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Abstract

One fundamental goal in any learning al-
gorithm is to mitigate its risk for overfit-
ting. Mathematically, this requires that the
learning algorithm enjoys a small generaliza-
tion risk, which is defined either in expec-
tation or in probability. Both types of gen-
eralization are commonly used in the liter-
ature. For instance, generalization in ex-
pectation has been used to analyze algo-
rithms, such as ridge regression and SGD,
whereas generalization in probability is used
in the VC theory, among others. Recently, a
third notion of generalization has been stud-
ied, called uniform generalization, which re-
quires that the generalization risk vanishes
uniformly in expectation across all bounded
parametric losses. It has been shown that
uniform generalization is, in fact, equiva-
lent to an information-theoretic stability con-
straint, and that it recovers classical results
in learning theory. It is achievable under
various settings, such as sample compression
schemes, finite hypothesis spaces, finite do-
mains, and differential privacy. However, the
relationship between uniform generalization
and concentration remained unknown. In
this paper, we answer this question by prov-
ing that, while a generalization in expecta-
tion does not imply a generalization in prob-
ability, a uniform generalization in expecta-
tion does imply concentration. We establish
a chain rule for the uniform generalization
risk of the composition of hypotheses and use
it to derive a large deviation bound. Finally,
we prove that the bound is tight.
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1 INTRODUCTION

One of the central questions in statistical learning the-
ory is to establish the conditions for generalization
from a finite collection of observations to the future.
Mathematically, this is formalized by bounding the dif-
ference between the empirical and the true risks of a
given learning algorithm £ : UY_; Z™ — H, where Z
is the observation space and H is the hypothesis space.

Informally, suppose we have a learning algorithm L
that receives a sample S,,, = {Z1, ..., Z,,}, which com-
prises of m i.i.d. observations Z; ~ p(z), and uses S,
to select a hypothesis H € H. Because H is selected
based on the sample S,,, its empirical risk on S,, is a
biased estimator of its true risk with respect to the dis-
tribution of observations p(z). The difference between
the two risks, referred to as the generalization risk,
determines the prospect of over-fitting in the learning
algorithm.

In the literature, generalization bounds are often ex-
pressed either in expectation or in probability. Let
L(-;H) : Z — [0,1] be some parametric loss function
that satisfies the Markov chain S, - H — L(-; H).
We write Rypye(H) and Repp(H; Sp) to denote, re-
spectively, the true and the empirical risks of the hy-
pothesis H w.r.t. L(-; H):

1
Remp(H; Sp) = — > L(Zi; H)

Z;€Sm
Rtrue(H) = ]EZNp(z) [L(Za H)] (1)

Then, generalization in expectation and generalization
in probability are defined as follows:

Definition 1 (Generalization in Expectation). The
expected generalization risk of a learning algorithm
L UX_1 Z™ — H with respect to a parametric loss
L(;H): 2 —10,1] is defined by:

Rgen (‘C) = ESm,H|Sm [Remp(H§ Sm) - Rtrue(H)} 5 (2)

where the empirical risk Remy(H; Sy) and the true risk
Rirue(H) are given by Eq. (1). A learning algorithm L
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generalizes in expectation if Rgen (L) — 0 as m — oo
for all distributions p(z).

Definition 2 (Generalization in Probability). A
learning algorithm L generalizes in probability if for
any positive constant € > 0, we have:

p{’Rtrue(H) - Remp(H; Sm)’ > 6} —0 asm — o0,

where the probability is evaluated over the random
choice of Sy, and the internal randomness of L.

Clearly, for bounded loss functions, a generalization in
probability implies a generalization in expectation but
the converse is not generally true.

In general, both types of generalization have been
studied in the literature. For instance, generaliza-
tion in probability is used in the Vapnik-Chervonenkis
(VC) theory, the covering numbers, and the PAC-
Bayesian framework, among others (Vapnik, 1999;
Blumer et al., 1989; McAllester, 2003; Bousquet and
Elisseeff, 2002; Bartlett and Mendelson, 2002; Bous-
quet et al., 2004; Audibert and Bousquet, 2007). Gen-
eralization in expectation, on the other hand, was used
to analyze learning algorithms, such as the stochas-
tic gradient descent (SGD), differential privacy, and
ridge regression (Hardt et al., 2016; Dwork et al.,
2015; Shalev-Shwartz and Ben-David, 2014; Raginsky
et al., 2016). Its common tool is a replace-one averag-
ing lemma, similar to the Luntz-Brailovsky theorem
(Luntz and Brailovsky, 1969; Vapnik and Chapelle,
2000), which relates generalization to algorithmic sta-
bility (Hardt et al., 2016; Shalev-Shwartz and Ben-
David, 2014). Generalization in expectation is often
simpler to analyze, but it provides a weaker perfor-
mance guarantee.

