cauchy-Schwarz inequality and that the Frobenius norm is sub-multiplicative together with Tr(M1M2) 
kM1k2Tr(M2) for any M1,M2 symmetric positive definite matrices, one obtains:

krJ(✓)k2V  kAc(✓)k22krJ(✓)k2V + 2kH(✓)kV kP (✓)kkAc(✓)k2krJ(✓)kV .

Finally, dividing by krJ(✓)kV provides the desired result.

B Material

Theorem 3 (Azuma’s inequality). Let {Ms}s�0 be a super-martingale such that |Ms �Ms�1|  cs almost surely.
Then, for all t > 0 and all ✏ > 0,

P
�
|Mt � M0| � ✏

�
 2 exp

⇣ �✏2

2

Pt
s=1 c

2
s

⌘
.

Lemma 6 (Lemma. 8 from Abbasi-Yadkori and Szepesvári [1]). Let Kdet be the number of changes in the policy
of Algorithm 1 due to the determinant trigger det(Vt) � 2 det(V0). Then, on E, Kdet is at most

Kden  (n+ d) log2(1 + TX2
(1 + C2

)/�).

Corollary 2. Let K be the number of policy changes of Algorithm 1, Kdet be defined as in Lem. 6 and
Klen

= K � Kdet be the number of policy changes due to the length trigger t � t0 + ⌧ . Then, on E, K is at most

K  Kdet
+Klen  (n+ d) log2(1 + TX2

(1 + C2
)/�) + T/⌧.

Moreover, assuming that T � �
X2(1+C2) , one gets K  (n+ d) log2(1 + TX2

(1 + C2
)/�)T/⌧ .

Lemma 7 (Chernoff bound for Gaussian r.v.). Let X ⇠ N (0, 1). For any 0 < � < 1, for any t � 0, then,

P(|X| � t)  2 exp

�
� t2

2

�
.

Proof of Lem.2. Let �0 = �/8T .
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1. From Prop. 3, P
�
kb✓t � ✓⇤kV

t

 �t(�0)
�

� 1 � �0. Hence,

P
� bE

�
= P

⇣ T\

t=0

�
kb✓t � ✓⇤kV

t

 �t(�
0
)

�⌘

= 1 � P
⇣ T[

t=0

�
kb✓t � ✓⇤kV

t

� �t(�
0
)

�⌘

� 1 �
TX

t=0

P
�
kb✓t � ✓⇤kV

t

� �t(�
0
)

�

� 1 � T �0 � 1 � �/8

2. From Lem. 7, let ⌘ ⇠ DTS then, for any ✏ > 0, making use of the fact that k⌘k  n
p
n+ dmaxin+d,jn |⌘i,j |,

P
�
k⌘k  ✏

�
� P

�
n
p
n+ dmax

i,j
|⌘i,j |  ✏

�
� 1�

Y

i,j

P
�
|⌘i,j | � ✏

n
p
n+ d

�
� 1�n(n+d)PX⇠N (0,1)

�
|X| � ✏

n
p
n+ d

�
.

Hence,

P
� eE

�
= P

⇣ T\

t=0

�
ke✓t � b✓tkV

t

 �t(�
0
)

�⌘
= 1 � P

⇣ T[

t=0

�
ke✓t � b✓tkV

t

� �t(�
0
)

�⌘

� 1 �
TX

t=0

P
�
ke✓t � b✓tkV

t

� �t(�
0
)

�
� 1 �

TX

t=0

P
�
k⌘k � �t(�

0
)/�t(�

0
)

�

� 1 �
TX

t=0

P
⇣
k⌘k � n

q
2(n+ d) log

�
2n(n+ d)/�0

�⌘

� 1 � T �0 � 1 � �/8.

3. Finally, a union bound argument ensures that P( bE \ eE) � 1 � �/4.

Proof of Cor. 1. This result comes directly from Sec. 4.1. and App. D of Abbasi-Yadkori and Szepesvári [1].
The proof relies on the fact that, on bE, because e✓t is chosen within the confidence ellipsoid ERLS

t , the number of
time steps the true closed loop matrix A⇤ +B⇤K(

e✓t) is unstable is small. Intuitively, the reason is that as soon
as the true closed loop matrix is unstable, the state process explodes and the confidence ellipsoid is drastically
changed. As the ellipsoid can only shrink over time, the state is well controlled expect for a small number of time
steps.
Since the only difference is that, on bE\ eE, e✓t 2 ETS

t , the same argument applies and the same bound holds replacing
�t with �t. Therefore, there exists appropriate problem dependent constants X,X 0 such that P( ¯E| bE\ eE) � 1��/4.
Finally, a union bound argument ensures that P( bE \ eE \ ¯E) � 1 � �/2.

