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I Frequency Domain Formulation

Consider our original loss function

L(β) = E[|x(t)>β − y(t)|2]

As earlier, denote the residue term1 at β as εβ(t) =
x(t)>β− y(t), therefore our loss function can be written
as

L(β) = E[εβ(t)2]

Suppose Pεβ (ω) is the power spectral density of the
residue term εβ(t). Then, we have

L(β) = E[εβ(t)2] =

∞∫
−∞

Pεβ (ω)dω (1)

As mentioned previously, we assume that Pεβ (ω) decays
rapidly with ω and almost vanishes beyond a certain
|ω| > ω0 (see section III for an extended discussion on
this). Therefore, the integral on the right hand side can
be approximated by a finite integral as

∞∫
−∞

Pεβ (ω)dω ≈
ω0∫
−ω0

Pεβ (ω)dω

for a suitable ω0.

Next, because we assume that Pεβ (ω) exists finitely for
every ω, the integral on the right hand side above can
be approximated by averaging the readings of Pεβ (ω)
over a finite set of frequencies Ω = {ω1, ω2, · · · , ωM} as

ω0∫
−ω0

Pεβ (ω)dω ≈ 1

|Ω|
∑
ω∈Ω

Pεβ (ω)

for a suitable Ω.
1Note that the residue process εβ(t) is equal to the error

process ε(t) at β = β∗, where β∗ is the true parameter

Finally, recall the definition of power spectral density

Pεβ (ω) = lim
T↑∞

E


‖

T∫
−T

εβ(t)e−ιωtdt‖2

2T


Again, because Pεβ (ω) is assumed to exist finitely for
every ω ∈ Ω, for a high enough T0, the limit on the right
hand side can be replaced by the value of the function
at T = T0

lim
T↑∞

E


‖

T∫
−T

εβ(t)e−ιωtdt‖2

2T

 ≈ 1

2T0
E
[
‖Eβ,T0

(ω)‖2
]

where Eβ,T0(ω) = XT0(ω)β− YT0(ω) is the T0 restricted
finite Fourier Transform of the residue at β.

To summarize, the preceding discussion outlines the path
by which our original loss function

L(β) = E[|x(t)>β − y(t)|2]

can be substituted by an approximate frequency domain
equivalent

L̂(β) =
1

2T0|Ω|
∑
ω∈Ω

E
[
‖XT0

(ω)β − YT0
(ω)‖2

]
Since, the minimizer of an optimisation problem is in-
variant to positive scalar multiplication of the objective
function, we use as our estimator

β̂ = argmin
β

∑
ω∈Ω

E
[
‖XT0(ω)β − YT0(ω)‖2

]
II Proofs of Main Results

We shall now make these ideas more concrete. We recall
the main aspects of our setup below.
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(i). We work with a parametric linear model, where
the target variable y(t) is regressod on predictor
variables x(t) via a fixed parameter vector β∗ as

y(t) = x(t)>β∗ + ε(t)

for each t.

The partial Fourier Transforms for our signals are

XT (ω) =

∫ T

−T
x(t)e−ιωtdt

YT (ω) =

∫ T

−T
y(t)e−ιωtdt

(ii). We assume that each of our signals are weakly sta-
tionary stochastic processes with mean zero, and
rapidly decaying autocorrelation function ρ(·)(τ)
and finite variance ρ(·)(0). In particular, this im-
plies that εβ(t) is also centered and weakly station-
ary with rapidly decaying autocovariance function

We also assume finite power spectral density for all
our signals, that is, we assume that

Pz(ω) = lim
T↑∞

E

[
‖ZT (ω)‖2

2T

]
(2)

= lim
T↑∞

E


‖

T∫
−T

z(t)e−ιωtdt‖2

2T

 (3)

=

∞∫
−∞

ρz(τ)e−ιω(τ)dτ (4)

is finite for every ω, and finitely integrable over
ω ∈ (−∞,∞). It follows from these assumptions
that the PSD will also be finite for the residue
process εβ(t).

(iii). By linearity of Fourier transform, we have

YT (ω) = XT (ω)>β + ET (ω)

for any T, ω,β.

