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Abstract

Mean shift is a mode-seeking clustering al-
gorithm that has been successfully used in
a wide range of applications such as im-
age segmentation and object tracking. To
further improve the clustering performance,
mean shift has been extended to various di-
rections, including generalization to handle
data on Riemannian manifolds and extension
to directly estimating the log-density gradi-
ent without density estimation. In this pa-
per, we combine these ideas and propose a
novel mode-seeking algorithm for Rieman-
nian manifolds with direct log-density gradi-
ent estimation. Although the idea of combin-
ing the two extensions is rather straightfor-
ward, directly estimating the log-density gra-
dient on Riemannian manifolds is mathemat-
ically challenging. We will provide a mathe-
matically sound algorithm and demonstrate
its usefulness through experiments.

1 Introduction

Clustering is one of the most important unsupervised
learning tasks in machine learning and has been exten-
sively studied for decades (Clarke et al., 2009; Murphy,
2012). Among various different types of clustering
algorithms, mode-seeking is a well-studied and prac-
tically useful approach. Mean shift (Fukunaga and
Hostetler, 1975; Cheng, 1995; Comaniciu and Meer,
2002; Carreira-Perpindn, 2015) is a seminal algorithm
for mode-seeking clustering: Kernel density estimation
is first performed on given data points and then the
data points are updated along the gradient of the es-
timated density towards the modes. Finally, the data
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points which converged to the same mode are given
the same cluster label. A notable advantage of mean
shift is that it does not require to specify the number
of clusters in advance. Thanks to this useful property,
mean shift has been successfully employed in a wide
range of real-world applications such as image segmen-
tation (Wang et al., 2004; Tao et al., 2007) and object
tracking (Comaniciu et al., 2000; Collins, 2003).

The original mean shift algorithm considers data
points in the Euclidean space. However, in practice,
data points sometimes lie on a structured space such
as the Lie group and Grassmann manifold. For data
on such a structured space, kernel density estimation
and gradient ascent with the Euclidean metric do not
necessarily perform appropriately. To cope with this
problem, mean shift has been extended to Riemannian
manifolds (Boothby, 2003) and demonstrated to work
well in experiments (Tuzel et al., 2005; Subbarao and
Meer, 2006, 2009; Cetingul and Vidal, 2009).

Another important extension of mean shift is to avoid
density estimation. The original mean shift algorithm
uses kernel density estimation, which tends to perform
poorly when the data dimension is high. Furthermore,
a good density estimator does not necessarily mean a
good density gradient estimator, and thus the two-
step approach of first estimating the density and then
computing its gradient does not always perform well.
To cope with this problem, a method to directly es-
timate the log-density gradient without density esti-
mation has been developed (Cox, 1985; Sasaki et al.,
2014), and a mode-seeking clustering algorithm based
on the direct log-density gradient estimator was exper-
imentally shown to work well (Sasaki et al., 2014).

The purpose of this paper is to combine these two
extensions and propose a novel clustering algorithm
based on direct log-density gradient estimation and
mode-seeking on Riemannian manifolds. Although the
idea of combining the two extensions is rather straight-
forward, directly estimating the density gradient on
Riemannian manifolds is mathematically challenging.
We will provide a mathematically sound algorithm and
demonstrate its usefulness through experiments.
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2 Problem Formulation

In this section, we formulate the clustering problem by
mode-seeking and review existing algorithms.

Clustering by Mode-Seeking: Suppose that we
are given independent and identically distributed sam-
ples of size n on RY, X = {x;}7,, with unknown
probability density p(x). The goal of clustering is to
split the set X into ¢ disjoint subsets {X;}¢_; so that
samples in each subset share similar properties while
samples in different subsets have different properties.

Various types of clustering algorithms have been ex-
plored so far (Clarke et al., 2009; Murphy, 2012).
Among them, mode-seeking is one of the popular
and well-studied approaches (Fukunaga and Hostetler,
1975; Cheng, 1995; Comaniciu and Meer, 2002;
Carreira-Perpindn, 2015). In mode-seeking cluster-
ing, data samples {x;}? , are first gathered to the
modes of data density p(x) by, e.g., gradient ascent
x < x + eVp(x), where e > 0 is the step size and
Vp(x) is the gradient of the density function p(x) with
respect to = (z(), ... 2(¥)T. Then, data samples
which converged to the same mode are given the same
cluster label.

