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Abstract

Existing work in spatio-temporal data analy-
sis invariably assumes data available as indi-
vidual measurements with localised estimates.
However, for many applications like econo-
metrics, financial forecasting and climate sci-
ence, data is often obtained as aggregates.
Data aggregation presents severe mathemati-
cal challenges to learning and inference, and
application of standard techniques is suscep-
tible to ecological fallacy. In this manuscript
we investigate the problem of predictive linear
modelling in the scenario where data is aggre-
gated in a non-uniform manner across targets
and features. We introduce a novel formula-
tion of the problem in the frequency domain,
and develop algorithmic techniques that ex-
ploit the duality properties of Fourier analysis
to bypass the inherent structural challenges
of this setting. We provide theoretical guaran-
tees for generalisation error for our estimation
procedure and extend our analysis to capture
approximation effects arising from aliasing.
Finally, we perform empirical evaluation to
demonstrate the efficacy of our algorithmic
aproach in predictive modelling on synthetic
data, and on three real datasets from agricul-
tural studies, ecological surveys and climate
science.

1 Introduction

Analysis of spatio-temporally correlated data is an
important and ever present problem in diverse and
wide-ranging fields including econometrics [1], climate
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science [2, 3], financial forecasting [4] and Internet of
Things (IoTs) [5, 6]. Nearly all existing modelling tech-
niques in literature assume access to datasets with
individual level samples for each time and/or location
index. However, in many real life cases[7, 2, 1], for var-
ious reasons including measurement fidelity, robustness
to random noise, cost of data collection, privacy preser-
vation, scalability, etc., data is often collected and/or
publicly reported as aggregates or time averages, col-
lected over specific intervals and released periodically,
e.g., data released by the Bureau of Labour Statistics
[8] and US Department of Commerce [9], or by the
General Social Survey [10] are often in this form.

The central question addressed in this paper is whether
one can provably learn individual level models given
only aggregated spatio-temporal data– a challenging
and relatively unexplored form of semi-supervision,
which requires novel techniques and significant algo-
rithmic innovation on the part of data analysts to
perform modeling and inference. As a first work (to
the best of our knowledge) on predictive modelling
with spatio-temporally aggregated data, we tackle the
problem in the context of predictive linear modelling
where real valued targets are regressed on multivariate
features via a vector parameter.

Even for this relatively simple setup, naive applica-
tion of standard modelling techniques to aggregated
data often fails due to ecological fallacy [11, 12, 13]
wherein inferences drawn at the group level differ sig-
nificantly from the ground truth at individual level.
Learning is especially difficult if aggregation periods
are not uniform or aligned across features and targets.
For example, an econometric model may want to use
as features metrics like GDP growth rate (reported
quarterly), unemployment rate and inflation rate (re-
ported monthly), interest rate and balance of trade
(reported daily) and ratio of government debt to GDP
(reported yearly) to predict, say, stock market indices
and currency exchange rates (reported daily) [9, 8].

In such a scenario, it is extremely challenging even
to formulate a cogent mathematical representation
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that captures the relationship among the available
misaligned aggregates. On the other hand, effective
reconstruction of data at the individual-level is very
difficult because aggregation fundamentally obfuscates
local information.

1.1 Contributions

In this paper, we demonstrate that by formulating
the problem in the frequency domain, selected global
properties of individual components of the model can
be separately estimated with high fidelity even from
aggregated data, which can then used for learning and
inference without being affected by local-level infor-
mation obfuscation caused by aggregation– all of this
without any explicit data reconstruction. Our specific
contributions are summarised below-

1. To our knowledge, we are the first to investigate
the problem of predictive modelling from aggre-
gated spatio-temporal data. We introduce a novel
framework and new algorithmic mechanisms for
learning from aggregated spatio-temporal data
that leverages structural properties of frequency
domain analysis techniques to perform predictive
modelling with minimal data reconstruction.