Recently, however, a third notion of generalization has
been introduced in Alabdulmohsin (2015), which is
called uniform generalization. It also expresses gen-
eralization bounds in expectation, but it is stronger
than the notion of generalization in Definition 1 be-
cause it requires that the generalization risk vanishes
uniformly across all bounded parametric loss func-
tions. Importantly, uniform generalization is shown
to be equivalent to an information-theoretic algorith-
mic stability constraint, and that it recovers classical
results in learning theory. It has been connected to the
VC dimension as well (Alabdulmohsin, 2015). More-
over, many conditions can be shown to be sufficient
for uniform generalization. These include differential
privacy, sample compression schemes, perfect general-
ization, robust generalization, typical generalization,
finite description lengths, or finite domains. Indeed,
we prove in Appendix A that all such conditions are
sufficient for uniform generalization to hold.

Unfortunately, uniform generalization bounds hold

only in expectation without any concentration guar-
antees. This sheds doubt on the utility of the notion
of uniform generalization and its information-theoretic
approach of analyzing learning algorithms. For in-
stance, we will later construct a learning algorithm
that generalizes perfectly in expectation w.r.t. a spe-
cific parametric loss even though it does not generalize
almost surely over the random draw of the sample .S,,.
Hence, generalization in expectation is insufficient to
ensure that a generalization will take place in practice.

Nevertheless, we will establish in this paper that a uni-
form generalization in expectation is, in fact, sufficient
for a generalization in probability to hold. Moreover,
we will derive a tight concentration bound. Hence, all
of the uniform generalization bounds, such as the ones
derived in (Alabdulmohsin, 2015), hold, not only in ex-
pectation but with a high probability as well. Besides,
our result provides, as far as we know, the first strong
connection between the two forms of generalization in
the literature. We present examples of how our con-
centration bound can be used to deduce concentration
results for important classes of learning algorithms,
such as those guaranteeing differential privacy.

The proof of our concentration bound rests on a chain
rule that we derive for uniform generalization, which
is analogous to the chain rule of mutual information
in information theory (Cover and Thomas, 1991). Us-
ing the chain rule, we show that learning algorithms
that generalize uniformly in expectation are amenable
to non-adaptive composition, which is analogous to
earlier results using differential privacy, sample com-
pression schemes, and perfect generalization (Dwork
and Roth, 2013; Cummings et al., 2016). Moreover,
the implications of the chain rule are consistent with
the information budget framework, which was recently
proposed for controlling the bias of estimators in the
adaptive setting using information theory (Russo and
Zou, 2016).

The rest of the paper is structured as follows. We
will, first, briefly outline the terminology and nota-
tion used in this paper and review the existing litera-
ture. Next, we recount the main results pertaining to
uniform generalization and algorithmic stability and
describe how uniform generalization differs from uni-
form convergence. Finally, we derive the concentration
bound for uniform generalization, prove its tightness,
and discuss some of its implications afterward.

2 Terminology and Notation

Throughout this paper, we will always write Z to de-
note the space of observations (a.k.a. domain) and
write H to denote the hypothesis space (a.k.a. range).
A learning algorithm £ : US_; 2™ — H is formally
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treated as a stochastic map, where the hypothesis
H € H can be a deterministic or a randomized func-
tion of the sample S, € Z™.

We consider the general setting of learning introduced
by Vapnik (Vapnik, 1999). In this setting, the observa-
tions Z; € Z can be instance-label pairs Z; = (X;, V)
as in supervised learning or they can comprise of in-
stances only as in unsupervised learning. The distinc-
tion between the two learning paradigms is irrelevant.
Moreover, we allow the hypothesis H to be an arbi-
trary random variable. For instance, H can be a clas-
sifier, a regression function, a statistical query, a set of
centroids, a density estimate, or an enclosing sphere.
Only the relationship between the two random vari-
ables S, and H matters in our analysis.

