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Abstract

Submodular continuous functions are a cate-
gory of (generally) non-convex/non-concave
functions with a wide spectrum of appli-
cations. We characterize these functions
and demonstrate that they can be maxi-
mized efficiently with approximation guaran-
tees. Specifically, i) We introduce the weak
DR property that gives a unified character-
ization of submodularity for all set, integer-
lattice and continuous functions; ii) for maxi-
mizing monotone DR-submodular continuous
functions under general down-closed convex
constraints, we propose a FRANK-WOLFE
variant with (1—1/e) approximation guaran-
tee, and sub-linear convergence rate; iii) for
maximizing general non-monotone submodu-
lar continuous functions subject to box con-
straints, we propose a DOUBLEGREEDY al-
gorithm with 1/3 approximation guarantee.
Submodular continuous functions naturally
find applications in various real-world set-
tings, including influence and revenue max-
imization with continuous assignments, sen-
sor energy management, facility location, etc.
Experimental results show that the proposed
algorithms efficiently generate superior solu-
tions compared to baseline algorithms.

1 Introduction

Non-convex optimization delineates the new frontier in
machine learning, arising in numerous learning tasks
from training deep neural networks to latent variable
models [4]. Understanding, which classes of objectives
can be tractably optimized remains a central challenge.
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In this paper, we investigate a class of generally non-
convex and non-concave functions—submodular contin-
uous functions, and derive algorithms for approxi-
mately optimizing them with strong approximation
guarantees.

Submodularity is a structural property usually as-
sociated with set functions, with important implica-
tions for optimization. Optimizing submodular set
functions has found numerous applications in machine
learning, including variable selection [34], dictionary
learning [32, 12], sparsity inducing regularizers [6],
summarization [39, 41] and variational inference [13].
Submodular set functions can be efficiently minimized
[27], and there are strong guarantees for approximate
maximization [42, 33].

Even though submodularity is most widely considered
in the discrete realm, the notion can be generalized to
arbitrary lattices [20]. Recently, [5] showed how re-
sults from submodular set function minimization can
be lifted to the continuous domain. In this paper, we
further pursue this line of investigation, and demon-
strate that results from submodular set function max-
imization can be generalized as well. Note that the
underlying concepts associated with submodular func-
tion minimization and maximization are quite distinct,
and both require different algorithmic treatment and
analysis techniques.

As motivation for our inquiry, we firstly give a thor-
ough characterization of the class of submodular and
DR-submodular! functions. We propose the weak DR
property and prove that it is equivalent to submodu-
larity for general functions. This resolves the question
whether there exists a diminishing-return-style char-
acterization that is equivalent to submodularity for all
set, integer-lattice and continuous functions. We then
present two guaranteed algorithms for maximizing
submodular continuous functions. The first approach,
based on the Frank-Wolfe algorithm [19] and the con-
tinuous greedy algorithm [54], applies to monotone

1A DR-submodular function is a function with the di-
minishing returns property, which will be formally defined
in Section 2.
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DR-submodular functions. It provides a (1 —1/e) ap-
proximation guarantee under general down-closed con-
vex constraints. We also provide a second, coordinate-
ascent-style algorithm, which applies to arbitrary sub-
modular continuous function maximization under box
constraints, and provides a 1/3 approximation guar-
antee. This algorithm is based on the double greedy
algorithm [9] from submodular set function maximiza-
tion. Due to space limit, we defer further details on
background and related work to Appendix A.?

Notation. We assume E = {ej,eq, - ,e,} is the
ground set of n elements, and x; € R™ is the charac-
teristic vector for element e;. We use boldface letters
x € R” and & € R" interchanglebly to indicate a n-
dimensional vector, where x; is the i-th entry of «.
We use a boldface captial letter A € R™*™ to denote
a matrix. For two vectors x,y € R¥, & < y means
x; < y; for every element ¢ in E. Finally, x|z, <k
is the operation of setting the i-th element of x to k,
while keeping all other elements unchanged.