2. We provide theoretical guarantees for our frame-
work, and establish that under mild regularity
conditions, the parameter vector learned from ag-
gregated data suffers a generalisation error that is
provably close to the optimal that can be obtained
from any linear model in the non-aggregated set-
ting, that is, with individual level samples

3. We extend our analysis to derive guarantees for
our algorithm to capture real world approximation
effects caused by aliasing and randomness in the
data generation procedure, and show that our
methods can still learn a parameter that closely
matches the optimal generalisation error.

We empirically evaluate the efficacy of our methods on
both synthetic data and three real datasets involving
applications in ecological surveys, agricultural studies
and climate science.

1.2 Related Work

There is a vast range of work on spatio-temporal data
analysis [2, 14, 15] but very little existing literature
applies to the aggregated case. The closest that come
to our setup are interpolation techniques like Kriging
[16, 17], which also typically assume that data is sam-
pled at localised discrete positions on a grid, rather
than as aggregates. Among frequency domain tech-
niques, the closest line of work is spectral regression

[18, 19, 20] which has been previously used in econo-
metrics and financial modeling. However, existing work
only deals with non-aggregated data in the discrete do-
main, and in particular, we have not come across an
estimation framework nor analysis techniques, nor any
guarantees for generalisation error as introduced in this
manuscript.

There is limited existing literature in general for aggre-
gated data of any kind. In the classification setting,
learning from label proportions or LLP [21, 22] esti-
mates classifiers from proportions of discrete valued
labels in groups of labeled targets. Regression involving
aggregated data was recently studied in [23] and [24]
which considered the cases where data was aggregated
into histograms and moments respectively. While the
aforementioned pieces of work involved uniform aggre-
gation of uncorrelated data, our setup involves data
that is non-uniformly aggregated and spatio-temporally
correlated. Moreover, our methods deal with aggregat-
ing continuous signals while the existing work outlined
above involves aggregation of discrete values.

Note that while our work involves spatio-temporal data,
the goal is nevertheless a general framework for pre-
dictive modelling rather than forecasting– in fact, our
methods can be used even outside spatio-temporal
applications, e.g. in any domain wherein sampled mea-
surements can be represented as tensors where a sense
of ordering or structural chronology exists along each
mode (for example, clinical measurements).

2 Preliminaries

Before we go into the specifics of the estimation process,
we recall some fundamental results and quantities from
Fourier analysis (see [25, 26]). A signal or stochastic
process z(t) defined on t ∈ R is centred and weakly
stationary with finite variance if:

1. the process is centred, E[z(t)] = 0 for all t

2. for any t, t′, we have E[z(t)z(t′)] = ρz(‖t − t′‖)
for a non-negative real valued auto-correlation
function ρz(·) : R+ 7→ R+

3. at every point, the process has finite variance,
E[z(t)2] = ρ(0) < +∞

Given a continuous signal z(t), the Fourier Trans-
form of the signal with respect to a particular fre-
quency ω ∈ R is given by

Z(ω) =

∫
R
z(t)e−ιωtdt (1)

For a signal z(t), we use both Z(ω) and Fz(ω) to
denote its Fourier transform.
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We can similarly define the T -restricted Finite
Fourier Transform ZT (ω) for the signal z(t) as

ZT (ω) =

∫ T

−T
z(t)e−ιωtdt (2)

The Power Spectral Density PZ(ω) of a signal z(t)
with respect to a particular frequency ω ∈ R is given
by

PZ(ω) = lim
T↑∞

1

T
E

‖ T∫
−T

z(t)e−ιωtdt‖2
 (3)

Let z(t) be a weakly stationary process with auto-
covariance function ρz(τ) = E[z(t)z(t + τ)]. Let
ρz(0) = E[z(t)2] < ∞ be the variance of the pro-
cess. We simply state the following well known results
without proof [26]:

1. (Wiener-Khinchin Theorem)The power spectral
density of a stationary process z(t) is the Fourier
Transform of its autocovariance function

PZ(ω) =

∞∫
−∞

ρz(τ)e−ιω(τ)dτ (4)

2. (Corrollary of above) For a stationary process,
the integral of the power spectral density gives
the instantaneous variance

∞∫
−∞

PZ(ω)dω = ρz(0) = E[z(t)2] (5)

These results are examples of the well known duality
properties of Fourier analysis, where global properties
in the time domain are related to local properties in
the frequency domain and vice versa. We shall use
these properties extensively in our work.