Moreover, if Z ~ p(z) is a random variable drawn from
Z and f(Z) is a function of Z, we write Ezpz) f(Z)
to denote the expected value of f(Z) with respect to
the distribution p(z). Occasionally, we omit p(z) from
the subscript if it is clear from the context. If Z takes
its values from a finite set S uniformly at random, we
write Z ~ S to denote this fact. We write E 45 f(4) to
denote the expectation of f(A) under the conditional
distribution p(A|B). If X is a boolean random vari-
able, then I{X} = 1 if and only if X is true, otherwise
I{X}=0.

Finally, given two probability measures P and @ de-
fined on the same space, we will write (P, Q) to denote
the overlapping coefficient between P and ). That
is, (P, Q) = 1—[|P, Qllr, where [P, Qllr =
%HP - Q| |1 is the total variation distance.

3 Related Work

Generalization can be rightfully considered as an ex-
tension to the law of large numbers, which is one of the
earliest and most important results in probability the-
ory and statistics. Suppose we have m i.i.d. observa-
tions Sy, = {Z1,...,Zp}t € Z™ and let f: Z — [0,1]
be an arbitrary function. If f is fixed independently
of Sy, then Ez,~s,,[f(Z:)] = Ezep)[f(Z2)] as. as
m — oo. This law is generally attributed to Jacob
Bernoulli, who wrote an extensive treatise on the sub-
ject published posthumously in 1713 (Stigler, 1986).
Modern proofs include low-confidence guarantees, e.g.
the Chebychev inequality, and high confidence bounds,
e.g. the Chernoff method (Boucheron et al., 2004).

When the function f depends on S,,, the law of
large numbers is no longer valid because f(Z;) are
not independent random variables. One remedy is
to look into the function F(S,,) = Egz.~s, f(Z:).
For instance, the Efron-Stein-Steele lemma might be
used to bound the variance of F, which, in turn,

can be translated into a concentration bound using
the Chebychev inequality (Boucheron et al., 2004;
Bousquet and Elisseeff, 2002). Alternatively, if F
satisfies the bounded-difference property, then McDi-
armid’s inequality yields a high-confidence guarantee
(Boucheron et al., 2004; Bousquet and Elisseeff, 2002).

In this paper, the same question is being addressed.
However, we address it in an information-theoretic
manner. We will show that if the function f : Z2 —
[0,1] (as a random variable instantiated after observ-
ing the sample S,,) carries little information about any
individual observation Z; € S,,,, then the difference be-
tween Ez, s, [f(Z;)] and Ez pz)[f(Z)] will be small
with a high probability. The measure of information
used here is given by the notion of variational informa-
tion J(X;Y) =1-5(X;Y) between the random vari-
ables X and Y, where S(X;Y) is the mutual stability
introduced in Alabdulmohsin (2015). Variational in-
formation, also called T-information (Raginsky et al.,
2016), is an instance of the class of informativity mea-
sures using f-divergences, for which an axiomatic basis
has been proposed (Csiszar, 1972, 2008).

The information-theoretic approaches of analyzing the
generalization risks of learning algorithms, such as the
one pursued in this paper, have found applications in
adaptive data analysis. This includes the method of
Dwork et al. (2015) using the max-information, the
method of Russo and Zou (2016) using the mutual in-
formation, and the method of Raginsky et al. (2016)
using the leave-one-out information. For bounded
losses, uniform generalization bounds using the varia-
tional information yield tighter results, as deduced by
the Pinsker inequality (Reid and Williamson, 2009). In
this paper, we prove that these bounds hold not only
in expectation but with a high probability as well.

As a consequence of our main theorem, concentra-
tion bounds for a given learning algorithm can be
immediately deduced once we recognize that the al-
gorithm generalizes uniformly in expectation. Exam-
ples of when this holds include having (1) a finite av-
erage description length of the hypothesis, (2) a fi-
nite VC dimension of the induced concept class, (3)
differential privacy, (4) bounded mutual information,
(5) sample compression schemes, and (6) finite do-
mains. We briefly describe these settings and others
that have been previously studied in the literature,
and prove their connections to uniform generalization
in Appendix A. We also present connections between
uniform generalization and learnability in Appendix B.
A second consequence of our work is establishing the
equivalence between the notion of uniform generaliza-
tion studied by Alabdulmohsin (2015) and the notion
of robust gemeralization considered more recently by
Cummings et al. (2016).
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Besides deriving a concentration bound, we also estab-
lish that our bound is tight. This tightness result is
inspired by the work of Bassily et al. (2016) (Lemma
7.4) and Shalev-Shwartz et al. (2010) (Example 3),
where similar results are established for differential pri-
vacy and learnability respectively. In Section 5.6, we
combine techniques from both works to show that our
concentration bound is indeed tight.