(iv). We define the optimal parameter β∗ as the one
that minimises the generalisation error, that is,

β∗ = argmin
β

E
[
|x(t)>β − y(t)|2

]
(5)

We estimate our parameter in the frequency domain
instead, as

β̂ = argmin
β

∑
ω∈Ω

E
[
‖X̂T0(ω)>β − ŶT0(ω)‖2

]

for fixed parameters ω0, T0 and a set Ω = {−ω0 <
ωi < ω0 : i = 1, 2, · · · |Ω|} of real valued "frequen-
cies" sampled uniformly between ω ∈ (−ω0, ω0).
Let |Ω| = D. Also, define

L̂(β) =
1

T0|Ω|
∑
ω∈Ω

E
[
‖X̂T0

(ω)>β − ŶT0
(ω)‖2

]

We now prove some results that will be necessary in
deriving our main theorems.

Lemma 1. There exists an 0 < ξω0
< 1 for every ω0

(conversely, for every ξω0 ∈ (0, 1), there exists ω0) such
that

(1− ξω0
)E
[
|x(t)>β − y(t)|2

]
≤

ω0∫
−ω0

Pεβ (ω)dω

≤ E
[
|x(t)>β − y(t)|2

] (6)

Proof. We use the following standard result. For any
weakly stationary signal z, we have

E
[
|z(t)|2

]
=

∞∫
−∞

Pz(ω)dω (7)

By equation (7), we have

E
[
|x(t)>β − y(t)|2

]
= E[|εβ(t)|2] =

∞∫
−∞

Pεβ (ω)dω

Also, by assumption, Pεβ (ω) is finite for every ω, and
finitely integrable over (−∞,∞). Moreover, by defini-
tion of power spectral density, Pεβ (ω) ≥ 0 for each ω.
Hence, the result.

The constant ξω0 depends on the exact functional form
of Pεβ , or equivalently, of ρ. Standard rates can be

obtained by using the fact that
Pεβ (ω)

∞∫
−∞

Pεβ (ω)dω
is a valid

probability density function, and using the tail probabil-
ity results for the corresponding probability distribution.

For example, if ρ exhibits a Gaussian decay (analogous
to normal distribution), that is, ρ(τ) ∼ exp(−O(τ2)),
then Pεβ also exhibits a Gaussian decay, that is Pεβ (ω) ∼
exp(−O(ω2)), and therefore, ξω0

∼ exp(−O(ω2
0)). Simi-

larly, if ρ exhibits power law/ Lorentzian decay (anal-
ogous to Cauchy distribution), that is, ρ(τ) ∼ 1

O(τ2) ,
then Pεβ exhibits exponential decay (Laplace distribu-
tion), that is Pεβ (ω) ∼ exp(−O(|ω|)), and therefore
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ξω0
∼ exp(−O(|ω0|). Similar arguments can be made

for other decay rates using Fourier duality.

This makes intuitive sense because the more spread out
ρ(τ) is, the more “peaky" Pεβ (ω) is and the smaller the
value of ω0 required. This means that if the error terms
are well-correlated, most of the instantaneous power will
be concentrated within a very small range of frequencies.

Lemma 2. Suppose Ω = {−ω0 < ωi < ω0 : i =
1, 2, · · · |Ω|} is a set of real valued “frequencies" sampled
uniformly between [−ω0, ω0]. Then, for any ξD ∈ (0, 1),
with probability at least 1− exp(−O(|Ω|2ξ2

m)) we have

ω0∫
−ω0

Pεβ (ω)dω−ξD ≤
1

|Ω|
∑
ω∈Ω

Pεβ (ω) ≤
ω0∫
−ω0

Pεβ (ω)dω+ξD

(8)

Proof. This is standard Monte Carlo approximation.
In particular, consider ω to be a random variable dis-
tributed uniformly in (−ω0, ω0). Now consider the ran-
dom variable ζ(ω) = Pεβ (ω). Then, we have for this ran-

dom variable,
ω0∫
−ω0

Pεβ (ω)dω = EU(−ω0,ω0)[ζ(ω)] = E[ζ].

Since Pεβ is finite by our assumption, and ω has a finite
support (−ω0, ω0), we also have that ζ(ω) = Pεβ (ω) has
a finite support, and we have our result using Hoeffding’s
inequality[1].