Below, we review representative mode-seeking cluster-
ing algorithms.

Mean Shift Clustering: Mean shift is a seminal
algorithm of mode-seeking clustering (Fukunaga and
Hostetler, 1975; Cheng, 1995; Comaniciu and Meer,
2002). In the mean shift algorithm, the probability
density p(x) is first learned by kernel density estima-
tion:

o= %S o)

where k(¢) is a non-negative function, ¢ > 0 is the
bandwidth, and ¢, is the normalization constant such
that the integration of p(x) is equal to 1. As func-
tion k(t), the exponential decaying function k(t) =
exp(—t/2) is often used in practice, which yields the
Gaussian kernel:
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The bandwidth o can be systematically chosen by
cross-validation with respect to the log-likelihood or
squared error criteria.

Next, the gradient of the kernel density estimator p(x)
is computed:

Vp(z)= Ck%Z(a:Z — a:)k/<
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and m(x) is called the mean shift vector (Comaniciu
and Meer, 2002):

fl ik/ xr—x; ||2
m(m) — Zz:lw (” o ) —

i1 B (155711)

To obtain the modes of data density, the mean shift
algorithm uses the fized-point iteration for mode-
seeking. More specifically, a necessary condition for
local maximum Vp(x) = 0 implies m(z) = 0, which
yields ® <+ x + m(x). Since this fixed-point update
rule can be rewritten as ¢ + x + ﬁVﬁ(m), it can be
interpreted as gradient ascent with adaptive step size
1/e(x) > 0.

After repeating the fixed-point update for all samples
{z;}™_, until convergence, samples which converge to
the same mode are given the same cluster label.

The mean shift algorithm has been successfully em-
ployed in various real-world applications such as im-
age segmentation (Wang et al., 2004; Tao et al., 2007)
and object tracking (Comaniciu et al., 2000; Collins,
2003).

Mean Shift Clustering on Riemannian Mani-
folds: The original mean shift algorithm considers
data points in the Euclidean space. However, in prac-
tice, data points sometimes lie on a structured space
such as the Lie group and Grassmann manifold. For
data on such a structured space, kernel density estima-
tion and gradient ascent with the Euclidean metric do
not necessarily perform appropriately. To cope with
this problem, the mean shift algorithm has been ex-
tended to Riemannian manifolds (Tuzel et al., 2005;
Subbarao and Meer, 2006, 2009; Cetingul and Vidal,
2009). Here we briefly review such an extention. Let
us consider data points {X;}?_; on Riemannian man-
ifold M™ of dimension m < d embedded in R%.

As shown in Eq.(1), kernel density estimation in the
original mean shift algorithm uses the squared Eu-
clidean distance between = and x;, i.e., |z —z;||?. For
data points on a Riemannian manifold, this may be
replaced with the squared geodesic distance between
X and X;:

C - )2
FX) = n‘szk<‘“xax)> )
i=1

where §(X, X') denotes the geodesic distance between

X and X', and ¢ ¢ is a positive constant.'

!Strictly speaking, Eq.(2) is inappropriate as a density
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Tangent space Tx M™

Manifold M™

Figure 1: The exponential map and the logarithm
map. The exponential map at the point X transforms
points on the tangent space at X to the manifold,
while the logarithm map at X transforms points on
the manifold to the tangent space at X.

Then, the gradient of the estimated density is given
by

VRO = Z % 3 wsx, xip) (PR
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where cpr 55 = —20;670,5/02. log x X; denotes the log-
arithm map of X; at X, which satisfies the following
relation (Boothby, 2003):

logx Xi = —%V5(X7Xi)2- (4)

In the same way as the original mean shift algorithm,
Eq.(3) can be expressed as Vp(X) = e(X)M(X),
where €(X) = ZLzb S K/ (Xix)) > 0 and
M(X) is the mean shlft vector defined as

Yoy [logx Xi) K (5<X07§>2)
Sh_ K (6({77?”)

This shows that mean shift vector M (X) lies on the
tangent space at X, which is denoted by Tx M™ (see
Figure 1).