4 Uniform Generalization

First, we review the main results pertaining to uni-
form generalization and algorithmic stability. We only
mention the key results here for completeness. The
reader is referred to Alabdulmohsin (2015) for details.

4.1 TUniform Generalization vs. Uniform
Convergence

The main result of Alabdulmohsin (2015) is the equiva-
lence between algorithmic stability and uniform gener-
alization in expectation across all bounded parametric
loss functions on the product space Z x H.

Definition 3 (Uniform Generalization). A learning
algorithm L : UX_; Z™ — H generalizes uniformly if
for any € > 0, Img(e) > 0 such that for all distribu-
tions p(z) on Z, all parametric losses, and all sam-
ple sizes m > myg(e), we have |Rgen(L)| < €, where
Ryen (L) is given in Eq. (2).

Definition 4. A learning algorithm L generalizes uni-
formly with rate ¢ > 0 if the expected generalization
risk satisfies |Rgen(L)| < € for all distributions p(z)
on Z and all parametric losses.

With some abuse of terminology, we will occasionally
say that a learning algorithm generalizes uniformly
when it generalizes uniformly according to Definition
4 for some provably small e. Whether we are referring
to Definition 3 or 4 will be clear from the context.

Uniform generalization is different from the classical
notion of uniform convergence. To see the difference,
we note that a parametric loss L(Z; H) : ZxH — [0, 1]
is a function of the two random variables Z € Z and
H € H. This parametric loss on the product space
Z xH, sometimes called the loss class (Bousquet et al.,
2004), is a family of loss functions on Z indexed by
H. Uniform convergence, such as by using the union
bound or the growth function, establishes sufficient
conditions for uniform convergence to hold within the
family of loss functions indexed by H for a single para-
metric loss. These uniform convergence guarantees are
often independent of how £ works.

By contrast, suppose that the learning algorithm £
produces a hypothesis H given a sample S,, € Z™

with probability ps(H|Sy), where pg(H|Sy,) can be
degenerate in deterministic algorithms. Then, in prin-
ciple, one can compute the expected generalization risk
Rgen(L), defined in Eq. (2), for every possible para-
metric loss. This is the average loss within each possi-
ble family of bounded loss functions indexed by H, av-
eraged over the random choice of S;, and the internal
randomness of £. Uniform generalization establishes
the conditions for |Rge,(L)| to go to zero uniformly
across all parametric loss functions. Unlike uniform
convergence, which depends on the loss class alone,
uniform generalization is determined by all aspects of
L, such as the nature of its domain Z, its hypothesis
space H, and how L selects its hypothesis.

4.2 Previous Results

The main result proved in Alabdulmohsin (2015)
is that uniform generalization is equivalent to an
information-theoretic stability constraint on L.

Definition 5 (Variational Information). The wvari-
ational information J(X;Y) between the random
variables X and Y is defined by J(X;Y) =
pCOR(Y), p(X,Y)llr, where |[P, Qllr i the to-
tal variation distance. The mutual stability is defined
by S(X;Y)=1-J(X;Y).

Informally speaking, J(X; Y) measures the influence
of observing the value of X on the distribution of Y.
The rationale behind this definition is revealed next!

Definition 6 (Algorithmic Stability). Let £ be a
learning algorithm that uses S, = {Z;}i=1,..m

p™(z) to produce a hypothesis H € H. Let Zypy ~ Sm
be a random variable whose value is drawn uniformly
at random from the sample S,,. Then, the algorithmic
stability of L is defined by: S(L) = inf,.y S(H; Zin),
where the infimum is taken over all possible distribu-
tions of observations p(z). A learning algorithm is

called stable if lim,, 0o S(L) =1.

Intuitively, a learning algorithm is stable if the influ-
ence of a single training example vanishes as m — co.

Theorem 1 (Alabdulmohsin, 2015). For any learn-
ing algorithm L : US_y Z™ — H, algorithmic sta-
bility (Definition 6) is both necessary and sufficient
for uniform generalization (Definition 3). In addition,
|Rgen(L)| < T(H; Zirn) < 1=S(L), with Rgen(L) de-
fined in Eq. (2).

Theorem 1 reveals that uniform generalization has, at
least, three equivalent interpretations:

In Definition 6 and the rest of the paper, Zi is a
single training example drawn uniformly at random from
the training sample. In Definition 6, algorithmic stabil-
ity quantifies how much information this single example
reveals about the hypothesis.
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1. Statistical Interpretation: A learning algorithm
generalizes uniformly if and only if its expected
generalization risk Rge, (L) vanishes as m — oo
uniformly across all bounded parametric losses.

