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Abstract

We introduce PseudoNet, a new pseudolikeli-
hood -based estimator of the inverse covari-
ance matrix, that has a number of use-
ful statistical and computational properties.
We show, through detailed experiments with
synthetic as well as real-world finance and
wind power data, that PseudoNet outper-
forms related methods in terms of estima-
tion error and support recovery, making it
well-suited for use in a downstream appli-
cation, where obtaining low estimation er-
ror can be important. We also show, un-
der regularity conditions, that PseudoNet is
consistent. Our proof assumes the exis-
tence of accurate estimates of the diago-
nal entries of the underlying inverse co-
variance matrix; we additionally provide a
two-step method to obtain these estimates,
even in a high-dimensional setting, going be-
yond the proofs for related methods. Un-
like other pseudolikelihood-based methods,
we also show that PseudoNet does not satu-
rate, i.e., in high dimensions, there is no hard
limit on the number of nonzero entries in the
PseudoNet estimate. We present a fast algo-
rithm as well as screening rules that make
computing the PseudoNet estimate over a
range of tuning parameters tractable.

1 INTRODUCTION

We consider the problem of obtaining a sparse estimate
of the inverse covariance matrix in a high-dimensional

Appearing in Proceedings of the 20th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2017, Fort Lauderdale, Flordia, USA. JMLR: W&CP vol-
ume 54. Copyright 2017 by the authors.

setup, where the number of variables (i.e., features) p
is possibly much larger than the number of data sam-
ples n. This is an important problem in modern statis-
tics as well as across a variety of applications.

In high dimensions (i.e., when p� n), it makes sense
to obtain an estimate by maximizing an `1-penalized
Gaussian likelihood (see, e.g., Yuan and Lin (2007);
Banerjee et al. (2008); Friedman et al. (2008); Roth-
man et al. (2008)) — although other penalities are
certainly possible. This is, of course, a massive area
of research, and a number of estimators for, as well
as extensions to, this basic Gaussian setup have been
proposed over the years, including the seminal graphi-
cal lasso algorithm (GLasso) of Friedman et al. (2008).
Pseudolikelihood -based estimators (Besag, 1974) take
a somewhat different approach, in that they can be
seen as minimizing the sum of `1-penalized regres-
sion (i.e., lasso) problems, which more directly ex-
ploits the connection between the inverse covariance
matrix and partial correlations; see, e.g., Meinshausen
and Bühlmann (2006); Rocha et al. (2008); Peng et al.
(2009); Friedman et al. (2010); Khare et al. (2015);
Ali et al. (2016). Pseudolikelihood-based estimators
are thus, in a sense, more flexible in moving beyond
the usual Gaussian setup.

Under the assumption that the data-generating pro-
cess is multivariate normal, it is a well-known fact
that the random variables i and j are conditionally
independent given the remaining variables if and only
if the (i, j) entry in the underlying inverse covariance
matrix is zero (see, e.g., Lauritzen (1996)); as a re-
sult, much work has looked at producing estimates
that accurately recover the underlying support (i.e.,
the set of nonzero entries), which makes these esti-
mates more interpretable. On the other hand, we of-
ten want to use an estimate later in our workflow,
in which case low estimation error (as measured by
a suitable matrix norm) is perhaps a more useful cri-
terion for evaluating an estimate. Asymptotically, the
SPACE and CONCORD pseudolikelihood-based esti-
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mators of Peng et al. (2009) and Khare et al. (2015),
respectively, have been shown to be consistent (in a
Frobenius norm sense) under certain conditions; how-
ever, carefully checking the conditions required by the
consistency proofs in these papers reveals that they
presume the existence of accurate estimates of the di-
agonal entries of the underlying inverse covariance ma-
trix. A natural choice here is to simply use the diag-
onal entries of the sample inverse covariance matrix,
but such estimates unfortunately do not exist when
p > n, and alternatives are not immediately apparent.

Returning to the issue of interpretability of
pseudolikelihood-based estimates, we raise a basic
question: are the estimates given by pseudolikelihood-
based methods well-defined (i.e., unique)? We
elaborate below (see Section 1.3), but the short
answer to this question for now is that the estimates
given by many pseudolikelihood-based methods, in-
cluding SPACE, CONCORD, the SPLICE estimator
of Rocha et al. (2008), as well as the Symmetric
Lasso estimator of Friedman et al. (2010), may not be
unique, and in fact many of these methods may not
even converge to a particular estimate — which can
be problematic from an interpretability point of view.
For example, in a finance application, we may wish
to understand which assets are correlated, in order to
assemble a diversified portfolio (Markowitz, 1952); if
the outcome of an estimation procedure is not unique,
then which assets should we use?

Furthermore, given the connection between
pseudolikelihood-based methods and the lasso,
we recall a basic result from lasso theory, which
states that the lasso can saturate, meaning that when
p > n, there exists a lasso estimate with at most
n nonzero entries (equivalently, selected variables)
(Rosset et al., 2004; Zou and Hastie, 2005; Tibshirani,
2013); this behavior can be quite limiting from the
points of view of interpretability as well as estimation
error. It is therefore natural to ask: do estimates
given by existing pseudolikelihood-based methods also
saturate? We show that several estimators, including
SPACE, CONCORD, and SPLICE, unfortunately can
saturate, which establishes an analogous result for
undirected graphical models (see Section 4.3).