Throughout this manuscript, we assume that the power
spectral density (and correspondingly, the autocovari-
ance function) for every signal of interest exists finitely,
and decays rapidly with lag for all processes involved.
In particular, we assume that ρ(·)(·) is a Schwartz func-
tion [27], that is ρ(·) and all its derivatives decay at
least as fast as any inverse polynomial. Therefore, most
of the power for our signals will be concentrated around
ω = 0. An extended discussion on this is presented in
section III in the supplement.

3 Problem Setup

In the interest of simplicity we delineate our setup for
temporally aggregated data, where features x(t) and

targets y(t) are time series signals or processes. Dis-
cussion on higher dimensional aggregation frameworks
are deferred to section 5.

Consider the task of predictive linear modelling, where
real valued targets y(t) ∈ R are regressed on multivari-
ate feature vectors x(t) ∈ Rd via a parameter vector
β∗ ∈ Rd in a linear model

y(t) = x(t)>β∗ + ε(t) (6)

where ε(t) is a random noise process. For the rest
of our manuscript, we make the assumption that all
our signals of interest x, y, ε are centered and weakly
stationary with finite variance.

Stationarity is a standard assumption in time series
analysis and very common in many real life applications
(see [28, 29, 30]), and techniques like filtering out trend
lines and differencing are often applied to the data
to ensure stationarity before analysis [31]. Note that
we do not assume any specific functional form for the
generative processes (Gaussian, etc.) for the signals
studied in this manuscript.

Loss Function and Parameter Estimation

Standard statistical learning approaches estimate the
optimal linear model given the data by minimising an
appropriate loss function over the vector parameter β.
Define the residue process at any particular β as

εβ(t) = x(t)>β − y(t)

One potential option for a loss function might have been
the total energy of the residue process

∫
R |εβ(t)|2dt

However, the total energy in the noise process is often
not finite [25, 32], hence for weakly stationary processes,
a better loss function to use is the variance of the noise
process at time t, that is,

L(β) = E[|εβ(t)|2] = E[|x(t)>β − y(t)|2]

By assumption our signals are weakly stationary, there-
fore the variance does not depend on t. Therefore, the
“optimal" linear model parameter is given by

β∗ = argmin
β
L(β) = argmin

β
E[|x(t)>β − y(t)|2] (7)

Given access to the detailed, full-resolution dataset,
the typical strategy for solving the estimation prob-
lem (7) is to replace the expectation by a sum over
individual datapoints. This finite sum converges to
the expectation given enough datapoints under certain
conditions, for example, if the noise process is ergodic
[33]. However, the story becomes more complicated if
the data is available in aggregated form.
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3.1 Data Aggregation in Time Series

Instead of the individual targets y(t) at time t, we are
given aggregates sampled with period T , which are of
the form

y[k] =
1

T

kT/2∫
(k−1)T/2

y(τ)dτ (8)

for k ∈ Z = {· · · − 1, 0, 1, · · · }.

Features can also be aggregated in a more complicated
manner with different periodicities, that is, each coor-
dinate {xi(t) : i = 1, 2, · · · d} of the features x(t) can
be aggregated periodically with period Ti as

xi[l] =
1

Ti

lTi/2∫
(l−1)Ti/2

xi(τ)dτ (9)

Therefore, instead of the continuous time data
{(x(t), y(t)) : t ∈ R} specified across t, we are given
access to discrete aggregates {y[k] : k ∈ Z} and sets of
aggregates {{xi[l] : i = 1, 2, · · · d} : l ∈ Z}.

4 Frequency Domain Parameter
Estimation from Aggregated Data

We show that an approximately equivalent frequency
domain formulation of the problem allows us to sidestep
the challenges inherent in a data aggregation setup with-
out explicit reconstruction. Since local time-domain
properties are captured by global frequency domain
properties, a frequency domain analysis allows us to
individually extract high fidelity estimates of selected
global properties of all the quantities involved to then
use for inference and predictive modelling.