C Proof of Lem. 3

We prove here that, on E, the sampling e✓ ⇠ RS(b✓t + �t(�0)V
1/2
t ) guarantees a fixed probability of sampling an

optimistic parameter, i.e. which belongs to ⇥

opt

t := {✓ 2 Rd | J(✓)  J(✓?)}. However, our result only holds for
the 1�dimensional case as we deeply leverage on the geometry of the problem. Figure 2 synthesizes the properties
of the optimal value function and the geometry of the problem w.r.t the probability of being optimistic.

1. First, we introduce a simpler subset of optimistic parameters which involves hyperplanes rather than
complicated J level sets. Without loss of generality we assume that A⇤ + B⇤K⇤ = ⇢⇤ � 0 and introduce

H⇤ =

✓
1

K⇤

◆
2 R2 so that A⇤ + B⇤K⇤ = ✓TH⇤. Let ⇥

lin,opt

= {✓ 2 Rd | |✓TH⇤|  ⇢⇤}. Intuitively, ⇥lin,opt

consists in the set of systems ✓ which are more stable under control K⇤. The following proposition ensures
those systems to be optimistic.
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Figure 2: Optimism and worst case configuration. 1) In 1-D, the Riccati solution is well-defined expect for
{(A,B) 2] � 1,�1] [ [1,1[⇥{0}}. The rejection sampling procedure into S ensures P (

e✓t) to be well-defined.
Moreover, Sc does not overlap with ⇥

opt. 2) The introduction of the subset ⇥

lin,opt prevents using the actual -
yet complicated - optimistic set ⇥

opt to lower bound the probability of being optimistic. 3) Even if the event
ERLS holds, there exists an ellipsoid configuration which does not contain any optimistic point. This justifies the
over-sampling to guarantee a fixed probability of being optimistic.

Proposition 6. ⇥

lin,opt ⇢ ⇥

opt

t .

Proof. Leveraging on the expression of J , one has when n = d = 1,

J(✓) = Tr(P (✓)) = P (✓) = lim

T!1

TX

t=0

x2
t (Q+K(✓)2R) = (Q+K(✓)2R)V(xt),

where V(xt) = (1 � |✓TH(✓)|2)�1 is the steady-state variance of the stationary first order autoregressive

process xt+1 = ✓TH(✓)xt + ✏t+1 where ✏t is zero mean noise of variance 1 and H(✓) =

✓
1

K(✓)

◆
. Thus,

J(✓) =
�
Q+K(✓)2R

��
1 � |✓TH(✓)|2

��1
.

Hence, for any ✓ 2 ⇥

lin,opt, (1 � |✓TH⇤|2)�1  (1 � |✓T⇤H⇤|2)�1 which implies that

(Q+K2
⇤R)(1 � |✓TH⇤|2)�1  (Q+K2

⇤R)(1 � |✓T⇤H⇤|2)�1
= J(✓⇤).

However, since K(✓) is the optimal control associated with ✓,

J(✓) = (Q+K(✓)2R)(1 � |✓TH(✓)|2)�1

= min

K
(Q+K2R)(1 � |

�
1 K

�
✓|2)�1

 (Q+K2
⇤R)(1 � |✓TH⇤|2)�1

 J(✓⇤)

As a result, P
�e✓t 2 ⇥

opt | Fx
t , bEt

�
� P

�e✓t 2 ⇥

lin,opt | Fx
t , bEt

�
and we can focus on ⇥

lin,opt.