1.1 Overview of contributions

In this paper, we introduce a new, more flexi-
ble pseudolikelihood-based estimator of the inverse
covariance matrix, which we call PseudoNet, that
addresses all the aforementioned issues with exist-
ing pseudolikelihood-based methods, and additionally
possesses a number of other useful statistical and com-
putational properties. We give a brief summary below.

Computational aspects and uniqueness.
We present a fast algorithm for computing the
PseudoNet estimate by leveraging recent advances in
convex optimization, and show that our algorithm
converges at a geometric (“linear”) rate to the (global)
solution of a convex optimization problem that defines
the PseudoNet estimate. Furthermore, this solution is
unique, as the objective in the optimization problem
is strictly convex. This contrasts with a number of
other pseudolikelihood-based methods (Rocha et al.,
2008; Peng et al., 2009; Friedman et al., 2010; Khare
et al., 2015; Oh et al., 2014), which do not provide
unique estimates, making interpretation difficult, and
are either not guaranteed to converge or converge at
a slower rate (e.g., the CONCORD estimator).

We also derive screening rules for PseudoNet, which
make the optimization problem much faster to solve by
omitting some of the variables (Banerjee et al., 2008;
Tibshirani et al., 2012; Mazumder and Hastie, 2012).
These rules can be implemented as simple checks based
on the optimality conditions of the PseudoNet opti-
mization problem; in some cases, we are able to reduce
the size of the optimization problem by 90%.

Estimation error. We show that PseudoNet signif-
icantly outperforms the closely related CONCORD es-
timator, which we build upon, in terms of estimation
error (as measured by several matrix norms), while
also outperforming CONCORD in terms of support
recovery. As mentioned above, although the literature
often emphasizes support recovery, obtaining an esti-
mate with low estimation error is perhaps more use-
ful in situations where our estimate will be used by a
downstream application.

Consistency. We also show, under standard regu-
larity conditions, that PseudoNet is consistent at a
rate of

√
(log p)/n. The consistency proofs for the re-

lated pseudolikelihood-based estimators SPACE and
CONCORD assume the existence of accurate esti-
mates of the diagonal entries of the underlying inverse
covariance matrix, but do not provide a method for
obtaining these estimates when p > n. In this paper,
we go further and give a two-step method that ob-
tains accurate diagonal estimates, even when p > n;
this result is therefore also useful in the consistency
proofs for SPACE (Peng et al., 2009, Theorem 3) and
CONCORD (Khare et al., 2015, Theorem 2).

Saturation. We show that the PseudoNet estimate
does not saturate, meaning that when p� n, the num-
ber of variables selected by PseudoNet can be greater
than np (out of p(p−1)/2 total variables), which is not
true for several other pseudolikelihood-based estima-
tors (Rocha et al., 2008; Peng et al., 2009; Khare et al.,
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2015); establishing this result involves generalizing an
analogous claim for the (standard) lasso as in, e.g.,
Rosset et al. (2004); Tibshirani (2013). This result is
useful from the points of view of the estimation error as
well as the interpretability of the PseudoNet estimate.

Non-Gaussian data. Lastly, we illustrate, through
numerical examples with real finance and wind power
data, that PseudoNet deals effectively with non-
Gaussian data, outperforming several strong baselines.
This is due, in part, to the precise form of the ob-
jective in the PseudoNet optimization problem, which
dispenses with the assumption that the true distribu-
tion is normal, and is helpful in moving beyond the
usual Gaussian setup.

1.2 Outline

An outline for the rest of this paper is as follows. In the
next subsection, we survey related work. In Section 2,
we describe the PseudoNet estimator and its screening
rules. In Section 3, we present an empirical evaluation
of PseudoNet, as well as several baselines, on synthetic
and real-world data. We present all of our theoretical
results on PseudoNet’s statistical and computational
properties in Section 4; all of our proofs are given in
the supplement. We conclude in Section 5.

1.3 Related work

The literature on high-dimensional sparse inverse co-
variance estimation is quite vast; we do not claim to
give a complete treatment of it here, and instead high-
light work most related to our own. Yuan and Lin
(2007); Banerjee et al. (2008); Friedman et al. (2008);
Rothman et al. (2008) first proposed estimating the in-
verse covariance matrix by maximizing an `1-penalized
Gaussian likelihood; Friedman et al. (2008) proposed
the GLasso, a fast algorithm for computing an esti-
mate in this framework. In a related but distinct line of
work, a number of pseudolikelihood-based estimators
have been proposed; pseudolikelihood-based methods
take a somewhat different perspective, in that they can
be seen as roughly minimizing a series of `1-penalized
regression problems, making them arguably simpler to
analyze and extend than other approaches. The semi-
nal neighborhood selection method of Meinshausen and
Bühlmann (2006), which fits a lasso regression of each
variable on the rest, is an example; a drawback of
neighborhood selection is that the estimate may not
be symmetric, so a post-processing step is required.