4.1 Frequency Domain Representation of
Aggregated Time-Series Data

The first key insight that enables us to work with
aggregated time series data is the fact that aggregation
in the time domain corresponds to convolution and
subsampling in the frequency domain.

Recall that in our setup, continuous signals of the form
z(t) get aggregated into samples of the form-

z[k] =
1

T

kT/2∫
(k−1)T/2

z(τ)dτ (10)

There are two steps here. First, the continuous process
z(t) is aggregated into the sliding-window averaged

continuous process z(t) as

z(t) =
1

T

t+T/2∫
t−T/2

z(τ)dτ (11)

This is equivalent to a convolution operation z(t) =
z(t)∗u(t) with the square wave function u(t) = 1

T I{t ∈
(−T/2, T/2)}, where I{·} is the indicator function. In
the frequency domain, this is equivalent to multiplying
with a sinc function UT (ω) = sin(ωT/2)

ωT/2 .

The final observation sequence {z[k] : k ∈ Z} is ob-
tained by sub-sampling at periodicity T the aggre-
gated time series z(t); in the frequency domain this
becomes a 2πk

T -periodicity sub-sampling operation, via
a convolution with a delta train or a Dirac comb
1
T

∑
k∈Z δ(ω −

2πk
T ).

Therefore, putting it all together, we can write our
observation signal in the frequency domain as

Z̄(ω) =
1

T

∑
k∈Z

Z(ω − 2πk

T
)UT (ω − 2πk

T
) (12)

=
1

T
Z(ω)UT (ω) + ∆z(ω|T ) (13)

where ∆z(ω|T ) = 1
T

∑
k∈Z\{0} Z(ω − 2πk

T )UT (ω − 2πk
T )

is the error due to aggregation and aliasing.

For succinctness of notation, we assume identical rates
for aggregation and subsampling. Estimation is iden-
tical in the case where aggregation time period and
reporting frequency are different for targets and fea-
tures (e.g. in case of overlapping aggregation or sliding
windows), but the analysis requires some additional
book-keeping - a brief discussion is included in section 5.

4.2 Formulation and Estimation Algorithm

We now proceed to formulate our parameter estimation
framework in the frequency domain. First, we note that
the Fourier1 Transform z ↔ Fz is a linear operation,
therefore the linear relationship that holds in the time
domain must also hold in the frequency domain. That
is for any signal x(t), y(t) with noise ε(t), and for any
β, we have

y(t) = x(t)>β + ε(t)⇐⇒ Y (ω) = X(ω)>β + E(ω)

Therefore, it stands to reason that if we have good
estimates for Y (ω),X(ω) for specific values of ω, pa-
rameter estimation should be able to proceed in the
frequency domain.

However, the preceding section makes it clear that
unless our signals are band-limited, estimates for X(ω)

1as well as the Finite Fourier Transform
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Algorithm 1 Fourier-domain Estimation from Aggre-
gated Data

1: Input: x, y, ω0, D, T0

2: Sample D frequencies uniformly in (−ω0, ω0) to get
Ω = {ω1, ω2, · · ·ωD : ωi ∈ (−ω0, ω0)}

3: for each ω ∈ Ω, and i ∈ {1, 2, · · · d} do
4: compute the T0-limited finite Fourier transforms

Xi,T0(ω) = FT0xi(ω), Y T0(ω) = FT0y(ω)

5: reconstruct non-aggregated Fourier Transforms

X̂i,T0
(ω) =

Xi,T0(ω)

UTi
(ω)

, ŶT0
(ω) =

Y T0(ω)

UT (ω)

6: end for

7: Estimate the parameter as

β̂ = argmin
β

1

|Ω|
∑
ω∈Ω

‖X̂T0(ω)>β − ŶT0(ω)‖2

8: return β̂

and Y (ω) will be affected by aliasing. Since in the
real world we can only work with finite time signals,
our signals will never be band-limited because they are
time-limited.