2. Information-Theoretic Interpretation: A learning
algorithm generalizes uniformly if and only if its
hypothesis H reveals a vanishing amount of in-
formation about any single observation in S,, as
m — oo. This, for example, is satisfied if H has a
finite description length.

3. Algorithmic Interpretation: A learning algorithm
generalizes uniformly if and only if the contribu-
tion of any single observation on the hypothesis
H vanishes as m — oco. That is, a learning al-
gorithm generalizes uniformly if and only if it is
algorithmically stable.

Other results have also been established in Alabdul-
mohsin (2015) including the data processing inequal-
ity, the information-cannot-hurt inequality, and the
uniform generalization bound in the finite hypothesis
space setting. Some of those results will be used in our
proofs in this paper.

5 Generalization in Expectation vs.
Generalization in Probability

The main contribution of this paper is to prove that a
uniform generalization in expectation implies a gener-
alization in probability and to derive a tight concentra-
tion bound. By contrast, a non-uniform generalization
in expectation does not imply that a generalization will
actually take place in practice. In addition, we will also
establish a chain rule for variational information and
prove that our large-deviation bound is tight. Inter-
estingly, our proof reveals that uniform generalization
is a robust property of learning algorithms. Specifi-
cally, adding a finite amount of information (in bits)
to a hypothesis H that generalizes uniformly cannot
remove its uniform generalization property.

5.1 Non-Uniform Generalization

We begin by showing why a non-uniform generaliza-
tion in expectation does not imply concentration.

Proposition 1. There exists a learning algorithm
L UX_ Z™ — H and a parametric loss L(-; H) :

Z — [0,1] such that the expected generalization risk
is Rgen(L) = 0 for all m > 1, but for all m > 1 we

have p{}Rtrue(H) - Remp(ngm)‘ = %

the probability is evaluated over the random choice of
S and the internal randomness of L.

} =1, where

Proof. Here is a proof outline. Let X’ be a continuum
with a continuous marginal density, Y = {—1,+1} be a
target set, and let the hypothesis H be (S, B), where
B € {0,1} is a Bernoulli r.v. with p(B = 1) = 1.
We can define a loss function, parameterized by the
hypothesis (S,,, B), such that the algorithm overfits
when B = 1 and underfits when B = 0, while its
generalization risk remains zero on average. O

Proposition 1 shows that a generalization in expec-
tation does not imply a generalization in probability.
Importantly, it is crucial to observe that the learning
algorithm constructed in the proof of Proposition 1
does not, in fact, generalize uniformly in expectation.
Indeed, this latter observation is not a coincidence as
will be proved later in Theorem 4.

5.2 Robustness of Uniform Generalization

Next, we prove that uniform generalization is a robust
property of learning algorithms. We will use this fact
later to prove that a uniform generalization in expec-
tation implies a generalization in probability. In order
to achieve this, we begin with the following chain rule.

Definition 7 (Conditional Variational Information).
The conditional variational information between the
two random variables A and B given C' is defined by:

J(A; B|C) =Ec|llp(4, B|C), p(A|C) - p(B|C)||T],

which is analogous to the conditional mutual informa-
tion in information theory (Cover and Thomas, 1991).

Theorem 2 (Chain Rule). Let (Hy,...,Hy) be a
sequence of random variables. Then, for any ran-
dom wariable Z, we have: J(Z; (Hy,...,Hy)) <

Sy J(Zy Hy | (Hy, .., Hyy))

Although the chain rule above provides an upper
bound, the upper bound is tight in the following sense:

Proposition 2. For any random variables A, B, and

C, we have ‘j(A; (B,O)) — J(A; O|B)‘ < J(4; B)
and |7 (4; (B, C)) - J(A; B)| < T (4; C| B).

In other words, the inequality in the chain rule
J(4; (B,C)) < J(A; B) + J(A; C|B) becomes an
equality if min{J(A4; B), J(A4; C|B)} =0.

The chain rule provides a recipe for computing the
bias of estimators for a composition of hypotheses
(Hy,...,Hy), whether this composition is adaptive or
non-adaptive. Recently, Russo and Zou (2016) pro-
posed an information budget framework for controlling
the bias of estimators by controlling the mutual infor-
mation between H and the sample S,,. The proposed
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framework rests on the chain rule for mutual informa-
tion. Here, we note that the argument for the infor-
mation budget framework also holds when using the
variational information due to the chain rule above.