In a nice step forward, Peng et al. (2009) introduced
the SPACE estimator, and showed that it is symmet-
ric and also consistent, under suitable regularity con-
ditions. Unfortunately, SPACE is not guaranteed to

converge (it is easy to find examples where the iter-
ates produced by SPACE alternate between two val-
ues), and furthermore the SPACE estimate may not
be unique (Khare et al., 2015); additionally, the con-
sistency proof for SPACE assumes that accurate esti-
mates for the diagonal entries of the underlying inverse
covariance matrix are available, even when p > n,
without giving a method to obtain them. Inspired by
SPACE, Friedman et al. (2010) introduced the Sym-
metric Lasso estimator, which is also symmetric, but is
not guaranteed to converge, be unique, or be consistent
(Khare et al., 2015, Lemma 2). The SPLICE estimator
of Rocha et al. (2008) has some useful computational
properties, but does not have any of these guarantees
either (Khare et al., 2015, Lemma 3).

Building on SPACE, the CONCORD estimator (Khare
et al., 2015; Oh et al., 2014) recently made useful
progress: CONCORD is symmetric, like SPACE, but
is additionally guaranteed to converge at a rate of
O(1/k2), where k here is the number of iterations, and
is also consistent. On the downside, as we show later
in this paper, CONCORD’s consistency proof assumes
accurate diagonal estimates even when p > n, its es-
timate may not be unique when p > n, and it can
saturate (i.e., when p � n, the CONCORD estimate
can select at most np out of p(p−1)/2 total variables).

2 THE PseudoNet ESTIMATOR

Assume that we are given n samples X1·, . . . , Xn· ∈
Rp, drawn i.i.d. from some unknown distribution that,
without a loss of generality, we take to have mean
zero and covariance matrix Σ0 ∈ Sp++ (the space of
p× p positive definite matrices). We want to estimate
the underlying inverse covariance matrix Ω0 = (Σ0)−1

with a small number of nonzero entries.

We define the PseudoNet estimate, which gives a
sparse estimate of the underlying inverse covariance
matrix, as the solution of the following convex opti-
mization problem:

minimize
Ω∈Rp×p

−(1/2)
∑p
i=1 log(Ω2

ii)

+(1/2)
∑p
i=1

∥∥∥ΩiiXi +
∑
j 6=i ΩijXj

∥∥∥2

2
+λ1

∑
i6=j |Ωij |+ (λ2/2)‖Ω‖2F ,

where λ1, λ2 > 0 are tuning parameters, and ‖ · ‖F
is the Frobenius norm. After some manipulations, we
can put the above optimization problem into the fol-
lowing matrix form, which is useful for much of the
rest of the paper:

minimize
Ω∈Rp×p

−(1/2) log det(Ω2
diag) + (n/2)TrSΩ2

+λ1‖Ωoff‖1 + (λ2/2)‖Ω‖2F .
(1)
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Here, Ωdiag ∈ Rp×p is a matrix of the diagonal entries
of Ω, with its off-diagonal entries set to zero; S ∈ Rp×p

is the sample covariance matrix, i.e., S = 1
nX

TX, and

X ∈ Rn×p is a data matrix; Ωoff ∈ Rp×p is a matrix of
the off-diagonal entries of Ω, with its diagonal entries
set to zero; and ‖ · ‖1 is the elementwise `1 norm.

Note that we do not make the assumption here that
the underlying data-generating process is, e.g., multi-
variate normal, which is helpful in moving beyond the
usual Gaussian setup; nonetheless, the objective of the
PseudoNet optimization problem in matrix form (1)
does bear some resemblance to an `1-penalized Gaus-
sian likelihood. In fact, the PseudoNet optimization
problem (1) generalizes the (standard) `1-penalized
Gaussian maximum likelihood problem (by design),
when (1) is written as

minimize
Ω∈Rp×p

−(1/2) log detF (Ω) + (n/2)TrSG(Ω)

+λ1‖H(Ω)‖1 + (λ2/2)‖Ω‖2F ,

for some operators F,G,H : Rp×p → Rp×p. (Taking
F as Ω 7→ Ω2

diag, G as Ω 7→ Ω2, and H as Ω 7→ Ωoff re-
covers the PseudoNet optimization problem (1).) Now
taking F,G,H all as Ω 7→ Ω, with λ2 = 0, recovers the
GLasso optimization problem (Friedman et al., 2008,
Equation 1). Furthermore, the framework above also
generalizes several pseudolikelihood-based approaches;
e.g., taking F as Ω 7→ Ωdiag, G as Ω 7→ ΩΩ−1

diagΩ,
H as Ω 7→ Ωoff, and λ2 = 0 recovers the (non-
convex) SPACE optimization problem (Peng et al.,
2009, Equation 2), and taking F as Ω 7→ Ω2

diag, G

as Ω 7→ Ω2, H as Ω 7→ Ωoff, and λ2 = 0 recovers the
CONCORD optimization problem (Khare et al., 2015,
Equation 8), revealing a close connection between the
PseudoNet and CONCORD optimization problems.