Nevertheless, if we assume that the power spectral
density for the original signal decays rapidly with ω
and, for some ω0, almost vanishes beyond |ω| > ω0.
Then, it is easy to see that the effect of aliasing from
the sampling process will be minimum for all our signals
around ω = 0. Therefore, it makes sense to use only
high fidelity estimates of Y (ω),X(ω) for estimation,
by restricting ourselves to values of ω ∈ (−ω0, ω0).By
doing so, we also bypass any necessity for reconstruction
of the original values of our signals in the time domain.

These ideas are the crux of the intuition for our frame-
work and algorithmic treatment of the problem. Section
I in the supplement contains an extended expository
discussion that motivates and outlines the steps in-
volved in translating these intuitive ideas to specific
algorithmic strategy in mathematical terms.

By formulating the estimation problem in the frequency
domain in a way that exactly exploits these intuitive
ideas, we can derive our first main result which shows
that under our assumptions, frequency domain parame-
ter estimation leads to generalisation error that is close
to the optimal.
Theorem 1. Let β∗ be the optimal parameter as in
equation 7. Denote the parameter estimated from the
T0-restricted Fourier Transforms as

β̂ = argmin
β

∑
ω∈Ω

E
[
‖XT0

(ω)>β − YT0
(ω)‖2

]
(14)

Then, for every small ξ1, ξ2 > 0, there exist correspond-
ingly T0, ω0, D such that for the set Ω = {−ω0 < ωi <
ω0 : i = 1, 2, · · · |Ω|} with |Ω| = D sampled uniformly
between (−ω0, ω0), we have

E
[
|x(t)>β̂ − y(t)|2

]
<(1 + ξ1)

(
E
[
|x(t)>β∗ − y(t)|2

])
+ (1 + ξ1)ξ2

with probability at least 1− e−O(D2ξ22)

In essence, this result shows that given a long enough
signal, with enough granularity in sampled frequencies,
the estimated parameter β̂ leads to a generalisation er-
ror that is arbitrarily close to the optimal generalisation
error obtained by β∗. Because of the multiple tunable
parameters in our formulation, it allows for enough
trade-offs that our algorithm can be applied to a wide
range of applications (see for example, [34, 35, 36, 37]),
and Theorem 1 can be used as a generic template to
derive more precise and bespoke guarantees for each
such case. The exact guarantees obtained will depend
on the specifics of the application and the data setup–
we provide a concrete example of a particular class of
common cases in the subsequent section.

4.3 Aliasing and Approximation Effects

In real life cases, we have to deal with approximation
effects arising from aliasing and randomness of the data
that affect our algorithm and analysis procedure, espe-
cially in computing our objective function. However,
we can show that in most cases the objective function in
our estimator as defined in equation (14) can be closely
approximated with mild regularity assumptions.

For instance, suppose we have data collected inde-
pendently from N locations with corresponding T0-
restricted Fourier Transforms {(Xj

T0
(ω), Y jT0

(ω)) : j =
1, 2, · · ·N} (for example, these can be economic metrics
from different states or counties, or meteorological mea-
surements at different points in the atmosphere). We
assume that the individual processes at each location
is strictly sub-Gaussian [38, 39]. We also assume that
the power spectral density of all processes involved is
finite for every ω ∈ (−ω0, ω0), and decays rapidly at a
sub-Gaussian rate e−O(ω−ω0)2 beyond |ω| > ω0.

Then, the following result holds which shows that even
for the case where the targets and features are aggre-
gated at different rates, we can still estimate a param-
eter that leads to a generalisation error that is close to
the optimal linear modelling error.