2 Characterizations of submodular
continuous functions

Submodular continuous functions are defined on sub-
sets of R™: X =[] | X;, where each X; is a compact
subset of R [53, 5]. A function f : X — R is submod-
ular iff for all (z,y) € X x X,

f(@)+f(y) > f(xvy)+f(zAy), (submodular) (1)

where A and V are the coordinate-wise minimum and
maximum operations, respectively. Specifically, X;
could be a finite set, such as {0,1} (in which case
f(-) is called set function), or {0,--- ,k; — 1} (called
integer-lattice function), where the notion of continu-
ity is vacuous; AX; can also be an interval, which is
referred to as a continuous domain. In this work, we
consider the interval by default, but it is worth noting
that the properties introduced in this section can be
applied to A; being a general compact subset of R.

When twice-differentiable, f(-) is submodular iff all
off-diagonal entries of its Hessian are non-positive® [5],

0*f(z)
8mi8x]—
The class of submodular continuous functions con-
tains a subset of both convex and concave functions,

and shares some useful properties with them (illus-
trated in Figure 1). Examples include submodular

Vx € X, <0, Vi]j. (2)

2A full version of this work is in [7].

3Notice that an equilavent definition of (1) is that Va €
X, Vi# jand a;,a; > 0st. x;+a; € X,z +a; €A, it
holds f(z+aixi)+f(x+a;x;) = f(x)+f(wt+aixita;x;)-
With a; and a; approaching zero, one get (2).

and convex func-
tions of the form
Gij(wi — xj) for oy
convex; submodular
and concave func-
tions of the form

z o (D0 )
for g concave and
A; non-negative (see
Section 5 for exam-
ple applications).
Lastly, indefinite quadratic functions of the form
f(x) = 3o "He + h'x with all off-diagonal entries
of H non-positive are examples of submodular but
non-convex,/non-concave functions. Continuous sub-
modularity is preserved under various operations,
e.g., the sum of two submodular continuous functions
is submodular, a submodular continuous function
multiplied by a positive scalar is still submodular.
Interestingly, characterizations of submodular con-
tinuous functions are in correspondence to those of
convex functions, which are summarized in Table 1.

Figure 1: Concavity, convex-
ity, submodularity and DR-
submodularity.

In the remainder of this section, we introduce useful
properties of submodular continuous functions. First
of all, we generalize the DR property (which was intro-
duced when studying set and integer-lattice functions)
to general functions defined over X. It will soon be
clear that the DR property defines a subclass of sub-
modular functions.

Definition 1 (DR property). A function f(-) defined
over X satisfies the diminishing returns (DR) property
ifVa <be X,Vie E,Vk € Ry s.t. (kx;+a) and
(kxi +b) are still in X, it holds,

flkxi +a) — f(a) = f(kxi +b) — f(b).
f(-) is called a DR-submodular* function.

One immediate observation is that for a differentiable
DR-submodular function f(-), we have that Va < b €
X, Vf(a) > Vf(b), ie., the gradient Vf(-) is an
antitone mapping from R™ to R™. Recently, the DR
property is explored by [15] to achieve the worst-case
competitive ratio for an online concave maximization
problem. DR is also closely related to a sufficient con-
dition on a concave function g(-) [8, Section 5.2], to
ensure submodularity of the corresponding set func-
tion generated by giving ¢(-) boolean input vectors.