Although simple in appearance, the squared Frobenius
norm penalty in the PseudoNet optimization prob-
lem (1) gives PseudoNet a number of statistical and
computational advantages (that are not always sim-
ple to show) over many other pseudolikelihood-based
approaches, including the ones just mentioned. Sta-
tistically, owing to this penalty, PseudoNet is able
to obtain much better estimation error than CON-
CORD (see Sections 3, 4.2, and 4.2.1), which is again
useful when our estimate will be used by a down-
stream application; PseudoNet’s estimates also tend
to be more stable than CONCORD’s. We can under-
stand this intuitively, by considering the relationship
between the elastic net (Zou and Hastie, 2005) and
the (standard) lasso optimization problems: the elastic
net augments the objective in the lasso optimization
problem with a ridge penalty, which is seen as giving a
sparse estimate with better prediction error than the
associated lasso estimate — taking a pseudolikelihood-
based approach makes it natural to incorporate these

ridge penalties into each regression (sub)problem in
order to obtain a sparse estimate of the inverse covari-
ance matrix with low estimation error.

The elastic net is also an elegant solution to the is-
sue of saturation in the lasso (i.e., when p > n, the
number of variables selected by the lasso can be at
most n). Even though pseudolikelihood-based estima-
tors and the lasso are connected in many ways, it is still
natural to wonder if pseudolikelihood-based estimators
can also saturate, since the objectives in the defin-
ing optimization problems for many pseudolikelihood-
based estimators include terms that go beyond pure
lasso regressions? We show later (see Section 4.3) that
several pseudolikelihood-based estimators (specifically,
SPLICE, SPACE, and CONCORD) indeed can satu-
rate — and that the squared Frobenius norm penalty
in the PseudoNet optimization problem (1) is what
prevents it from saturating. This is a useful result for
PseudoNet, from the points of view of estimation error
as well as interpretability.

Finally, the choices of F,G,H that we make in
the framework above in order to arrive at the
PseudoNet optimization problem (1) ensure that (1)
is convex; further imposing the squared Frobenius
norm penalty guarantees that the objective in (1)
is strictly convex, and hence the PseudoNet esti-
mate is always unique (as mentioned above, convex-
ity as well as uniqueness are not guaranteed for many
pseudolikelihood-based estimators). Computationally,
the squared Frobenius norm penalty allows us to de-
rive a fast algorithm for computing the PseudoNet esti-
mate (which we do next) that converges to the unique,
global solution of the PseudoNet optimization problem
(1) at a geometric rate (see Section 4.1), and is much
faster than CONCORD (see Section 3).

Next, we turn to deriving a fast algorithm for comput-
ing the PseudoNet estimate. Rewriting (1) as the sum
of a smooth function g and a nonsmooth function h,
i.e., letting f(Ω) be the objective in (1), we have that
f(Ω) = g(Ω) + h(Ω), with h(Ω) = λ1‖Ωoff‖1 and

g(Ω) = −1

2
log det(Ω2

diag) +
n

2
TrSΩ2 +

λ2

2
‖Ω‖2F .

(2)
The presence of the nonsmooth term h here makes
the PseudoNet optimization problem (1) difficult to
solve using, say, an interior point method. On the
other hand, h does admit a computationally efficient
proximal operator (Parikh and Boyd, 2013), i.e.,

proxth(V ) = argmin
Z∈Rp×p

(
h(Z) +

1

2t
‖Z − V ‖2F

)

=⇒ [proxth(V )]ij =


Vij − t Vij > t

0 |Vij | ≤ t
Vij + t Vij < −t,

(3)
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for i, j = 1, . . . , p, some V ∈ Rp×p, and a constant
t > 0; (3) is known as the soft-thresholding operator. A
proximal gradient method is thus a natural choice here;
i.e., on each iteration of the algorithm, we take a step
in the direction of the negative gradient of g, and then
apply (3). Provided that the gradient of g is Lipschitz
and the step sizes are chosen appropriately, proximal
gradient methods in general obtain a convergence rate
of O(1/k), where k here is the number of iterations.
However, we are able to obtain a much better (i.e.,
geometric) rate of convergence, owing to the strong
convexity of (1), as we show later in Section 4.1.

To complete the specification of the proximal gradi-
ent method, we give the gradient and Hessian of the
smooth term g in (2):

∇g(Ω) = −Ω−1
diag + (n/2)(SΩ + ΩS) + λ2Ω (4)

∇2g(Ω) =

p∑
i=1

(1/Ω2
ii)(eie

T
i ⊗ eieTi ) (5)

+ (n/2)(S ⊗ I + I ⊗ S) + λ2Ip2 ,

where ⊗ is the Kronecker product, and ei is the ith
standard basis vector in Rp. A complete specification
of our proximal gradient method, along with a way to
choose the tuning parameters, is in the supplement.