Theorem 2. Let Ti be the sampling/aggregation period
for the ith coordinate xi(t) and Ty be the corresponding
period for the target y(t). Let ωs = 2π

Ts
with Ts =



Frequency Domain Predictive Modelling with Aggregated Data

max{Ty, T1, T2, · · ·Td}. Denote the parameter obtained
by our estimator from N data sources as

β̂ = argmin
β

∑
j∈[N ]

∑
ω∈Ω

‖X̂j
T0

(ω)>β − Ŷ jT0
(ω)‖2

Then, for every small ξ1, ξ2, ξ3 > 0, there exist corre-
spondingly T0, ω0, D such that for the set Ω = {−ω0 <
ωi < ω0 : i = 1, 2, · · · |Ω|} with |Ω| = D sampled uni-
formly between (−ω0, ω0), we have, if the aggregation
rate is high enough ωs > 2ω0,

E
[
|x(t)>β̂ − y(t)|2

]
<(1 + ξ1)

(
E
[
|x(t)>β∗ − y(t)|2

])
+(1 + ξ1)(ξ2 + ξ3 + e−O((ωs−2ω0)2))

with probability at least 1−e−O(D2ξ22)−e−O(N2ξ23)

Note that our estimation procedure requires no explicit
reconstruction of the original time domain data, which
would require spectral information about the signal over
the entire spectrum, much of which is severely affected
by aliasing effects. In contrast, our methods only use
information about the specific parts of the spectrum
which are robust and least impacted by aliasing, and
are thus more accurate snapshots of the signal.

When the sampling and aggregation periodicity is uni-
form across all coordinates, an interesting effect can be
observed wherein uniform aliasing effects in features
and targets essentially cancel each other out. This
is because the aliasing error ∆x for features are re-
lated linearly to the error ∆y for targets via the same
parameter. Therefore, parameter estimation can pro-
ceed without explicit reconstruction of X̂i(ω), Ŷ (ω) as
a standard linear regression albeit with a slightly dif-
ferent noise model. However, estimation can still be
affected by aliasing in the noise in the signal, therefore,
as our experiments on synthetic data shall show, it
may preferable to perform estimation in the frequency
domain nevertheless.

5 Discussion and Extensions

5.1. Multi-dimensional Aggregation:
So far our discussion has been limited to the case where
d-dimensional feature vectors x and real valued targets
y are obtained at (and aggregated along) points on a
single dimension, i.e., time. We can extend our work
very easily to the more general case, where features
and targets are indexed by and averaged over points
in the p-dimensional Euclidean space Rp.

For example, in spatial climate models, we may use
as features x ∈ Rd and targets y ∈ R values of me-
teorological variables (CO2 levels, temperature, etc.)
at discrete points on the earth’s surface, indexed by a
2-dimensional (latitude, longitude) vector (i.e., p = 2).

But instead of (x, y) for every location, measurements
may only be available aggregated averaged over regions
on the earth’s surface (e.g., averages over 1mi x 1mi
spatial grids), which can then be used for learning cli-
mate models. Similarly, in 3-dimensional space, p = 3,
measurements can be obtained aggregated over 3-d
blocks. Note that the ambient dimension p is distinct
from the dimensionality of the feature space d.

Suppose locations in Rp are indexed by points v,
and each such location is associated with its own d-
dimensional feature vector x(v) ∈ Rd and real valued
target y(v) ∈ R, which are regressed on each other via
a vector parameter β∗ ∈ Rd as

y(v) = x(v)>β∗ + ε(v) (15)

Each signal here is again a random zero-mean, weakly
stationary noise process with finite variance. Observa-
tions for any signal2 z(v) are again obtained as aggre-
gates over periodically translated bounded connected
set A ⊂ Rp as

z[k] =
1

V ol(A)

∫
v∈A+k

z(v)dv

Given a signal z(v), for any "frequency" vector θ =
[θ1, θ2, · · · θp] ∈ Rp, the Multidimensional Fourier
Transform is defined in a way very similar to the
one-dimensional case [32, 40, 41]

Z(θ) =

∫
Rp

z(v)e−ι〈θ,v〉dv (16)

where 〈·, ·〉 represents the standard inner product.

All properties of Fourier Transforms required within
the scope of this manuscript follow exactly as in the
unidimensional case (see [40, 41]). For example, ag-
gregation over regions defined by periodic translations
of a set A ⊂ Rp becomes equivalent to multiplica-
tion in the frequency domain with the corresponding
multidimensional Fourier Transform of the indicator
function gA(v) = I(v ∈ A). In particular, if A is
the hypercube A = {v : −ai/2 ≤ vi ≤ ai/2}, then
FgA(θ) =

∏p
i=1 Uai(θi), where U(·) is the standard

sinc function as in the unidimensional case.