M(X) :=

Thus, when a point X on the manifold is updated
along with this vector, it no longer lies on the mani-
fold. To cope with this problem, the updated point is
projected back to the manifold by the exponential map
X «+ expx M(X) (see Figure 1 again) (Boothby,
2003).

After repeating this update for all samples {X;}" ;
until convergence, samples which converge to the same
mode are given the same cluster label.

estimator on Riemannian manifolds: To ensure that the
integration of p(X) is equal to 1, the normalizing constant

of each k (%) has to depend on X; (Pelletier, 2005;

Arvanitidis et al., 2016). Nonetheless, Eq.(2) has been em-
ployed in the mean shift algorithm because of its compu-

tational efficiency and simple form (Subbarao and Meer,
2009).
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(a) Data densities (b) Log-density gradients
Figure 2: Density estimation and log-density gradient
estimation. Pa(x) is a better estimate of true density

p(z) than py(z), but Vlogpa(z) is a worse estimate of

true log-density gradient Vlogp(z) than Vlogp;(z).
Thus, a good density estimator is not necessarily a
good log-density gradient estimator.

The mean shift algorithm on Riemannian manifolds
has been shown to work well experimentally (Tuzel
et al., 2005; Subbarao and Meer, 2006, 2009; Cetingul
and Vidal, 2009).

Least-Squares Log-Density Gradient Cluster-
ing: Another important extension of the original
mean shift algorithm is to avoid density estimation
(Sasaki et al., 2014). Kernel density estimation used
in the original mean shift algorithm tends to perform
poorly when the data dimension d is high. Further-
more, a good density estimator does not necessarily
mean a good density gradient estimator (see Figure 2),
and thus the two-step approach of first estimating the
density and then computing its gradient does not al-
ways perform well. To cope with these problems, a
method to directly estimate the density gradient with-
out density estimation has been developed (Cox, 1985;
Sasaki et al., 2014). Here, we briefly review the direct
log-density gradient estimator called the least-squares
log-density gradient (LSLDG) and the mode-seeking
clustering algorithm based on it called LSLDG clus-
tering (Sasaki et al., 2014).

Let g(x) := (¢ (x),...,¢¥(x))T be the gradient of
the log-density function, where g\/)(z) := 9, log p(x)
and 9; = 5%;. The key idea of LSLDG is to di-

rectly fit a model gU)(z) to the true log-density gra-
dient ¢g¥)(z) under the squared loss:

G @) = [ (39(@) - 99(@) pladie -
= /'g(j)(m)Qp(m)dw - 2/§(j)(m)8jp(m)dw

:/ ()( dw+2/ 9,59 (x

where C = fg(j)(m)zp(:c)dm and the last equal-
ity follows from integration by parts under

(2)de,
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lim, ) 1o g9 (x)p(x) = 0. Then the empirical

approximation of JU) is given as
N 1 <& 2 & 4
TG (50) ~=Y dD@)2+2Y 0.99(x;). (5
GV ()~ =Y gV (@ + ;:1 i (i) (5)

i
As the log-density gradient model gV (z), a linear-in-
parameter model is used:

79 (z) = g(j)Tw(j)(m) _ zb: 6949 (x),

=1

where b denotes the number of parameters, 8() ¢ R?
is the parameter vector, and ¥ () (x) € R? is the vec-
tor of basis functions. By plugging this linear model
into Eq.(5) and adding the ¢5-regularizer to avoid over-
fitting, the following optimization problem is obtained:

89)= argmin [g(j)Té(j)g(j) 129U RO 4 )\(j)g(j)—rg(j)} ,
60 cR?

where )\(j)A > 0 is the regularization parameter, and
GU) and hU) are defined as

Zw Za P

The optimal solution 0 is obtained analytically by

G).— (@)D (@

0l — _(@(J‘) + )\(J')Ib)—lfL(J')7

where I, denotes the b x b identity matrix. All hyper-
parameters such as the regularization parameter \(9)
and basis parameters in 1) (x) can be systematically
chosen by cross-validation with respect to the squared
error criterion J). This direct log-density gradient
estimator is called LSLDG.

To derive a mean shift like fixed-point algorlthm
from LSLDG, for the Gaussian kernel, <;Sl ( ) =

exp [ lz=eil’?
P 22

sen randomly from {z;}_, without overlap, its partial
derivative was proposed to be used as basis functions

(Sasaki et al., 2014):
& — Cl2)
20()?