2.1 Omitting predictors via screening rules

We often want to solve the PseudoNet optimization
problem (1) over a grid of (λ1, λ2) values, and then
choose a suitable estimate. By leveraging the nature
of the PseudoNet optimization problem, we are able
to derive sequential strong screening rules here (Tib-
shirani et al., 2012), which are well-suited for this as
they omit variables from the PseudoNet optimization
problem as we solve it over many tuning parameters.

Tibshirani et al. (2012) introduced sequential strong
screening rules as a framework for deriving screen-
ing rules that drop variables as we solve a sequence
of convex optimization problems; these optimization
problems are required to have an objective that can
be expressed as the sum of a smooth loss and a poten-
tially nonsmooth penalty. Sequential strong rules are
based on the optimality conditions for the optimiza-
tion problem in question, as well as the assumption
that the gradient of the smooth loss is nonexpansive,
i.e., that it has a Lipschitz constant equal to one; thus,
strong rules might commit violations, i.e., they might
suggest that a variable could be dropped when it is
actually nonzero at the solution. Consequently, we
check the optimality conditions after applying sequen-
tial strong rules; we do so in our numerical experi-
ments, and never observe a violation (see Sections 3.1
and the supplement). We state our rules in Lemma

2.1; an algorithmic specification is in the supplement.

Lemma 2.1 (Screening rules). Let λ
(1)
1 ≥ · · · ≥ λ

(r)
1

and λ
(1)
2 ≥ · · · ≥ λ

(s)
2 be nonincreasing sequences of

tuning parameters. Also let Ω̂net(λ
(k)
1 , λ

(`)
2 ) be the solu-

tion of the PseudoNet optimization problem (1), for a

particular λ
(k)
1 , λ

(`)
2 , k = 1, . . . , r, ` = 1, . . . , s. Write

the components of the gradient of the smooth parts of

the objective in (1) evaluated at Ω̂net(λ
(k−1)
1 , λ

(`)
2 ) as

Cij(λ
(k−1)
1 , λ

(`)
2 ) = (Sii + Sjj + λ2)Ω̂net

ij (λ
(k−1)
1 , λ

(`)
2 )

+

p∑
j′ 6=j

Ω̂net
ij′ (λ

(k−1)
1 , λ

(`)
2 )Sjj′ +

p∑
i′ 6=i

Ω̂net
i′j (λ

(k−1)
1 , λ

(`)
2 )Sii′ ,

for i, j = 1, . . . , p, i 6= j. Now as-
sume the Cij here are nonexpansive, i.e.,∣∣∣Cij(λ(k)

1 , λ
(`)
2 )− Cij(λ(k−1)

1 , λ
(`)
2 )
∣∣∣ ≤ ∣∣∣λ(k)

1 − λ(k−1)
1

∣∣∣.
Then we have that∣∣∣Cij(λ(k−1)

1 , λ
(`)
2 )
∣∣∣ < 2λ

(k)
1 − λ(k−1)

1 (6)

implies that Ω̂net
ij (λ

(k)
1 , λ

(`)
2 ) = 0; i.e., the entries

satisfying this condition can be omitted from the

PseudoNet optimization problem (1) for λ
(k)
1 , λ

(`)
2 .

3 NUMERICAL EXAMPLES

3.1 Synthetic data

We begin by discussing our synthetic examples; in
these, we directly compare to CONCORD, which is
the method most related to ours. We generated syn-
thetic data as follows. First, we generated a random,
sparse, diagonally dominant p× p (ground truth) ma-
trix Ω0, by following the procedure in Oh et al. (2014);
Khare et al. (2015); Peng et al. (2009); Ali et al.
(2016); we investigated p ∈ {1000, 3000}. Then, we
drew n samples from a multivariate normal distribu-
tion with mean zero and covariance matrix (Ω0)−1,
which were input into PseudoNet and CONCORD;
we investigated n ∈ {0.2p, 0.4p, 0.8p} and λ1, λ2 ∈
{2−10, 2−9.5, . . . , 1, 20.5}, i.e., a 22 × 22 grid. Finally,
we computed a method’s false and true positive rates,
by counting the number of nonzero entries in the
method’s estimate Ω̂ that were zero and nonzero, re-
spectively, in Ω0; we also computed the estimation er-
ror, i.e., ‖Ω0 − Ω̂‖, in several matrix norms. To sum-
marize the variable selection accuracy and estimation
errors across λ1, λ2, we computed the area under the
curve (AUC) (Oh et al., 2014; Khare et al., 2015; Ali
et al., 2016); to summarize the estimation errors, we
computed the median across λ1, λ2. We repeated this
entire process 50 times; thus, Table 1 reports the me-
dians and interquartile ranges (IQRs) across these 50
trials, for p = 3000 (p = 1000 is in the supplement).
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Figure 1: Percentages of dropped variables excluding di-
agonal entries (dashed line, right vertical axes) and viola-
tions (solid line, left vertical axes) for PseudoNet’s screen-
ing rules (λ2 = 1, p = 3000); first column is n = 0.2p,
second is n = 0.4p, third is n = 0.8p. The rules never
commit a violation.