Lemma 3. Let ξT0
∈ (0, 1). Then, for every ω, there

exists a T0(ω) such that

−ξT0
+ Pεβ (ω) <

1

2T0(ω)
E
[
‖XT0

(ω)>β − YT0
(ω)‖2

]
< Pεβ (ω) + ξT0

(9)

Proof. Define the partial power spectral density of εβ(t)
as

gεβ (T ;ω) = E


‖

T∫
−T

εβ(t)e−ιωtdt‖2

2T


By definition of power spectral density, we have

Pεβ (ω) = lim
T↑∞

E


‖

T∫
−T

εβ(t)e−ιωtdt‖2

2T

 = lim
T↑∞

gεβ (T ;ω)

By assumption, the power spectral density is finite and
converges for each ω to Pεβ (ω). Therefore, for every

ω, we have that gεβ (T ;ω) must be a Cauchy sequence
with respect to T . That is, for every ω ∈ (−ω0, ω0), and
every ξT0

∈ (0, 1), ∃T0(ω) such that for all T > T0(ω),

−ξT0
+ Pεβ (ω) < gεβ (T ;ω) < Pεβ (ω) + ξT0

Remark: The exact value of T0 does not contribute to
computation time or space complexity, etc. beyond the
computation of the respective Fourier Transforms, and
can be chosen as large as required without any additional
expenditure in the algorithm. In fact, the optimisation
step itself does not depend on T0, therefore by taking a
large enough T0, we can push ξT0

to as small as required.

IIa Proof of Theorem 1

We are now in a position to prove our first main result.

Proof: For any ξT0
, there always exists a T0 that is

the maximum T0(ω) over all ω ∈ (−ω0, ω0) such that
Lemma 3 is satisfied, i.e.,

T0 = min T

s.t. |gεβ (T ′;ω)− Pεβ (ω)| < ξT0

∀T ′ > T, ∀ω ∈ (−ω0, ω0)

Combining Lemmata 1, 2 and 3 we have, for every
ξT0

, ξD, ξω0
∈ (0, 1), there exist T0, ω0 such that for some

set Ω = {−ω0 < ωi < ω0 : i = 1, 2, · · · |Ω|} sampled
uniformly between (−ω0, ω0), we have with probability
at least 1− exp(−O(|Ω|2ξ2

m))

− ξT0 − ξD + (1− ξω0)E
[
|x(t)>β − y(t)|2

]
≤ 1

2|Ω|T0

∑
ω∈Ω

E
[
‖XT0(ω)>β − YT0(ω)‖2

]
≤ E

[
|x(t)>β − y(t)|2

]
+ ξD + ξT0

(10)

In other words,

−ξT0−ξD+(1−ξω0)L(β) ≤ L̂(β;ω0, T0,Ω) ≤ L(β)+ξD+ξT0

(11)

With some algebra, we have,

L(β̂) <

(
1

1− ξω0

)
L̂(β;ω0, T0,Ω) +

1

1− ξω0

(ξD + ξT0
)

<

(
1

1− ξω0

)
L̂(β∗;ω0, T0,Ω) +

1

1− ξω0

(ξD + ξT0)

<

(
1

1− ξω0

)
(L(β∗) + ξD + ξT0

) +
1

1− ξω0

(ξD + ξT0
)

<

(
1

1− ξω0

)
L(β∗) +

2

1− ξω0

(ξD + ξT0)
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where the first inequality is due to eq. (11), the second
by definition of β∗ and β̂,and the final two by eq. (11).
Therefore, we have

E
[
|x(t)>β̂ − y(t)|2

]
<

(
1

1− ξω0

)
E
[
|x(t)>β∗ − y(t)|2

]
+

(
2

1− ξω0

)
(ξD + ξT0)

(12)

Choosing T0, ω0 and |Ω| = D such that ξ1 =
ξω0

1−ξω0
,

ξ2 = 2(ξD + ξT0) completes the proof.

�

IIb Proof of Theorem 2

Note that a T0-restricted finite Fourier Transform for a
signal z(t) is exactly identical to the full Fourier Trans-
form of a T0-restricted time-limited signal zT0(t) =
z(t)I{|t| < T0}. Therefore, all the exposition in sec-
tion 4.1 in the main manuscript still hold. In particular,
frequency domain representation for aggregated data
still follows equation 17.

Proof: We require a few modifications to our lemmata
to derive the proof of Theorem 2. In the subsequent
analysis, all Fourier Transforms should be assumed to be
finite Fourier Transforms, but we omit the T superscript
for notational succinctness.2 We also assume that for
every ω ∈ Ω below, we have |sin(ω)| > τ for some τ > 0.
This will not affect our algorithm because for small
enough τ , as long as ω0 is small enough in comparison
to 2π

T , the probability of sampling ω which violates
this assumption is vanishingly small. In particular, this
will be true for ω0 � ωs/2 where ωs = 2π

Ts
with Ts =

max{Ty, T1, T2, · · ·Td}.