Next, we use the chain rule in Theorem 2 to prove that
uniform generalization is a robust property of learning
algorithms. More precisely, if K has a finite domain,
then a hypothesis H generalizes uniformly in expecta-
tion if and only if the pair (H, K) generalizes uniformly
in expectation. Hence, adding any finite amount of
information (in bits) to a hypothesis cannot alter its
uniform generalization property?.

Theorem 3. Let £ : UY_; Z™ — H be a learning
algorithm whose hypothesis is H € H, which is ob-
tained from a sample S,,. Let K € K be a differ-
ent hypothesis that is obtained from the same sample

S If Zyyry ~ Sy, is a random variable whose value is
drawn uniformly at random from S,,, then:

K log |C
TG (H,K) < @4 5 7 (20 1 25

5.3 Uniform Generalization Implies
Concentration

Theorem 3 shows that adding a finite amount of in-
formation (in bits) cannot remove the uniform gener-
alization property of learning algorithms. We will use
this fact, next, to prove that a uniform generalization
in expectation implies a generalization in probability.

The intuition behind the proof is as follows. Suppose
we have a hypothesis H that generalizes uniformly in
expectation but, for the purpose of obtaining a con-
tradiction, suppose that there exists a parametric loss
L(-; H) that does not generalize in probability. Then,
adding little information to the hypothesis H will allow
us to construct a different parametric loss that does
not generalize in expectation. In particular, we will
only to need to know whether the empirical risk w.r.t.
L(-; H) is greater than, approximately equal to, or is
less than the true risk w.r.t. the same loss. This is de-
scribed in, at most, two bits. Knowing this additional
information, we can define a new parametric loss that
does not generalize in expectation, which contradicts
the statement of Theorem 3. This line of reasoning is
formalized in the following theorem.

Theorem 4. Let £ : U_; Z™ — H be a learning
algorithm, whose risk is evaluated using a parametric

ZNote, by contrast, that the proof of Proposition 1 il-
lustrates an example where a hypothesis H may generalize
perfectly in expectation w.r.t. a fixed parametric loss, but
a single bit of information suffices to destroy this general-
ization advantage. This never occurs when H generalizes
uniformly since uniform generalization is a robust property.

loss function L(-; H) : Z — [0,1]. Then:

p{|Remp(H; Sm) = Ripue(H)| > t}

log 3 7 /log 3
< _|1—

49m] 2t [1 S(£)+ 49m}’

where S(L) is the algorithmic stability of L given in

Definition 6, and the probability is evaluated over the

random choice of Sy, and the internal randomness of

L. In particular, if L generalizes uniformly in expec-

tation, i.e. S(L) — 1 as m — oo, it generalizes in
probability for any chosen parametric loss.

7
< 5 |9 (Zirni H) +

The same proof technique used in Theorem 4 also im-
plies the following concentration bound, which is use-
ful when I(H; Sy,) = o(m). The following bound com-
pares well with the bound derived in Russo and Zou
(2016) using properties of sub-Gaussian loss functions.

Proposition 3. Let £L: US_; Z™ — H be a learning
algorithm, whose risk is evaluated using a parametric
loss function L(-; H) : Z — [0,1]. Then:

P{| B (H: 1) = Rurue(H)| 2t} <

Note that having a bounded mutual information, i.e.
I(Sm; H) = o(m), which is the setting recently consid-
ered in the work of Russo and Zou (2016), is sufficient
for uniform generalization to hold.

5.4 Implications

5.4.1 Concentration

In Alabdulmohsin (2015), it was shown that the
notion of uniform generalization allows us to rea-
son about learning algorithms in pure information-
theoretic terms. This is because uniform generaliza-
tion is equivalent to an information-theoretic algorith-
mic stability constraint on learning algorithms. For ex-
ample, the data processing inequality implies that one
can improve the uniform generalization risk by either
post-processing the hypothesis, such as sparsification
or decision tree pruning, or by pre-processing train-
ing examples, such as by introducing noise. Needless
to mention, both are common techniques in machine
learning. In addition, uniform generalization recovers
classical results in learning theory, such as the gener-
alization bounds in the finite hypothesis space setting
and finite domains (Alabdulmohsin, 2015). However,
such conclusions previously held only in expectation.