Thompson Sampling for Linear-Quadratic Control Problems

2. To ensure the sampling parameter to be admissible, we perform a rejection sampling until e✓t 2 S. Noticing
that ⇥

lin,opt ⇢ ⇥

opt ⇢ S by construction, the rejection sampling is always favorable in terms of probability
of being optimistic. Since we seek for a lower bound, we can get rid of it and consider e✓t = b✓t + �t(�0)V

�1/2
t ⌘

where ⌘ ⇠ N (0, I2).9

3. On bEt, ✓? 2 ERLS
t , where ERLS

t is the confidence RLS ellipsoid centered in b✓t. Since ✓⇤ is fixed (by definition),
we lower bound the probability by considering the worst possible b✓t such that bEt holds. Intuitively, we
consider the worst possible center for the RLS ellipsoid such that ✓? still belong in ERLS

t and that the
probability of being optimistic is minimal. Formally,

P
�e✓t 2 ⇥

lin,opt | Fx
t , bEt

�
= Pe✓

t

⇠N (b✓
t

,�2
t

(�0)V �1
t

)

�e✓t 2 ⇥

lin,opt | Fx
t , bEt

�

� min

b✓:kb✓�✓⇤kV

t

�
t

(�0)
Pe✓

t

⇠N (b✓,�2
t

(�0)V �1
t

)

�e✓t 2 ⇥

lin,opt | Fx
t )

Moreover, by Cauchy-Schwarz inequality, for any b✓,
��
(

b✓ � ✓⇤)
TH⇤

��  kb✓ � ✓⇤kV
t

kH⇤kV �1
t

 �t(�
0
)kH⇤kV �1

t

,

thus,

P
�e✓t 2 ⇥

lin,opt | Fx
t , bEt

�
� min

b✓:kb✓�✓⇤kV

t

�
t

(�0)
Pe✓

t

⇠N (b✓,�2
t

(�0)V �1
t

)

�e✓t 2 ⇥

lin,opt | Fx
t )

� min

b✓:|(b✓�✓⇤)TH⇤|�
t

(�0)kH⇤k
V

�1
t

Pe✓
t

⇠N (b✓,�2
t

(�0)V �1
t

)

�e✓t 2 ⇥

lin,opt | Fx
t )

= min

b✓:|b✓TH⇤�⇢⇤|�
t

(�0)kH⇤k
V

�1
t

Pe✓
t

⇠N (b✓,�2
t

(�0)V �1
t

)

�
|e✓Tt H⇤|  ⇢⇤ | Fx

t )

(14)

Cor. 3 provides us with an explicit expression of the worst case ellipsoid. Introducing x =

e✓Tt H⇤, one
has x ⇠ N (x̄,�2

x) with x̄ =

b✓H⇤ and �x = �t(�0)kH⇤kV �1
t

. Applying Cor. 3 with ↵ = ⇢⇤, ⇢ = ⇢⇤ and
� = �t(�0)kH⇤kV �1

t

, inequality (14) becomes

P
�e✓t 2 ⇥

lin,opt | Fx
t , bEt

�
� min

b✓:|b✓TH⇤�⇢⇤|�
t

(�0)kH⇤k
V

�1
t

P⌘⇠N (0,I2)

�
|b✓TH⇤ + �t(�

0
)⌘TV �1/2

t H⇤|  ⇢⇤ | Fx
t )

� P⌘⇠N (0,I2)

�
|⇢⇤ + �t(�

0
)kH⇤kV �1

t

+ �t(�
0
)⌘TV �1/2

t H⇤|  ⇢⇤ | Fx
t )

Introducing the vector ut = �t(�0)V
�1/2
t H⇤, one can simplify

|⇢⇤ + �t(�
0
)kH⇤kV �1

t

+ �t(�
0
)⌘TV �1/2

t H⇤|  ⇢⇤,

, � ⇢⇤  ⇢⇤ + kutk + ⌘Tut  ⇢⇤,

, � ⇢⇤
kutk

� 1  ⌘T
ut

kutk
 �1.

Since ⌘ ⇠ N (0, I2) is rotationally invariant , P
�e✓t 2 ⇥

lin,opt | Fx
t , bEt

�
� P✏⇠N (0,1)

�
✏ 2

⇥
1, 1 + 2⇢⇤

ku
t

k
⇤

| Fx
t , bEt

�
.

Finally, for all t  T , ut is almost surely bounded: kutk  �T (�0)
p

(1 + C2
)/�. Therefore,

P
�e✓t 2 ⇥

lin,opt | Fx
t , bEt

�
� P✏⇠N (0,1)

�
✏ 2

⇥
1, 1 + 2⇢⇤/�T (�

0
)

p
(1 + C2

)/�
⇤�

:= p

Corollary 3. For any ⇢,�x > 0, for any ↵,� � 0, argminx̄:|x̄�↵|� Px⇠N (x̄,�2
x

)

�
|x|  ⇢

�
= ↵+ �.