Denote the reconstructed Fourier Transforms as

X̂i(ω) =
Xi(ω)

U(ω)
, Ŷ (ω) =

Y (ω)

U(ω)

Let ωy = 2π
Ty

and ωi = 2π
Ti
. We have

X̂i(ω) = Xi(ω) + ΛXi(ω|ωi) (13)

Ŷ (ω) = Y (ω) + ΛY (ω|ωy) (14)

where, using the notation of section 4.1 of the main
manuscript,

2We also omit subscripts from the sinc function notation
in the interest of succinctness, they will be clear from context.

ΛXi(ω|ωi) =
1

Ti

∑
k∈Z\{0}

Xi(ω − kωi)
U(ω − kωi)

U(ω)
(15)

ΛY (ω|ωy) =
1

Ty

∑
k∈Z\{0}

Y (ω − kωy)
U(ω − kωy)

U(ω)
(16)

Let x̂(t), ŷ(t) and λi(t), λy(t) be the corresponding time
domain signals. Use the following notation

εβ(t) = x(t)β − y(t) (17)
ε̂β(t) = x̂(t)β − ŷ(t) (18)

ελ,β(t) = λx(t)β − λy(t) (19)

Clearly, ε̂β(t) = εβ(t) + ελ,β(t). Denote the correspond-
ing power spectral densities as P̂ε̂β , Pεβ , Pελ,β . We now
show the following result

Lemma 4. Suppose the power spectral densities of
x(t), y(t) are finite for every ω ∈ (−ω0, ω0), and de-
cay rapidly at a sub-Gaussian rate e−O((ω−ω0)2) beyond
|ω| > ω0.

Then, we have, for any ω ∈ (−ω0, ω0)

P̂ε̂β (ω)−e−O((ωs−2ω0)2) ≤ Pεβ (ω) ≤ P̂ε̂β (ω)+e−O((ωs−2ω0)2)

(20)

where ωs = 2π
Ts

with Ts = max{Ty, T1, T2, · · ·Td}.

Proof. First, note that as a result of our assumptions,
the power spectral densities P̂ε̂β , Pεβ , Pελ,β are also finite
for every ω ∈ (−ω0, ω0), and decays rapidly at a sub-
Gaussian rate e−O(ω−ω0)2 beyond |ω| > ω0. Suppose
P̂ε̂β , Pεβ , Pελ,β < γ2 for some finite γ > 0.

The proof of this result requires two steps. First, suppose
g(t), h(t) are any two signals with corresponding (finite)
power spectral densities Pg, Ph. Then, we have

Pg+h ≤ Pg + Ph + 2
√
PgPh (21)

The proof of this is easy, and proceeds by simply ex-
panding the expression for power spectral density and
using standard results from real analysis and probability



Avradeep Bhowmik, Joydeep Ghosh, Oluwasanmi Koyejo

theory.

Pg+h = lim
T↑∞

1

T
E
[
|GT (ω) +HT (ω)|2

]
≤ lim
T↑∞

1

T
E
[
|GT (ω)|2 + |HT (ω)|2 + 2|GT (ω)HT (ω)|

]
(Triangle Inequality)

≤ lim
T↑∞

1

T

[
E|GT (ω)|2 + E|HT (ω)|2

]
+ lim
T↑∞

2

T

[√
E[|GT (ω)HT (ω)|2]

]
(Jensen’s Ineq.)

≤ lim
T↑∞

1

T
E|GT (ω)|2 + lim

T↑∞

1

T
E||HT (ω)|2

+ 2

√
lim
T↑∞

1

T
E[|GT (ω)|2 lim

T↑∞

1

T
E|HT (ω)|2]

(Cauchy-Schwartz, limit theorems)

= Pg + Ph + 2
√
PgPh

Therefore, using this result, the definitions of
ε̂β(t), εβ(t), ελ,β(t) and the fact that P−z = Pz for any
signal z, we have,

P̂ε̂β (ω)−
(
Pελ,β (ω) + 2γ

√
Pελ,β (ω)

)
≤ Pεβ (ω)

≤ P̂ε̂β (ω) +
(
Pελ,β (ω) + 2γ

√
Pελ,β (ω)

) (22)

We can easily extend equation (21) to the following
standard result. Suppose zi(t) : i = 1, 2, · · · are an
arbitrary set of signals. Then,

PΣizi ≤

(∑
i

√
Pzi

)2

(23)

This result works for infinite sums provided the right
hand side exists finitely. The proof of this also proceeds
by expanding the expression for power spectral density,
and using standard limit theorems.