PseudoNet outperforms CONCORD in AUC and es-
timation error across all sample sizes and norms (as
well as on each trial individually). PseudoNet’s esti-
mation error, in particular, is significantly lower than
CONCORD’s. We also see that PseudoNet’s wallclock
times as well as most of its interquartile ranges (IQRs)
are generally lower than CONCORD’s, and that the
estimates produced by PseudoNet are quite stable.

We also investigate the efficacy of PseudoNet’s screen-
ing rules; using the same synthetic data, we measure
the (median across 50 trials) percentages of variables
the rules suggest dropping (excluding diagonal en-
tries), as well as the percentages of violations. Figure
1 presents the results: the rules drop more variables as
λ1 increases (expected), but never commit violations.

3.2 Minimum variance portfolio optimization

Next, we evaluate PseudoNet, as well as several other
methods, in the context of a finance application. We
consider the problem of minimum variance portfolio
optimization, i.e., we must allocate our wealth across
p assets so that our overall risk is minimized; we model
risk here as xT Σ̂x, where x ∈ Rp is an allocation
vector (xi > 0 corresponds to a long position, while
xi < 0 corresponds to a short position), and Σ̂ is an
estimate of the underlying covariance matrix. This
leads to the following (convex) optimization problem:
minimize
x∈Rp

xT Σ̂x subject to 1Tx = 1, which admits the

analytical solution x = (1T Σ̂−11)−1Σ̂−11. We solve a
minimum variance portfolio optimization problem (in-
stead of, say, a mean/variance problem (Markowitz,
1952)) to isolate the impact of the estimate Ω̂ = Σ̂−1.

We obtained the closing prices of the 30 constituent
stocks of the Dow Jones Industrial Average (DJIA)
from February 18, 1995 through October 26, 2012
(roughly 17 years) from http://finance.yahoo.com.
We divided the data into T = 261 consecutive time pe-
riods (of roughly 20 days each). The H days preceding
each trading period, commonly referred to as the esti-
mation horizon, were used to compute the estimate Ω̂;
10-fold cross-validation was used to choose λ1, λ2. The
trading period was then used to evaluate the methods.

We investigated H ∈ {35, 40, 45, 50, 75, 150, 225, 300}.

We primarily evaluated each method using realized

risk, i.e., r =
(

(1/T )
∑T
t=1

(
xTt pt − p̄

)2)1/2

, where

xt, pt ∈ Rp are the portfolio allocation and price
change vectors for period t, respectively, and p̄ is the
realized return, i.e., p̄ = (1/T )

∑T
t=1 x

T
t pt, as well as

the (commonly used) Sharpe ratio, i.e., (p̄− pfree) /r,
where pfree is the risk-free rate (we set pfree = 5%);
intuitively, realized risk measures the instability (i.e.,
riskiness) of a trading strategy, and the Sharpe ratio
trades off the (risk-free rate adjusted) returns and risk.

We compared PseudoNet with CONCORD, the sam-
ple covariance matrix (denoted Sample), the GLasso,
the condition number-regularized inverse covariance
matrix estimator of Won et al. (2013) (CondReg),
the Ledoit-Wolf estimator (Ledoit and Wolf, 2003)
(Ledoit), as well as the DJIA itself (i.e., an in-
dex fund). Table 2 presents the results. When
the estimation horizon is small, i.e., when H ∈
{35, 40, 45, 50, 75}, PseudoNet achieves the lowest risk,
which is a useful feature when markets fluctuate;
PseudoNet is always within 4% of the lowest risk
when the estimation horizon is larger. Additionally,
PseudoNet achieves significantly lower risk than CON-
CORD across all estimation horizons. These reduc-
tions in risk also translate into better Sharpe ratios
for PseudoNet: PseudoNet achieves the highest Sharpe
ratio four (out of eight) times, which is more than any
other method. When PseudoNet does not achieve the
highest Sharpe ratio, it is usually within 5% of the best
Sharpe ratio. We also plot the cumulative wealth (in
$) achieved by an estimator (for H = 300) in Figure
2. PseudoNet achieves the highest cumulative wealth
despite not (directly) optimizing for returns ($8.75
for PseudoNet versus $8.72 for CONCORD) while in-
curring less risk: PseudoNet also preserves the most
wealth during the 2008–2009 financial crisis ($4.64 for
PseudoNet versus $4.43 for CONCORD and $4.23 for
CondReg). Further details are in the supplement.

Due to space constraints, we present our application
of PseudoNet to wind power data in the supplement.