The most important implication of Theorem 4 is to
establish that such conclusions actually hold with a
high probability as well. In addition, the concentration
bound derived in Theorem 4 shows that algorithmic
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stability S(£) not only controls the generalization risk
of £ in expectation, i.e. due to its equivalence with
uniform generalization, but it also controls the rate
of convergence in probability. This brings us to the
following important remark:

Remark 1. By improving algorithmic stability, we
improve both the expectation of the generalization risk
and its variance.

Besides, Theorem 4 can be useful in deriving new con-
centrations bounds for important classes of learning
algorithms once we recognize the existence of uniform
generalization. We illustrate this technique on differ-
ential privacy next.

5.5 Differential Privacy

Differential privacy addresses the goal of obtaining
useful information about the sample S,, as a whole
without revealing a lot of information about each in-
dividual observation in the sample (Dwork and Roth,
2013). It closely resembles the notion of algorithmic
stability proposed in Alabdulmohsin (2015) because
a learning algorithm is stable according to the latter
definition if and only if the posterior distribution of
an individual observation Z;., in the sample S,, be-
comes arbitrarily close, in the total variation distance,
to the prior distribution p(Zi.,) as m — oo. Indeed,
differential privacy is a stronger privacy guarantee.

Definition 8 (Dwork & Roth, 2013). A randomized
learning algorithm L : US_1 Z™ — H is (€,0) differ-
entially private if for any O CH and any two samples
S and S’ that differ in one observation only, we have:

p(HeO|S)<e -p(HeO|S)+4

Concentration bounds for differential privacy have
been derived, such as the recent work of Bassily et al.
(2016). Nevertheless, we remark here that Theorem 4
can be used to derive a new concentration bound for
differential privacy. Comparing our bound with the
lower bound of Lemma 7.4 in Bassily et al. (2016) re-
veals that the dependence on § and ¢t is tight up to a
constant factor.

Corollary 1. If a learning algorithm L
UrX_ 2™ — H is (e,0) differentially private,
then: p{ |Remp(H; Sm) - Rtrue (H) ’ 2 t} §

7 lef—144 log 3
2t|: 2 + 49m |-

Not surprisingly, the differential privacy parameters
(e,8) control the generalization risk of differential pri-
vacy, with the quantity (e — 1+ ) acting a role that
is analogous to the role of the standard error.

5.5.1 Equivalence with Robust
Generalization

Another implication of the concentration bound in
Theorem 4 is establishing the equivalence between the
notion of uniform generalization and the notion of ro-
bust generalization studied in Cummings et al. (2016).

Definition 9 (Robust Generalization). A learning al-
gorithm L is (e,0) robustly generalizing if for all dis-
tribution p(z) on Z and any binary-valued parametric
loss function L(-;H) : Z — {0,1} that satisfies the
Markov chain S,, — H — L(:; H), we have with a
probability of at least 1 — ¢ over the choice of S that:

1
P{[Eznp() L(Z: H) - — > UzsH)| < ef>1-1,

for some 7y, such that § = v + 3.

In the following theorem, we prove that robust gener-
alization is equivalent to uniform generalization.

Corollary 2. If a learning algorithm L is (¢,6) ro-
bustly generalizing, then it generalizes uniformly at the
rate e+ 0. Conversely, if a learning algorithm general-
izes uniformly with rate T, then it is (€,7y) robustly gen-
eralizing with v = (7/2)(1 + /log3/(49m))/e. More-
over, if S(L) — 0 as m — oo, then both v and e can be
made arbitrarily close to zero using a sufficiently large
sample size m.

5.6 Tightness Result

Finally,we note that the concentration bound has a
linear dependence on the algorithmic stability term
1 — S(£) or, in a distribution-dependent manner,
on the variational information J(Zn; H). Typi-
cally, J(Zyn; H) = O(1/y/m), which holds, for in-
stance, when Z or H are countable sets. By con-
trast, the VC bound provides an exponential decay for
supervised classification tasks (Vapnik, 1999; Shalev-
Shwartz et al., 2010). This raises the question of
whether or not the concentration bound in Theorem
4 can be improved. In this section, we prove that the
bound is actually tight. The following theorem is in-
spired by the work of (Bassily et al., 2016) (Lemma
7.4) and Shalev-Shwartz et al. (2010) (Example 3),
who established similar results for differential privacy
and learnability respectively.