Suppose Z?Zl §§j)¢§j)(a;) # 0. Then the LSLDG so-
lution can be expressed as

Zb: l])w(])

l

), where the centers {c;}}_, are cho-
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where €)(z) = ﬁ Z?:l al(j)(bl(j)(az) and MmUY (x) is
the j-th element of the mean shift vector defined as

S, 0 %l (@)
zi’,:l el (@)

Then, a necessary condition for local maximum
9;p(x) = 0 implies MY (x) = 0, which yields () «+
20 + mU)(x). This update formula can be regarded
as a weighted variant of the original mean shift algo-
rithm (Cheng, 1995), and it is reduced to the original

m(j)(m) —

mean shift algorithm when b = n and 9l(j ) =1 /n.

The LSLDG clustering algorithm was demonstrated to
work well in experiments (Sasaki et al., 2014).

3 Proposed Method

In this section, we propose to combine the Riemannian
extension of the mean shift algorithm and the LSLDG
algorithm, and develop a novel clustering algorithm
for Riemannian manifolds. Below, we consider data
points { X;}?_, on a Riemannian manifold (M™, H) of
dimension m(< d) embedded in R? with Riemannian
metric H.

Direct Log-Density-Gradient Estimation on
Riemannian Manifolds: If LSLDG is naively ap-
plied to data on Riemannian manifolds, the estimated
gradient vector does not necessarily lie on the tan-
gent space. To prevent this problem, we propose to
use the common parameter vector for all dimensions
with basis functions confined in the tangent space.
More specifically, let the true log-density gradient vec-
tor be g(X) := Vlogp(X) € Tx M™, where V de-
notes the Riemannian gradient. We model g(X) by
g(X) = YV (X)) € TxM™, where 6, is the
common parameter, b is the number of the parame-
ters, and 1;(X) is the vector of basis functions which
we assume to be on the tangent space Tx M™.

This common-parameter model is fitted to the true
log-density gradient g(X) under the squared loss on a
manifold:

IGX) = [ 806 - (X p(X)dvolx — C
— [ 18X p(X)dvolx
e
2 [ @090} mp(X)dvolx
— [ 1§ m(X)avolx
2 [ G0 VpX)udvolx,  (0)
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where € = [, [9(0)|2p(X)dvolx, || |3 = ()u
denotes the inner product operator, dvolx denotes a
volume element of a Riemannian manifold (Petersen,
2006), and the last equality follows from the relation
g(X) = Vlogp(X) = Vp(X)/p(X). Applying the
“integration by parts” formula for manifolds without
boundary (Lee, 2012) to the second term in Eq.(6),
we obtain

Jax

where “div” denotes the divergence (Petersen, 2006).
Approximating the expectation over p(X) by the
average of samples {X;}?; and adding the /¢5-
regularization term, the following optimization prob-
lem is obtained:

), Vp(X))pdvolx = —/p(X)diVﬁ(X)dvolX,

m

0 = argmin {BTC:‘B +20 h + )\0—'—0} ,
OERD

where, for [,I' =1,...,0,
Gy =~ Z (X)), v (X)), (7)

hy = - Zdivwl(Xi)), (8)

and A > 0 is the regularization parameter. The opti-
mal solution @ can be obtained analytically as

~

6 = —(G+\I,) 'h.

All hyper-parameters such as the regularization pa-
rameter A and basis parameters in 1;(X) can be sys-
tematically chosen by cross-validation with respect to
the squared error criterion J. Finally, the log-density
gradient estimator is given by g(X) = Zl 1 0i(X).

We call this method Riemannian LSLDG (R-LSLDG).

Mode-Seeking on Riemannian Manifolds:
Based on the estimated log-density gradient g(X),
we propose a mode-seeking algorithm on Riemannian
manifolds.

Let ¢;(X) = exp (7%), where Gaussian cen-

ters {C;}%_, are randomly chosen from data samples
{X;}", without overlap. In the same way as the orig-
inal LSLDG clustering, we use its gradient as basis
function vector ;(X):

[Vé(X,C)?] ¢u(X)

202 o

_ [logx Gi ¢1(X)

2 )

P (X) = —
where we used Eq.(4).