This corollary is a direct consequence of the properties of standard gaussian r.v.

Lemma 8. Let x be a real random variable. For any ⇢,�x > 0 Let f : R ! [0, 1] be the continuous mapping
defined by f(x̄) = Px⇠N (x̄,�2

x

)

�
|x|  ⇢

�
. Then, f is increasing on R� and decreasing on R+.

9In the 1-dimensional case, ⌘ is just a 2d standard gaussian r.v.
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Proof. Without loss of generality, one can assume that �x = 1/
p
2 (otherwise, modify ⇢), and that x̄ � 0 (by

symmetry). Denoting as � and erf the standard gaussian cdf and the error function, one has:

f(x̄) = Px⇠N (x̄,�2
x

)

�
� ⇢  x  ⇢

�
,= Px⇠N (x̄,�2

x

)

�
x  ⇢

�
� Px⇠N (x̄,�2

x

)

�
x  �⇢

�
,

= Px⇠N (x̄,�2
x

)

�
(x � x̄)/�x  (⇢ � x̄)/�x

�
� Px⇠N (x̄,�2

x

)

�
(x � x̄)/�x  (�⇢ � x̄)/�x

�
,

= �((⇢ � x̄)/�x) � �(�(⇢+ x̄)/�x),

=

1

2

+

1

2

erf((⇢ � x̄)/
p
2�x) � 1

2

� 1

2

erf(�(⇢+ x̄)/
p
2�x),

=

1

2

�
erf(⇢ � x̄) � erf(�(⇢+ x̄))

�
.

Since erf is odd, one obtains f(x̄) = 1
2

�
erf(⇢ � x̄) + erf(⇢ + x̄)

�
. The error function is differentiable with

erf0(z) = 2
⇡ e

�z2

, thus

f 0
(x̄) =

1

⇡

⇣
exp

�
� (⇢+ x̄)2

�
� exp

�
� (⇢ � x̄)2

�⌘

= � 2

⇡
sinh

�
(⇢ � x̄)2

�
 0

Hence, f is decreasing on R+ and by symmetry, is increasing on R�.

D Weighted L1 Poincaré inequality (proof of Lem. 4)

This result is build upon the following theorem which links the function to its gradient in L1 norm:

Theorem 4 (see Acosta and Durán [4]). Let W 1,1
(⌦) be the Sobolev space on ⌦ ⇢ Rd. Let ⌦ be a convex

domain bounded with diameter D and f 2 W 1,1
(⌦) of zero average on ⌦ then

Z

⌦
|f(x)|dx  D

2

Z

⌦
||rf(x)||dx (15)

Lem. 4 is an extension of Thm. 4. In pratice, we show that their proof still holds for log-concave weight.

Theorem 5. Let L > 0 and ⇢ any non negative and log-concave function on [0, L]. Then for any f 2 W 1,1
(0, L)

such that Z L

0
f(x)⇢(x)dx = 0

one has: Z L

0
|f(x)|⇢(x)dx  2L

Z L

0
|f 0

(x)|⇢(x)dx (16)

The proof is based on the following inequality for log-concave function.

Lemma 9. Let ⇢ be any non negative log-concave function on [0, 1] such that
R 1
0 ⇢(x) = 1 then

8x 2 (0, 1), H(⇢, x) :=
1

⇢(x)

Z x

0
⇢(t)dt

Z 1

x

⇢(t)dt  1 (17)

Proof. Since any non-negative log-concave function on [0, 1] can be rewritten as ⇢(x) = e⌫(x) where ⌫ is a concave
function on [0, 1] and since x ! ex is increasing, the monotonicity of ⌫ is preserved and as for concave function, ⇢
can be either increasing, decreasing or increasing then decreasing on [0, 1].
Hence, 8x 2 (0, 1), either

1. ⇢(t)  ⇢(x) for all t 2 [0, x],

2. ⇢(t)  ⇢(x) for all t 2 [x, 1].
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Assume that ⇢(t)  ⇢(x) for all t 2 [0, x] without loss of generality. Then,

8x 2 (0, 1), H(⇢, x) :=
1

⇢(x)

Z x

0
⇢(t)dt

Z 1

x

⇢(t)dt

=

Z x

0

⇢(t)

⇢(x)

Z 1

x

⇢(t)dt


Z x

0
dt

Z 1

x

⇢(t)dt

 x

Z 1

0
⇢(t)dt  x  1

Proof of theorem 5. This proof is exactly the same as [4] where we use lemma 9 instead of a concave inequality.
We provide it for sake of completeness.