Theorem 5. For any rational 0 < t < 1, there ex-
ists a learning algorithm L : UP_ Z™ — H, a sam-
ple size m, a distribution p(z), and a parametric loss

3The original definition proposed in Cummings et al.
(2016) states that the probability is evaluted over any “ad-
versary” that takes the hypothesis H as input to produce
a loss function L(-; H). However, this is equivalent to the
Markov chain S,, - H — L(-; H).
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L(;H) : Z — [0,1] such that L generalizes uniformly
in expectation and it satisfies:

T (Zym; H
p{|Remp(H; Sm) - Rtrue(H)’ - t} - %
Theorem 5 shows that, without making any additional
assumptions beyond that of uniform generalization,
the concentration bound in Theorem 4 is tight up to
constant factors. Essentially, the only difference be-

tween the upper and the lower bounds is a vanishing
O(1/+/m) term that is independent of L.

6 Conclusions

Uniform generalization in expectation is a notion of
generalization that is equivalent to an information-
theoretic algorithmic stability constraint on learning
algorithms. In this paper, we proved that whereas
generalization in expectation does not imply a gen-
eralization in probability, a uniform generalization in
expectation implies a generalization in probability and
we derived a tight concentration bound. The bound
reveals that algorithmic stability improves both the
expectation of the generalization risk and its variance.
Hence, by constraining the “amount” of information
that a hypothesis can carry about any individual train-
ing example or, equivalently, by limiting the “size” of
the contribution of any individual training example on
the final hypothesis, the learning algorithm is guaran-
teed to generalize well with a high probability. Fur-
thermore, we proved a chain rule for variational infor-
mation, which revealed that uniform generalization is
a robust property of learning algorithms. Finally, we
proved that the concentration bound is tight.

A Relations to Other Notions of
Generalization & Stability

The connection between differential privacy and uni-
form generalization is summarized as follows.

Proposition 4. Let L be a (e, )-differentially private
learning algorithm. Let Zip, ~ S be a single training
example and let H ~ pe(h|S) be the hypothesis pro-
duced by L. Then J(Zyn; H) < eef%ﬂs.

Next, it can be shown that perfect generalization im-
plies differential privacy (Cummings et al., 2016) so it
implies uniform generalization. Also, sample compres-
sion implies robust generalization (Cummings et al.,
2016), which in turn implies a uniform generalization.
Moreover, typical stability (Bassily and Freund, 2016)
is equivalent to perfect generalization when the obser-
vations are drawn i.i.d., so it implies uniform general-
ization as well.

The proof that a bounded mutual information, i.e.
having I(Sy,; H) = o(m), implies uniform generaliza-
tion is a direct consequence of the concentration bound
in Proposition 3.

Finally, the proofs that a finite hypothesis space, a fi-
nite VC dimension in the induced concept class, and
a finite domain are each sufficient for uniform general-
ization to hold are provided in Alabdulmohsin (2015).

B Uniform Generalization and
Learnability

B.1 Counsistency of Empirical Risk
Minimization

Uniform generalization is a sufficient condition for
the consistency of empirical risk minimization (ERM).
Suppose we have an ERM learning algorithm, whose
hypothesis is denoted Hggrp,. We have by definition:

Reony(£) = B[ Ben (H: )] = Eslamin By (1.9
< 1 N = i .
> ggﬁ [ESRemp(ha S)] }}}C_lﬁ Rirue(h)
= Rirue (h*),

where h* is the optimal hypothesis. However, the true
risk of L satisfies:

Rt7'ue(£) - Rtrue(h*) S Rt7‘ue(£) - Remp(lc)
Thus, algorithmic stability of ERM implies consistency
because J(Zirn; Hera) provides an upper bound on

|Rirue(L)—Remp(L) ‘ In fact, because Ryrue(HErM ) —
Ryirye(h*) > 0, we have by the Markov inequality:

* j Zrn; H
p{Rtrue(HERM)*Rtrue(h ) > t} < w

B.2 Sample Compression and Learnability

Moreover, recent results on the connection between
sample compression schemes and learnability (David
et al., 2016) reveal that any learnable hypothesis space
is learnable using an algorithm that generalizes uni-
formly in expectation, with only a logarithmic increase
in the sample complexity. Because sample compres-
sion schemes satisfy robust generalization (Cummings
et al., 2016), they generalize uniformly in expecta-
tion. Alternatively, the connection between sample
compression and uniform generalization may be es-
tablished more directly by noting that the generaliza-
tion bounds of sample compression schemes, such as
in Shalev-Shwartz and Ben-David (2014), are derived
using the union bound, which holds independently of
the choice of the parametric loss.
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