The algorithm and results remain virtually identical
with unidimensional quantities being replaced by their
multidimensional equivalents. The only penalty that
we pay is the number of sampled frequencies required,
that is |Ω|, which can in some cases scale exponentially
with p. However, we note that in most real life cases p is
very small (limited to at most p = 4 for spatio-temporal
applications), hence this is not a severe impediment on
the application on our methods.

2where z(v) is a stand-in for either x(v) or y(v)
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5.2. Sliding Windows:
The estimation protocol in this case remains unchanged,
but the analysis involves a little extra book-keeping.
Note that a sliding window basically means that the
aggregation periodicity and sampling periodicity are
different. Say Ta is the aggregation period, that is,
the period over which averages are computed for the
signal (as in equation (11)). Also let Tb be the sampling
period, that is, the period with which the aggregated
signal z(t) is sampled. Then, equation (12) can be
rewritten as

Z̄(ω) =
1

Tb

∑
k∈Z

Z(ω − 2πk

Tb
)UTa

(ω − 2πk

Tb
) (17)

with a corresponding aliasing error term ∆z(ω|Ta;Tb) =
1
Tb

∑
k∈Z\{0} Z(ω − 2πk

Tb
)UTa(ω − 2πk

Tb
). Theorem 2 can

then be extended to show that in general, if Ta is
reasonably small relative to 2π

ω0
, the aliasing error is

dominated by effects from Tb, the sampling period.
However, if Ta becomes too large in comparison to
2π
ω0
, the sinc function UTa

(ω) can become too sharp
and peaky which may result in gaps in the spectrum
covered by Ω (refer to the proofs in the supplement for
more details). This is intuitive since larger aggregation
windows lead to higher loss of information.

5.3. Aggregation with Weighted Smoothing:
The analysis in the paper has been presented in the con-
text of a simple aggregation schema that uses a square
wave as a smoothing function for averaging. To cater
to alternative aggregation schemata, one just needs to
replace the sinc function U(·) with the Fourier Trans-
form of the specific aggregation scheme being used– e.g.,
for Gaussian smoothing, the relevant Fourier Trans-
form will be another Gaussian, etc. Our results remain
unchanged for Schwartz smoothing functions, which
includes most of the commonly used smoothing func-
tions. In particular, note that the Gaussian function is
a Schwartz function, and so is any smoothing function
over a finite support (square wave, triangular wave,
etc.), therefore their Fourier Transforms are Schwartz
functions as well.

6 Experiments
We empirically evaluate the efficacy of our methods on
both synthetic data and three real datasets. In each
case, we use an aggregated version of the individual-
level dataset for learning model parameters using the
techniques in this paper, and evaluate the results by
computing the predictive error obtained by our pa-
rameter on the full non-aggregated dataset. Since this
is a first work on this topic, we are unaware of any
real algorithmic baselines. However, we do test our
methods against two baselines- the "true" linear model
which is learned with access to the full non-aggregated

dataset, and a "time-domain" model that naively im-
putes individual-level measurements by substituting
the corresponding average for the group.3

Our synthetic data experiments proceed as follows.
We generate multivariate time series data as features
x(t) and univariate time series data as targets y(t)
that obeys our assumptions in this manuscript. We
then aggregated this data– first using uniform sam-
pling frequency, and second using non-uniform sam-
pling frequency with increasing average discrepancy
in the periodicity across features and targets. The
aggregated data is then used for learning our model,
and the results are compared against a time domain
method that imputes the individual aggregates with
group level values.

Plots for mean estimation error |x(t)β̂ − y(t)| with in-
creasing Fourier Window ω0 are shown for the uniform
sampling period in figure 1a, and for non-uniform sam-
pling period with increasing discrepancy in periodicity
in figures 1b through 1d. In each of these cases, the re-
sults show that beyond a certain value of ω0, frequency
domain learning significantly outperforms naive time
domain modeling. As described in section 4.3, Figure
1a shows that for uniform sampling frequency, time
domain methods can be still used but our framework is
nevertheless preferable because aliasing from error sig-
nal can affect estimation accuracy in the time domain.
Moreover, as we describe in the manuscript, the per-
formance of frequency domain estimation deteriorates
if the value of ω0 becomes too high because aliasing
effects start distorting the results.