A scaling argument ensures that it is enough to prove it for L = 1. Moreover, dividing both side of (16) byR 1
0 ⇢(x)dx, we can assume without loss of generality that

R 1
0 ⇢(x)dx = 1.

Since
R 1
0 f(x)⇢(x)dx = 0 by integration part by part one has:

f(y) =

Z y

0
f 0
(x)

Z x

0
⇢(t)dt �

Z 1

y

f 0
(x)

Z 1

x

⇢(t)dt

|f(y)| 
Z y

0
|f 0

(x)|
Z x

0
⇢(t)dt+

Z 1

y

|f 0
(x)|

Z 1

x

⇢(t)dt

Multiplying by ⇢(y), integrating on y and applying Fubini’s theorem leads to
Z 1

0
|f(y)|⇢(y)dy  2

Z 1

0
|f 0

(x)|
Z x

0
⇢(t)dt

Z 1

x

⇢(t)dt

and applying (17) of lemma 9 ends the proof.

While theorem 5 provides a 1 dimensional weigthed Poincaré inequality, we actually seek for one in Rd. The idea
of [4] is to use arguments of [12] to reduce the d�dimensional problem to a 1� d problem by splitting any convex
set ⌦ into subspaces ⌦i thin in all but one direction and such that an average property is preserved. We just
provide their result.
Lemma 10. Let ⌦ ⇢ Rd be a convex domain with finite diameter D and u 2 L1

(⌦) such that
R
⌦ u = 0. Then,

for any � > 0, there exists a decomposition of ⌦ into a finite number of convex domains ⌦i satisfying

⌦i \ ⌦j = ; for i 6= j, ¯

⌦ =

[
¯

⌦i,

Z

⌦
i

u = 0

and each ⌦i is thin in all but one direction i.e. in an appropriate rectangular coordinate system (x, y) =

(x, y1, . . . , yd�1) the set ⌦i is contained in

{(x, y) : 0  x  D, 0  yi  � for i = 1, . . . , d � 1}

This decomposition together with theorem 5 allow us to prove the d�dimensional weighted Poincaré inequality.

Proof of Lem. 4. By density, we can assume that u 2 C1
(

¯

⌦). Hence, up 2 C2
(

¯

⌦). Let M be a bound for up and
all its derivative up to the second order.
Given � > 0 decompose the set ⌦ into ⌦i as in lemma 10 and express z 2 ⌦i into the appropriate rectangular
basis z = (x, y), where x 2 [0, di], y 2 [0, �]. Define as ⇢(x0) the d � 1 volume of the intersection between ⌦i and
the hyperplan {x = x0}. Since ⌦i is convex, ⇢ is concave and from the smoothness of up one has:
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�����

Z

⌦
i

|u(x, y)|p(x, y)dxdy �
Z d

i

0
|u(x, 0)|p(x, 0)⇢(x)dx

�����  (d � 1)M |⌦i|� (18)

�����

Z

⌦
i

|@u
@x

(x, y)|p(x, y)dxdy �
Z d

i

0
|@u
@x

(x, 0)|p(x, 0)⇢(x)dx

�����  (d � 1)M |⌦i|� (19)

�����

Z

⌦
i

u(x, y)p(x, y)dxdy �
Z d

i

0
u(x, 0)p(x, 0)⇢(x)dx

�����  (d � 1)M |⌦i|� (20)

Those equation allows us to switch from d�dimensional integral to 1�dimensional integral for which we can
apply theorem 5 at the condition that