We shall use this to show that Pελ,β (ω) ∼ e−O(ωs−2ω0)2 .
Define the following quantities

ΛXi,k(ω|ωi) =
1

Ti
Xi(ω − kωi)

U(ω − kωi)
U(ω)

ΛY,k(ω|ωy) =
1

Ty
Y (ω − kωy)

U(ω − kωy)

U(ω)

Define λxi,k(t) = F−1ΛXi,k, λy,k(t) = F−1ΛY,k.
Clearly,

ΛXi(ω|ωi) =
∑

k∈Z\{0}

ΛXi,k(ω|ωi) (24)

ΛY (ω|ωy) =
∑

k∈Z\{0}

ΛY,k(ω|ωy) (25)

λi(t) =
∑

k∈Z\{0}

λxi,k(t) (26)

λy(t) =
∑

k∈Z\{0}

λy,k(t) (27)

We note that for any signal z(t), if Pz(ω) ∼ e−O(ω2)

and τ(ω) is a strictly bounded function of ω, then for
λz(t) = F−1Z(ω)τ(ω), we have Pλ(ω) ∼ e−O(ω2).

By assumption, Pxi(ω), Py(ω) ∼ e−O(ω−ω0)2 and for
the values of ω we use U(ω−kωy)

U(ω) is strictly bounded,
therefore, we can show that Pλxi,k(ω), Pλy,k(ω) ∼
e−O(ω−ω0−kωy)2

We have, λi(t) =
∑
k λxi,k(t) and λy(t) =

∑
k λy,k(t).

Therefore, we have by equation 23,

Pλi(ω) =

 ∑
k∈Z\{0}

√
Pλxi,k


= 2

( ∞∑
k=1

√
Pλxi,−k

)
by symmetry around 0

= 2

∞∑
k=1

e−O(kωy+ω−ω0)2

∼ e−O(ωi−ω0+ω)2

Similarly, Pλy (ω) ∼ e−O(ωy−ω0+ω)2 . The final step uses
standard approximation techniques exploiting the fact
that

∑
n f(n) ∼ Θ(

∫
x
f(x)dx) for bounded, finite, mono-

tonic functions f , and noting that e−O(kωy+ω−ω0)2 has
Gaussian decay in terms of k, and the area under Gaus-
sian functions over a subset of the positive real line
is given by the complementary error function erfc(·).
We also use the fact[2] that the complementary error
function has a Gaussian decay erfc(x) ∼ e−O(x2).

If ωs = min{ωy, ω1, ω2, · · · , ωd}, and for ω ∈ (−ω0, ω0),
we have in terms of ωs the fact that e−O(ω−ω0−ωy)2 <
e−O(ωs−2ω0)2 . For ωs > 2ω0, these approximations
can be written more succinctly as Pλi(ω), Pλy(ω) ∼
e−O(ωs−2ω0)2 .

Finally, we note that by definition and using (23),
we have Pελ,β (ω) ≤ (βi

∑d
i=1

√
Pλi(ω) +

√
Pλy (ω))2.

For fixed d and since by assumption |β| is bounded,
we have Pελ,β (ω) ∼ e−O(ωs−2ω0)2 and therefore,



Frequency Domain Predictive Modelling with Aggregated Data

(
Pελ,β (ω) + 2γ

√
Pελ,β (ω)

)
∼ e−O(ωs−2ω0)2 . This com-

pletes the proof for Lemma 4.

The final piece of the proof is to approximate
E‖X̂T0(ω) − ŶT0(ω)‖2. By assumption, the individual
processes at each location is strictly sub-Gaussian [3, 4].
Simply put, this means that for each signal z(t) at each
time t, the logarithm of the moment generating function
is quadratically bounded

∀b > 0, lnE[eb(z(t)−µ)] <
b2σ2

2

for some constant σ, where µ = E[z(t)].

Since by assumption our random processes are bounded
and almost surely finite, it can be shown by using re-
sults from calculus and probability theory that finite
aggregation and Finite Fourier Transforms preserve sub-
Gaussian property being linear operations3. In partic-
ular, note that most of our Fourier Transform compu-
tations can be estimated by discrete sums using the
DTFT-DFT dual relationship, and linear sums preserve
the sub-Gaussian property.