Under the assumption that Z?:l §l¢l(X ) # 0 analo-
gously to the original mean shift algorithm, the mean

shift vector is given as

J/\Z(X) Zl 1 [logX Clkz)l( )
vy O (X)

which always belongs to the tangent space Tx M™.
Then it is projected back to the manifold by the ex-
ponential map X <+ expy M (X). After repeating
this update for all samples {X;}7 ; until convergence,
samples which converge to the same mode are given
the same cluster label. We call this clustering method
R-LSLDG clustering (R-LSLDGC).

Note that the common parameter formulation of
LSLDG can be regarded as the limit of the multi-task
LSLDG method (Yamane et al., 2016).

For further improvement, we can use a different band-
width for each Gaussian center C; similarly to Comani-
ciu et al. (2001). Specifically, we use a basis function

G1(X) = —logx CH(X),

l
where ¢(X) = exp(~3(X,C)2/(202)).
shift vector is given by

_ 1= 1%[10&(01}@( X)
M(X) = ,

s 2o (X)

The mean

where ) is learned by a basis function Uy (X).

Grassmann Manifold: In the experiments in the
next section, we use the Grassmann manifold (Edel-
man et al., 1998) as an example of Riemannian man-
ifolds. The Grassmann manifold Gg, 4, is the set of
ds-dimensional linear subspace in R4 for dy < dy:

Gy .y = {span(X) | X' X = I,,, X € Rhxd2}

where span(X) denotes the subspace spanned by the
columns of X. Denoting by TxGq, 4, the tangent
space on the Grassmann manifold G4, 4, at location
X € Gy, 4, the canonical metric (-,-) g for the Grass-
mann manifold is equivalent to the Euclidean met-
ric (-,-) (Edelman et al., 1998). Thus, (W,Z)y =
tr(W'Z) holds for any W,Z € TxGa, 4,, Where
tr(A) = Z?zl A;; for a square matrix A €
The exponential map for Z € T'x Gy, 4, is given by

Rdxd

expx Z = (XVcosE+Usin2)V'',

where U, X, and V come from the compact singular
value decomposition of Z, i.e., Z =UXV ", and “cos”
and “sin” for matrix 3 act element-by-element along
the diagonal of 3. The logarithm map for Y € Gg, 4,
is given by

logx Y =(I;;, - XX YY'X.
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The square geodesic distance between two points on
the Grassmann manifold is given by

S(X, Y)Y =dy —tr(YTXXTY).

Thus, we have

Vo(X,Y)?=-2(I;, - XX")YY X,

where we used the transformation from the partial
derivative 7% f(X) of a function f(X) to the manifold
gradient Vf(X): Vf(X) = (I, — XX )% f(X).
Then, @u/ and hy; defined by Eqgs.(7) and (8) can be
computed as

n d

i=1 j=1

x ¢i(X;)pr (X)),

(4
aF(XHCl)
710'12 ZZ[ Id1 X XT) 6X(]) ‘| ¢I(XZ)

i=1j=1

422[ X.c)ax).

i=1 j=1

where [-]U) denotes the j-th element of the vector-
ization of the matrix, d = dids, F(X,C) = (I4, —
XXT")CC"X. Details for the derivation of Eq.(9)
are deferred to the supplementary material.

4 Experiments

In this section, we experimentally compare the per-
formance of the proposed R-LSLDG clustering (R-
LSLDGC) algorithm with the original mean shift
(MS), the Riemannian mean shift (R-MS), the LSLDG
clustering (LSLDGC), and spectral clustering (SC)
(Ng et al., 2002) in terms of the adjusted Rand in-
dex (ARI) (Hubert and Arabie, 1985), which takes the
maximum value 1 when the obtained clustering solu-
tion perfectly matches the ground truth.

SC requires the number of clusters to be fixed in ad-
vance. For this reason, we provide the true number
of clusters only to SC. The similarity between sam-
ples used in SC is defined as exp(—||z; — z;||?/(272)),
where 7 is the median of {||z; — x;[|}}';_;.