R d
i

0 u(x, 0)p(x, 0)⇢(x)dx = 0 (which is not satisfied here). On the other
hand, we can apply theorem 5 to

g(x) = u(x, 0) �
Z d

i

0
u(x, 0)p(x, 0)⇢(x)dx/

Z d
i

0
p(x, 0)⇢(x)dx

with weigthed function x ! p(x, 0)⇢(x). Indeed, x ! p(x, 0) is log-concave - as restriction along one direction
of log-concave function, x ! ⇢(x) is log-concave - as a concave function, and so is x ! p(x, 0)⇢(x) - as product
of log-concave function. Moreover, g 2 W 1,1

(0, di) and
R d

i

0 g(x)p(x, 0)⇢(x)dx = 0 by construction. Therefore,
applying theorem 5 one gets:

Z d
i

0
|g(x)|p(x, 0)⇢(x)dx  2di

Z d
i

0
|g0(x)|p(x, 0)⇢(x)dx

Z d
i

0
|u(x, 0)|p(x, 0)⇢(x)dx  2di

Z d
i

0
|@u
@x

(x, 0)|p(x, 0)⇢(x)dx �

�����

Z d
i

0
u(x, 0)p(x, 0)⇢(x)dx

�����
Z d

i

0
|u(x, 0)|p(x, 0)⇢(x)dx  2di

Z d
i

0
|@u
@x

(x, 0)|p(x, 0)⇢(x)dx+ (d � 1)M |⌦i|�

(21)

where we use equation (20) together with
R
⌦

i

u(z)p(z)dz = 0 to obtain the last inequality.

Finally, from (18)
Z

⌦
i

|u(x, y)|p(x, y)dxdy 
Z d

i

0
|u(x, 0)|p(x, 0)⇢(x)dx+ (d � 1)M |⌦i|�

from (21) Z

⌦
i

|u(x, y)|p(x, y)dxdy  2di

Z d
i

0
|@u
@x

(x, 0)|p(x, 0)⇢(x)dx+ (d � 1)M |⌦i|�(1 + 2di)

from (19)
Z

⌦
i

|u(x, y)|p(x, y)dxdy  2di

Z

⌦
i

|@u
@x

(x, y)|p(x, y)dxdy + (d � 1)M |⌦i|�(1 + 4di)

Z

⌦
i

|u(x, y)|p(x, y)dxdy  2di

Z

⌦
i

||ru(x, y)||p(x, y)dxdy + (d � 1)M |⌦i|�(1 + 4di)

Summing up on ⌦i leads to
Z

⌦
|u(z)|p(z)dz  2D

Z

⌦
||ru(z)||p(z)dz + (d � 1)M |⌦|�(1 + 4D)

and since � is arbitrary one gets the desired result.
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E Regret proofs

Bounding RRLS
1 . On E, kxtk  X for all t 2 [0, T ]. Moreover, since e✓t 2 S for all t 2 [0, T ] due to the rejection

sampling, Tr(P (

e✓t))  D. From the definition of the matrix 2-norm, supkxkX xTP (

e✓t)x  X2kP (

e✓t)1/2k22. Since
for any A 2 Rm,n, kAk2  kAk, one has kP (

e✓t)1/2k22  kP (

e✓t)1/2k2 = TrP (

e✓t). As a consequence, for any
t 2 [0, T ], supkxkX xTP (

e✓t)x  X2D and the martingale increments are bounded almost surely on E by 2DX2.
Applying Thm. 3 to RRLS

1 with ✏ = 2DX2
p
2T log(4/�) one obtains that

RRLS
1 =

TX

t=0

�
E(xT

t+1P (

e✓t+1)xt+1|Ft) � xT
t P (

e✓t)xt

 
1{Et}  2DX2

p
2T log(4/�)

with probability at least 1 � �/2.

Bounding RRLS
3 . The derivation of this bound is directly collected from Abbasi-Yadkori and Szepesvári [1].

Since our framework slightly differs, we provide it for the sake of completeness. The whole derivation is performed
conditioned on the event E.