The first real spatio-temporal dataset involves an ap-
plication from agricultural studies, wherein corn yield
monitor data [42] from the Las Rosas agricultural plan-
tation in Cordoba, Argentina is regressed against fea-
tures including nitrogen levels, topographical proper-
ties, brightness value, etc. (see [43, 14] for further
details on the dataset).

The second real dataset is the Forest Fires Dataset
from the UCI Machine Learning Repository [44] which
involves predictive modelling of burned acreage from
forest fires in the northeast region of Portugal. by using
as features meteorological and other data like relative
humidity, ISI index, etc. (see [45] for more details on
the dataset).

In both these datasets, the data points are stamped
with latitude-longitude positional indices, which are
used to topographically order each observation. The
ordered data is then aggregated based on positional

3We also tried kriging for resampling i.e. reconstructing
the non-aggregated data, then fitting a linear model on the
resampled data. This approach performed poorly, hence we
omit the results for clarity
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(a) Uniform Sampling (b) Low Discrepancy (c) Medium Discrepancy (d) High Discrepancy

Figure 1: Results on Synthetic Data – Mean Estimation Error with increasing Fourier Window ω0 for uniform
aggregation (1a), and non-uniform aggregation with increasing discrepancy among aggregation periodicities (1b
through 1d). Frequency domain parameter estimation outperforms naive application of time domain methods

(a) Las Rosas Dataset (b) Forest Fires Dataset (c) CCDS Dataset

Figure 2: Results on Forest Fires Dataset, Las Rosas Datasets show that frequency domain parameter estimation
outperforms naive application of time domain methods and approaches the optimal for high enough ω0. If ω0 is
too large, however, aliasing effects can lead to deteriorated performance as in Figure 2b

indices and used for learning a linear model.

In our final experiment, we test our techniques on
the Comprehensive Climate Dataset (CCDS) which is
an extensive collection of climate modeling variables
for North America compiled from various sources in-
cluding NASA, National Oceanic and Atmospheric Ad-
ministration (NOAA), National Climate Data Center
(NCDC), etc. (see [2, 3] for further details on the
dataset). We use this dataset to model atmospheric
vapour levels using various measurements, including
carbon dioxide, methane, cloud cover, etc. and other
extra-meteorological factors like rate of frost/rainy
days, etc. over a grid that covers most of continental
United States. This collection contains two datasets,
one of which is aggregated and the other is observed
at a much higher resolution. We use the aggregated
dataset for learning β̂ and test the predictive perfor-
mance of our learned model on the higher resolution
dataset.

Figures 2a, 2b and 2c show plots for mean estimation
error |x(t)β̂− y(t)| with increasing Fourier Window ω0

for each of the three real datasets. Our results show
that in all three datasets, for a large enough ω0 our
method significantly outperforms the corresponding
time domain technique, and starts coming close to the
performance of the optimal estimator.

7 Conclusion

In this manuscript we investigated the problem of pre-
dictive modelling of linear models involving correllated
spatio-temporal data when the data is available only
in aggregated form rather than as individual-level mea-
surements with localised estimates. In particular, we
analysed the scenario where aggregation is non-uniform
across targets and different coordinates of the features,
leading to significant challenges in cogent mathemati-
cal representation of any relationship among available
feature and target aggregates. We showed that by for-
mulating the problem in the frequency domain and
exploiting duality properties of Fourier analysis, many
of the inherent structural challenges of this setting can
be bypassed. We introduced a novel framework and new
algorithmic techniques to perform frequency domain
estimation and inference for this setup and provided
both theoretical guarantees and empirical validation of
our methods. Future work will investigate extension of
this paradigm to non-linear modelling, and estimation
under alternative assumptions on data generation.
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