The number of basis functions in LSLDGC and R-
LSLDGC is set at b = min(100,n). The bandwidth
in all algorithms and the regularization parameter in
LSLDGC and R-LSLDGC are chosen by 5-fold cross-
validation from the 8 candidates values {1073,...,10}
at the regular interval in logarithmic scale.

All experiments were carried out using a PC equipped
with two 2.60GHz Intel® Xeon® E5-2640 v3 CPUs.

Toy Data: Let {X; € R%*92}" | he samples con-
taining 3 clusters on a Grassmann manifold. For

di =3,...,7,dy =2, and n = 150, each sample X is
generated as
CcosT; —sinT; .
X,=(sinr cosry | 922 s( 7 —sin 77) (10)
O4—22 | Iy i i

where S is a randomly generated element on a Grass-
mann manifold Gy, 4, and Oy g is the d x d’ null ma-
trix. For N(u,0?) being the normal distribution with
mean j and variance o2, 7; and 7; are generated as

No,gz) fori=1,..,2
T~ AN(2E ) fori=2 41,20

N %’T,% fori:%”Jrl,...,n
ni ~ N (0,7%),

where v = 0,7/8,7/4,7/2 controls the variance of the
angle of right rotation matrix. Note that when ~ is
zero, the right rotation matrix is reduced to the iden-
tity matrix. In Eq.(10), the left rotation matrix is ro-
tation of the subspace for generating 3 clusters, while
the right rotation matrix is rotation within the sub-
space. As plotted in Figure 3, the larger v collapses
the cluster structure on the Euclidean space but not
on the Grassmann manifold.

The ARI values are summarized in Table 1, showing
that R-LSLDGC significantly outperforms other meth-
ods when v = 7/4,7/2, while SC tends to perform
very well when v = 0,7/8. However, we should note
that this comparison is not completely fair since SC is
provided with the true number of clusters, while other
methods estimate the number of clusters from data.

Compared with the plain LSLDGC, R-LSLDGC per-
forms better for large ~, thanks to the geometry-aware
formulation. On the other hand, the plain LSLDGC
tends to outperform R-LSLDGC when v = 0. This
is caused by the difference in modeling: R-LSLDGC
adopts the common-parameter formulation and thus
only a single model is used for jointly estimating the
gradient of all dimensions. In contrast, the plain
LSLDGC adopts the coordinate-wise formulation, i.e.,
the gradient along each dimension is estimated sepa-
rately. Due to this high flexibility, when v = 0 (i.e., no
manifold distortion is introduced), the plain LSLDGC
sometimes performs better than R-LSLDGC.

R-MS tends to outperform the plain MS and plain
LSLDGC when v = /2, thanks to the geometry-
aware formulation. However, its performance degrades
as the dimension d; increases. In contrast, R-LSLDGC
performs reliably even for large d;, which substantiates
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Figure 3: Distance matrices with the Euclidean and
Riemannian distances when d; = 3, do = 2, and n =
150. A larger = collapses the cluster structure on the
Euclidean space, while v does not influence the cluster
structure on the Grassmann manifold.

the usefulness of direct gradient estimation without go-
ing through kernel density estimation on Riemannian
manifolds.

Figure 4 plots the computation time of each method
for different d; averaged over v = 0, 7/8,7/4,7/2. The
graph shows that SC, MS, and LSLDGC are quite fast,
taking less than a few seconds. On the other hand,
R-MS and R-LSLDGC take around 10 seconds, due
to relatively heavy calculation of the logarithm map.
This is the price we have to pay for better accuracy.

Image Clustering: The MNIST data set (Lecun
et al., 1998) contains 0, ...,9 handwritten digits im-
ages. The images are down-sampled to 7 x 7 pixels
from its original size 28 x 28. Following the experi-
mental setup in Wang et al. (2014) partially, 20 images
are drawn from one digit class, and these images are
vectorized and concatenated to form a matrix of size
72 x 20 = 980. Singular value decomposition (SVD)
Z = UXV Tis then applied to the matrix, and the top
3 left singular vectors are used as a sample on Grass-
mann manifold G49 3. Three digit classes are system-
atically selected to make the 3-clusters data sets of size
n = 150, and we draw 50 samples from each digit class.

The ARI values are reported in Table 2, showing that
the proposed R-LSLDGC outperforms other methods.