4 THEORY

4.1 Linear convergence

We begin by showing that the proximal gradient
method used to compute the PseudoNet estimate,
converges to the unique, global solution of the
PseudoNet optimization problem (1) at a geometric
(“linear”) rate; this constrasts with a number of other
pseudolikelihood-based methods, which do not provide
unique estimates (Rocha et al., 2008; Peng et al., 2009;
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n = 600 n = 1200 n = 2400
PseudoNet CONCORD PseudoNet CONCORD PseudoNet CONCORD

AUC
Median 0.64 0.63 0.75 0.71 0.86 0.84
IQR 0.01 0.01 0.00 0.01 0.01 0.01

Squared Frobenius norm
Median 15495.27 49063.26 12913.39 42021.80 8639.99 30054.52
IQR 83.60 75.39 4.46 78.99 21.98 34.91

`2 operator norm
Median 2.17 4.48 2.01 4.19 1.99 4.43
IQR 0.00 0.00 0.00 0.01 0.00 0.00

Elementwise `1 norm
Median 72178.79 148152.12 87484.12 187895.91 84109.25 195442.01
IQR 114.88 89.36 28.19 150.31 66.62 112.74

Elementwise `∞ norm
Median 1.10 2.38 0.83 1.77 0.49 0.95
IQR 0.00 0.01 0.00 0.01 0.00 0.01

Wallclock time (secs.)
Median 1861.35 3657.65 580.11 1208.06 124.72 236.40
IQR 7.86 36.14 1.48 7.43 0.06 2.14

Table 1: Median and interquartile range for PseudoNet and CONCORD’s areas under the curves (AUCs), estimation
errors in several matrix norms, and wallclock times (p = 3000). Higher median AUC is better, lower median estimation
error and wallclock time is better; best in bold. PseudoNet outperforms CONCORD across all sample sizes and metrics.

H = 35 40 45 50 75 150 225 300

PseudoNet
Risk 15.23 15.04 15.21 15.01 15.06 15.07 15.12 15.25
Sharpe 0.52 0.50 0.43 0.47 0.48 0.47 0.50 0.55

CONCORD
Risk 17.03 17.02 17.04 17.02 17.04 17.09 17.10 17.16
Sharpe 0.48 0.48 0.47 0.49 0.47 0.48 0.50 0.50

Sample
Risk 33.86 26.52 23.19 20.95 17.45 15.41 14.98 14.95
Sharpe 0.36 0.44 0.26 0.23 0.38 0.29 0.37 0.36

GLasso
Risk 16.55 16.54 16.56 16.36 15.61 14.99 14.87 14.95
Sharpe 0.49 0.49 0.47 0.47 0.42 0.36 0.36 0.36

CondReg
Risk 17.83 17.76 17.64 17.61 17.20 16.37 16.07 16.10
Sharpe 0.48 0.48 0.45 0.46 0.46 0.47 0.52 0.49

Ledoit
Risk 15.58 15.46 15.43 15.36 15.10 14.66 14.52 14.52
Sharpe 0.47 0.44 0.39 0.41 0.37 0.38 0.42 0.41

DJIA
Risk 18.96 18.96 18.96 18.96 18.96 18.96 18.96 18.96
Sharpe 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

Table 2: Realized risks and Sharpe ratios for vari-
ous estimators and estimation horizons H in the portfo-
lio optimization example. Lower realized risk is better
(PseudoNet is best 5/8 times), and higher Sharpe ratio
is better (PseudoNet is best 4/8 times); best in bold.
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Figure 2: Cumulative wealth for various estimators in
the portfolio optimization example (H = 300); higher is
better. PseudoNet achieves the highest cumulative wealth.

Friedman et al., 2010; Khare et al., 2015; Oh et al.,
2014), making interpretation difficult, are not guaran-
teed to converge (Rocha et al., 2008; Peng et al., 2009;
Friedman et al., 2010), or converge at a slower rate
(Khare et al., 2015; Oh et al., 2014).

Lemma 4.1 (Linear convergence). Suppose (Ω(i))ki=0

is a sequence of PseudoNet iterates with nonincreas-
ing objective value. Let Ω̂net be the solution of the
PseudoNet optimization problem (1). Then ‖Ω(i) −

Ω̂net‖F ≤ (1 − c)i‖Ω(0) − Ω̂net‖F , i = 1, . . . , k, where
c = λ2/L, and L is the Lipschitz constant for the gra-
dient of the smooth term ∇g in (2).

4.2 Consistency

Next, we show, under suitable regularity conditions,
that PseudoNet is consistent at a rate of

√
(log p)/n.

Previous consistency results on pseudolikelihood-
based estimators assume the existence of accurate esti-
mates of the diagonal entries of the underlying inverse
covariance matrix Ω0; however, no method for obtain-
ing such estimates is provided in these papers when
p > n (Khare et al., 2015; Peng et al., 2009). Below,
we provide a two-step method that obtains accurate di-
agonal estimates, which are required for PseudoNet’s
(as well as CONCORD’s and SPACE’s) consistency
proofs; this is done in Theorem 4.3. We give the regu-
larity conditions required to establish the consistency
of PseudoNet in the supplement; the assumptions are
similar to those required in Khare et al. (2015), which
are in turn similar to those in Peng et al. (2009), ex-
cept that here we must additionally control how the
new tuning parameter λ2 grows with n. The following
theorem presents our consistency result for PseudoNet.