RRLS
3 =

TX

t=0

�
zTt e✓tP (

e✓t)e✓Tt zt � z>t ✓⇤P (

e✓t)✓T⇤ zt
 
=

TX

t=0

�
ke✓Tt ztk2P (e✓

t

)
� k✓T⇤ ztk2P (e✓

t

)

 
,

=

TX

t=0

�
ke✓Tt ztkP (e✓

t

) � k✓T⇤ ztkP (e✓
t

)

��
ke✓Tt ztkP (e✓

t

) + k✓T⇤ ztkP (e✓
t

)

�

By the triangular inequality, ke✓Tt ztkP (e✓
t

) � k✓T⇤ ztkP (e✓
t

)  kP (

e✓t)1/2(e✓Tt zt � ✓T⇤ zt)k  kP (

e✓t)kk(e✓Tt � ✓T⇤ )ztk.
Making use of the fact that e✓t 2 S by construction of the rejection sampling, ✓? 2 S by Asm. 2 and that
supt2[0,T ] kztk 

p
(1 + C2

)X2 thanks to the conditioning on E and Prop. 2, one gets:

RRLS
3 

TX

t=0

�p
Dk(e✓Tt � ✓T⇤ )ztk

��
2S

p
D
p
(1 + C2

)X2
�

 2SD
p
(1 + C2

)X2

TX

t=0

k(e✓Tt � ✓T⇤ )ztk

and one just has to bound
PT

t=0 k(e✓Tt � ✓T⇤ )ztk. Let ⌧(t)  t be the last time step before t when the parameter
was updated. Using Cauchy-Schwarz inequality, one has:

TX

t=0

k(e✓Tt � ✓T⇤ )ztk =

TX

t=0

k(V 1/2
⌧ (t)(e✓⌧(t) � ✓⇤))

TV �1/2
⌧(t) ztk 

TX

t=0

ke✓⌧(t) � ✓⇤kV
⌧(t)

kztkV �1
⌧(t)

However, on E, ke✓⌧(t) � ✓⇤kV
⌧(t)

 ke✓⌧(t) � b✓⌧(t)kV
⌧(t)

+ k✓⇤ � b✓⌧(t)kV
⌧(t)

 �⌧(t)(�
0
) + �⌧(t)(�

0
)  �T (�0) + �T (�0)

and, thanks to the lazy update rule kztkV �1
⌧(t)

 kztkV �1
t

det(V
t

)
det(V

⌧(t))
 2kztkV

t

. Therefore,

RRLS
3  4SD

p
(1 + C2

)X2
�
�T (�

0
) + �T (�

0
)

� TX

t=0

kztkV �1
t

.

Bounding
PK

k=1 Tk↵k. From section 4.4,
KX

k=1

Tk↵k  2⌧
X

k2Kden

k↵kk + ⌧
KX

k=1

↵k.

First, it is clear from

↵k = (RTS,1
t
k

+RTS,3
t
k

){Et
k

}

=

�
J(e✓t

k

) � E[J(e✓t
k

)|Fx
t
k

, Et
k

]

�
1{Et

k

},+
�
E
h���

✓
I

K(

e✓t
k

)

>

◆���
V �1
t

k

|Fx
t
k

i
�
���
✓

I

K(

e✓t
k

)

>

◆���
V �1
t

k

�
,

that the sequence {↵k}Kk=1 is a martingale difference sequence with respect to Fx
t
k

. Moreover, since e✓t
k

2 S for
all k 2 [1,K], k↵kk  2D + 2

p
(1 + C2

)/�. Therefore,
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1.
P

k2Kden

k↵kk 
�
2D + 2

p
(1 + C2

)

�
|Kden|,

2. with probability at least 1 � �/2, Azuma’s inequality ensures that
PK

k=1 ↵k 
�
2D +

2

p
(1 + C2

)

�p
2|K| log(4/�).

From Lem. 6 and Cor. 2, |Kdet|  (n+d) log2(1+TX2
(1+C2

)/�) and |K|  (n+d) log2(1+TX2
(1+C2

)/�)T/⌧ .
Finally, one obtains:

KX

k=1

Tk↵k  4

�
2D + 2

p
(1 + C2

)

�
(n+ d) log2(1 + TX2

(1 + C2
)/�)

p
log(4/�)T/⌧

Bounding
PT

t=0 kztkV �1
t

. On E, for all t 2 [0, T ], kztk2  (1 + C2
)X2. Thus, from Cauchy-Schwarz inequality

and Prop. 4,

TX

t=0

kztkV �1
t


p
T
⇣ TX

t=0

kztk2V �1
t

⌘1/2


p
T
p
2(n+ d)(1 + C2

)X2/� log1/2
⇣
1 +

T (1 + C2
)X2

�(n+ d)

⌘
.