Table 1: The average and standard error of clustering
accuracy measured by ARI (larger is better) over 20
runs for toy data with do = 2. Bold face denotes the
best and comparable methods in terms of the mean
ARI according to the t-test at the significance level 5%.

['y[dlﬂ MS [LSLDGC[ SC [ R-MS [R—LSLDGC]
3[.12 (.01)[.82 (.03) [1.00 (.00)[.51 (.06)] .81 (.04)
4].12 (.01)|.88 (.03)| .94 (.04) |.28 (.05)| .78 (.04)

0|5 |[.12 (.01)] .89 (.02) |1.00 (.00)|.17 (.01)| .77 (.05)
6 ||.12 (.01)] .90 (.03) [1.00 (.00)|.22 (.03)| .81 (.03)
7.09 (.01)[.92 (.02)| .97 (.03) |.18 (.01)| .85 (.03)
31.10 (.01) .62 (A03) .96 (.01) .51 (.06) .81 (.04)
4|.08 (.00)| .69 (.04) | .95 (.03) |.28 (.05)| .78 (.04)

% 5 .08 (.01) .67 (405) .85 (.06) A7 (01| 7T (.05)
6 .09 (.01)] .61 (.05) | .92 (.05) |.22 (.03)| .81 (.03)
71.09 (.01)|.66 (.04) | .87 (.05) |.18 (.01)| .85 (.03)
3(1.19 (.04)] .34 (.03) | .50 (.04) |.51 (.06)| .81 (.04)
41.13 (.03) .36 (.02) .56 (.04) .28 (.05) .78 (.04)

% 51/.05 (.02)|.37 (.03) | .49 (.05) |.17 (.01)| .77 (.05)
6 .04 (.00)| .31 (.03) | .35 (.04) |.22 (.03)| .81 (.03)
71/.04 (.00)|.36 (.03) | .44 (.04) |.18 (.01)| .85 (.03)
31.13 (.02) 21 (.02) .09 (.01) .51 (.06) .81 (,04)
4].10 (.02)] .21 (.02) | .08 (.01) |.28 (.05)| .78 (.04)

g 5 .02 (.00) .15 (.02) .09 (.Ol) 17 (.01) 7 (‘05)
6 .02 (.00)| .14 (.03) | .11 (.01) |.22 (.03)| .81 (.03)
71.02 (.00)|.17 (.02) | .09 (.01) |.18 (.01)| .85 (.03)

§ a [ C—Ims I LSLDGC I SC [ R-MS I R-LSLDGC]

£

3

Figure 4: The average computation time of each

method over all v on toy data.

Figure 5 plots the average computation time over 20
runs. R-LSLDGC takes more than 100 seconds, but
its computation time is still comparable to R-MS.

Motion Segmentation: The Hopkins 155 data set
(Tron and Vidal, 2007) contains feature vectors auto-
matically extracted from motions sequences of frame
length F' (see examples of the sequences in Fig-
ure 6). Under the planer scenes assumption, trajec-
tories {a; € R2F'}_, from the same motion lies on a
3-dimensional subspace of R?¥, i.e., Grassmann mani-
fold Gap 3 (Kanatani, 2002; Subbarao and Meer, 2009).
We draw 3 trajectories a1, as, and a3 from the same
motion, and then choose the top 3 left singular vectors
from the matrix [a1, aq, as] by applying SVD. Then we
create data sets of size n = 100 or n = 150 by drawing
50 samples from each motion.

The ARI values are summarized in Table 3, showing
that overall R-LSLDGC achieves higher clustering per-
formance than other methods. Figure 7 plots the av-
erage computation time over 20 runs. On the whole,
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Table 2: The average and standard error of clustering
accuracy measured by ARI (larger is better) over 20
runs for the MNIST data set. Three clusters, ¢; = 0,
co =1, and ¢z = {2,3,...,9} are picked to construct
the clustering task. Bold face denotes the best and
comparable methods in terms of the mean ARI ac-
cording to the t-test at the significance level 5%.

Table 3: The average and standard error of cluster-
ing accuracy measured by ARI (larger is better) over
20 runs on each sequence from the Hopkins 155 data
set. The sequence names can be found in Figure 6.
Bold face denotes the best and comparable methods
in terms of the mean ARI according to the t-test at
the significance level 5%.