Theorem 4.2 (Consistency). Assume the conditions
stated in the supplement. Let p = O(nκ) for a con-
stant κ > 0, and let Ω̂net be the PseudoNet estimate
given by the solution of the PseudoNet optimization
problem (1). Then, we have, with probability at least
1 − O(n−β) for a constant β > 0: (a) signed support
recovery: sign ω̂net

ij = signω0
ij , i, j = 1, . . . , p, where

ω̂net and and ω0 are the vectorizations of Ω̂net and Ω0,
respectively (i.e., the concatenations of the columns of
these matrices), and we take sign 0 = 0; (b) estima-
tion error: ‖ω̂net − ω0‖2 ≤ c1λ1

√
qn, for a constant

c1 > 0, where qn is a quantity such that λ1
√
qn → 0

as n→∞ (see the supplement for details).
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4.2.1 Accurate diagonal estimates

The following theorem gives a way to obtain consis-
tent estimates of the diagonal entries of the underlying
inverse covariance matrix; the result is also useful in
the consistency proofs for CONCORD (Khare et al.,
2015, Theorem 2) and SPACE (Peng et al., 2009, The-
orem 3), where consistent estimates are assumed, but
a method to obtain them is not given, resolving an
important gap in the literature. Our two-step method
first performs a lasso regression (with tuning param-
eter λ1) of each diagonal element on the remaining
variables to identify subsets of relevant variables, and
second estimates each diagonal element with the vari-
ance of the residuals given by the linear regression of
each diagonal element on its subset of relevant vari-
ables (see the supplement for a discussion).

Theorem 4.3 (Accurate diagonal estimates via
two-step method). Assume the conditions stated in the
supplement. Now, for j = 1, . . . , p, let Âjn be the set
of indices corresponding to the nonzero coefficients ob-
tained by fitting a lasso regression of the jth diagonal
element on the remaining variables (with tuning pa-
rameter λ1). Also, let ω̂diag,j be the sample variance of
the jth diagonal element conditioned on the variables
in Âjn. Then, for every β > 0, there exists a constant
c2 > 0 such that ‖ω̂diag − ω0

diag‖∞ ≤ c2dn
√

(log n)/n,

with probability at least 1−O(n−β), where ω0
diag means

the diagonal entries of Ω0, and dn denotes the maxi-
mum number of nonzero entries in any row of Ω0.

4.3 Saturation

Lastly, we show that the PseudoNet estimate does not
saturate (i.e., when p � n, the number of variables
selected by PseudoNet can be greater than np out of
p(p−1)/2 total variables), while the SPLICE, SPACE,
and CONCORD estimates can saturate; this is rather
limiting for these latter estimators from the points of
view of estimation error as well as interpretability.

To do this, we first introduce some notation that
makes the statements of these results, as well as their
proofs, more concise. We use vech to mean the half-
vectorization operator, i.e., the concatenation of the
lower triangle of its (matrix) argument, excluding di-
agonal entries. We use card to count the number of
nonzero entries in its argument. Also, we say that the
columns of a wide matrix A ∈ Rk×` (i.e., ` > k) are
in general position if the affine span of any m ≤ k
signed columns of A, i.e., si1Ai1 , . . . , simAim , where
each sj , j = i1, . . . , im is fixed to either +1 or −1,
does not contain any of the points ±Aj , j 6= i1, . . . im.

Theorem 4.4 (Saturation results for PseudoNet and

CONCORD). Let A ∈ Rnp×p(p−1)/2 be a matrix
containing the columns of the data matrix X ar-

ranged in a particular fashion (details in the supple-
ment). Also, let Ω̂net be the PseudoNet estimate,
i.e., the solution of the PseudoNet optimization prob-
lem (1), and let Ω̂con be a CONCORD estimate; so,

we have vech Ω̂net,vech Ω̂con ∈ Rp(p−1)/2. Assume
that p � n. Then, the PseudoNet estimate does
not saturate, i.e., cardvech Ω̂net ≤ p(p − 1)/2, and
there exists a CONCORD estimate that saturates, i.e.,
cardvech Ω̂con ≤ np. Furthermore, if the columns of
the matrix A are in general position, then all CON-
CORD estimates saturate.

The analogous results for SPLICE and SPACE, com-
puted using iterative algorithms (see the supplement),
follow by using arguments similar to those given in the
proof of Theorem 4.4.

Corollary 4.5 (Saturation results for SPLICE and
SPACE). Let Ω̂spl,(i) and Ω̂spc,(i) denote SPLICE and
SPACE estimates at the end of iteration i, re-
spectively; so, we have vech Ω̂spl,(i),vech Ω̂spc,(i) ∈
Rp(p−1)/2. Assume that p � n. Then, there exist
SPLICE and SPACE estimates at the end of itera-
tion i that saturate, i.e., cardvech Ω̂spl,(i) ≤ np and
cardvech Ω̂spc,(i) ≤ np.

5 DISCUSSION

We introduced PseudoNet, a new, more flexible
pseudolikelihood-based estimator of the inverse co-
variance matrix; PseudoNet can be viewed as gener-
alizing several Gaussian likelihood-based, as well as
pseudolikelihood-based, estimators in ways that give
PseudoNet a number of statistical and computational
advantages. As a whole, we believe these statistical
and computational properties represent a useful step
forward in the design of pseudolikelihood-based esti-
mators of the inverse covariance matrix.
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