Now, we have that by using Hoeffding’s inequality on
sub-Gaussian random variables[5, 6], we can show that
for independent observations {(X̂j(ω), Ŷ j(ω)) : j =
1, 2, · · ·N} from N locations, for any small ξ, we have
with probability 1− exp(−O(N2ξ2

3)),

E‖X̂T0
(ω)β − ŶT0

(ω)‖2 − ξ (28)

<
1

N

∑
j∈[N ]

‖X̂j
T0

(ω)>β − Ŷ jT0
(ω)‖2 (29)

<E‖X̂T0(ω)β − ŶT0(ω)‖2 + ξ (30)

Choose ξ such that ξ3 = (1 + 1
T0

)ξ. Theorem 2 now
follows in a manner exactly identical to the proof of
Theorem 1, with the addition of two extra steps that
incorporates Lemma 4 and equation 28. �

Finally we note that Theorem 2 is only one of many
possible results that can be obtained for estimation
using our techniques. In particular, usage of different
assumptions on the data distribution, and different decay
rates on the power spectral densities can be used to
derive alternative guarantees.

The proofs for results in the multidimensional case are
exactly identical, except for the size of the sampled

3An easy way to prove it, for example, would be to repre-
sent integration as the limit of a Riemann sum using definition
from first principles, and to use the bounded convergence
theorem and continuity of the exponentiation operator with
standard limit theorems

frequency set |Ω| = D. As mentioned in the main
manuscript, D can grow exponentially in the ambient
dimensionality p of the interaction space Rp. This is
because the sampled frequencies are expected to cover
a certain volume, and volume grows exponentially with
dimensionality. However, in most real life cases, p will
be very small (for example p ≤ 4 for spatio-temporal
applications), hence the increase in required size is in
and of itself no major impediment in application of our
algorithmic framework.

III Discussion: Decay Rates

Throughout this manuscript, we assume that the power
spectral density and autocovariance function for every
signal of interest exists finitely for each ω. We further
assume that the autocovariance function decays rapidly
with lag for all processes involved in our analysis. In
essence this means that the value of the time series at
any given point is highly correlated with values at points
close to it in time, but the correlation decreases rapidly
with values farther away in time.

In particular, we assume that ρ(·)(·) is a Schwartz func-
tion [7], that is ρ(·) and all its derivatives decay at least
as fast as any inverse polynomial. That is, ∀α, β ∈ Zn+
we have

|ζα ∂
βρ(ζ)

∂ζn
| → 0 as |ζ| → ∞

Examples of Schwartz functions are exponential func-
tions like e−aζ

2

for a > 0, or any polynomial ℘(ζ) mul-
tiplied with an exponential function like ℘(ζ)e−aζ

2

, or
any smooth domain-restricted function f(ζ) which is 0
outside of a bounded compact subset ζ ∈ = ⊂ Rn (e.g.
time limited signals).

A key property of Schwartz functions is that the Fourier
Transform of a Schwartz function is itself a Schwartz
function [8, 9]. Therefore, if we assume that the covari-
ance functions ρ(·)(τ) decays rapidly with τ for each of
our signals, then their corresponding power spectral den-
sities P(·)(ω) will decay rapidly with ω, since P = Fρ.
Therefore, most of the power for our signals will be
concentrated around ω = 0.

As seen earlier, the decay rates of the power spectral
density and autocovariance function complement each
other- e.g., if ρ exhibits a Gaussian decay, then Pεβ also
exhibits a Gaussian decay. Similarly, if ρ exhibits power
law or Lorentzian decay, then Pεβ exhibits exponential
decay. The exact decay rates involved will vary on a case
to case basis, but in essence, this means that we only
need to care about a small set of frequencies around 0
to describe the signal up to a reasonable approximation.

We note that unlike traditional signal processing appli-
cations, we do not consider a flat power spectral density
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(e.g. white noise) for our noise process. This is because
traditional signal processing applications assume band-
limited signals of interest. Properties of the noise process
outside the band are irrelevant since outputs are going
to be filtered regardless, and analysis only needs to focus
on effects of additive noise within the frequency band of
interest. In our case, we can make no such assumption–
signals need not be bandlimited and therefore we have to
consider effects of noise throught the entire spectrum4.
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