[s][ MS [LSLDGC] SC [ R-MS [R-LSLDGC] [Seq. MS [LSLDGC] SC [ R-MS [R-LSLDGC]
21[.00 (.00)| .08 (.02) [.13 (.02)[.12 (.01)] .45 (.02) (a) [[.05 (.02)[.09 (.01) [.12 (.02)[ .26 (.02)] .65 (.04)
31{[.00 (:00)[.06 (.02) [.16 (.02)[.10 (.01)| .41 (.02) (b) |[-03 (-:02)[ .38 (.01) [.15 (.02)[ .76 (.01)| .81 (.01)
41[.00 (.00)[ .06 (.02) [.16 (.02)[.12 (.01)| .39 (.02) () [[[18 (:03)[ .08 (.01) |.36 (.04)[.70 (.02)| .75 (.02)
5([.00 (:00)| .06 (.02) [.16 (.01)[.08 (.02)| .48 (.02) (d) |[-2T (-:04)[ .27 (.02) [.36 (.04)| .72 (.01)| .80 (.01)
6 (/.00 (:00)| .06 (.02) [.11 (.02)[.03 (.01)] .47 (.02) () [[[18 (:03)[ .03 (.02) [.25 (.03)[ .42 (.01)| .45 (.01)
7 (/.00 (.00)[ .06 (.02) [.16 (.02)[.00 (.00)| .42 (.02) (1) |12 (:02)[.03 (.01) [.28 (.03)[.51 (.01)] .45 (.01)
81[.00 (.00)[.08 (.02) [.11 (.01)[.12 (.01)] .35 (.02) (2) |[[087(:02)[.06 (-.01) |.16 (.02)| .63 (.01)| .70 (.01)
91[.00 (:00)[ .06 (.02) [.17 (.02)[.05 (.01)] .42 (.02) (h) [[.02 (.01)[.01 (.00) [.03 (.01)[.01 (.00)| .36 (.02)
— 0. (@) [[-43(.04)| .34 (.02) [.48 (.03)] .50 (.04)| .59 (.01)
8 [ C—Ims B | SLDGC [ SC 0 R-MS I R-LSLDGC| () []-11 (.02)] .04 (.01) [.28 (.04)] .65 (.05)| .76 (.01)
Iy (k) [[-06 (.02)[ .02 (.01) |.28 (.03)[.76 (.04)| .83 (.02)
% 10° (1) ]].04 (.01)] .06 (.02) [.28 (.03)].59 (.02)| .64 (.01)
% - 5 100, [ C—Ms B L SLDGC [ SC [ R-MS I R-LSLDGC]
g °
S 1072 £
3=2 =3 c3=4 c3=5 c3=6 c3=7 c3=8 ¢3=9 é
Figure 5: The average computation time of each E
method over 20 runs for the MNIST data set. §1on

(d) cars3 (3, 20,(e) carsb (3, 374,(f) cars7 (2, 25,
548) 391) 502

61,(h) head (2, 60, 99)(i) peoplel (2, 41,
504
b

(g) cars9 (3,

(3,(k) truckl (2, 30,(1) truck2 (2, 22,

(j) three-cars
15, 173) 188) 331)

Figure 6: Examples of sequences (at time ¢t = 0) from
the Hopkins 155 data set. The number in parentheses
denotes (#Motions, #Frames, #Trajectories).

(@ ® ( @ @ @O @@ O 6O G & O
Figure 7: The average computation time of each
method over 20 runs on each sequence from the Hop-
kins 155 data set. The sequence names can be found
in Figure 6.

R-LSLDGC is not a computationally efficient method,
but its computational time is still comparable to R-MS
and it performs much better than R-MS.

5 Conclusions

Mean shift is a promising approach to mode-seeking
clustering. In this paper, we extended the mean shift
clustering algorithm so that Riemannian generaliza-
tion and direct gradient estimation are both incor-
porated. Through experiments on Grassmann man-
ifolds, we demonstrated the usefulness of the proposed
method. In our future work, we will test the proposed
method for other Riemannian manifolds such as Lie
groups, the Stiefel manifold, and symmetric positive
definite matrices. We will also investigate a computa-
tionally efficient approximation scheme for speedup.
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