It is well known that for set functions, DR is equiva-
lent to submodularity, while for integer-lattice func-

tions, submodularity does not in general imply DR

4Note that DR property implies submodularity and thus
the name “DR-submodular” contains redundant informa-
tion about submodularity of a function, but we keep this
terminology to be consistent with previous literature on
submodular integer-lattice functions.
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Properties | Submodular continuous function f(-) | Convex function g(-), VA € [0,1] ‘

0" order | f(®)+ fly) > fleVy) +flxry) [ M)+ (1 -Ng(y) > g0z + (1-Ny)
15" order | weak DR (this work, Definition 2) g(y) —g(x) > (Vg(x),y — x)
274 order gifiég <0,Vi#j V2g(z) = 0 (positive semidefinite)

Table 1: Comparison of properties of submodular and convex continuous functions

[48, 49, 50]. However, it was unclear whether there
exists a diminishing-return-style characterization that
is equivalent to submodularity of integer-lattice func-
tions. We give a positive answer to this open prob-
lem by proposing the weak diminishing returns (weak
DR) property for general functions defined over X', and
prove that weak DR gives a sufficient and necessary
condition for a general function to be submodular.

Definition 2 (weak DR property). A function f(-) de-
fined over X has the weak diminishing returns property
(weak DR) if Va < b € X, Vi € E s.t. a; = b;,Vk €
Ry s.t. (kxi+a) and (kx;+b) are still in X, it holds,

flkxi+a) = f(a) = f(kx: +b) — f(b).  (3)

The following proposition shows that for all set func-
tions, as well as integer-lattice and continuous func-
tions, submodularity is equivalent to weak DR.

Proposition 1 (submodularity) < (weak DR). 4
function f(-) defined over X is submodular iff it satis-
fies the weak DR property.

All of the proofs can be found in Appendix B. Given
Proposition 1, one can treat weak DR as the first order
condition of submodularity: Notice that for a differen-
tiable function f(-) with weak DR, we have Va < b €
X, Vi € Est. a; = b;, it holds V;f(a) > V,f(b),
ie., Vf(-) is a weak antitone mapping. Now we show
that DR is stronger than weak DR , and the class of
DR-submodular functions is a proper subset of that of
submodular functions, as indicated by Figure 1.

Proposition 2 (submodular/weak DR) +
(coordinate-wise concave) < (DR). A function f(-)
defined over X satisfies DR iff f(-) is submodular and
coordinate-wise concave, where the coordinate-wise
concave property is defined as: Yx € X, Vi € E,
Vk,l € Ry st (kxi + @), (Ixi + =), (k+1)x; + @)
are still in X, it holds,

flexi +x) — f(x) > f((k+Dxi +x) — f(Ixi + ),

equivalently (if twice differentiable) 628J;(2m) <0,Vie FE.

Proposition 2 shows that a twice differentiable function

f(-) is DR-submodular iff Yz € X, gif{():;]) <0,Yi,j €

E, which does not necessarily imply the concavity of

f(). Given Proposition 2, we also have the characteri-
zations of DR-submodular continuous functions, which
are summarized in Table 2.

3 Maximizing monotone
DR-submodular continuous
functions

In this section, we present an algorithm for maximiz-
ing a monotone DR-submodular continuous function
subject to a general down-closed convex constraint,
ie., maxgep, f(x). A down-closed convex set P, is
a convex set P associated with a lower bound u € P,
such that 1) Vy € P, u < y; and 2) Vy € P, ¢ € R",
u < x <y implies x € P. Without loss of generality,
we assume P lies in the postitive orthant and has the
lower bound 0, since otherwise we can always define a
new set P’ = {x | * = y—u,y € P} in the positive or-
thant, and a corresponding monotone DR-submdular
function f'(x) := f(x + u).

Maximizing a monotone DR-submodular function over
a down-closed convex constraint has many real-world
applications, e.g., influence maximization with contin-
uous assignments and sensor energy management. In
particular, for influence maximization (see Section 5),
the constraint is a down-closed polytope in the posi-
tive orthant: P ={x e R" |0 < x < u,Azx < b,u €
RY, A € R7"*" b e RT'}. We start with the following
hardness result:

Proposition 3. The problem of maximizing a mono-
tone DR-submodular continuous function subject to a
general down-closed polytope constraint is NP-hard.
For any € > 0, it cannot be approximated in polyno-
mial time within a ratio of (1—1/e+¢€) (up to low-order
terms), unless RP = NP.

Due to the NP-hardness of converging to the global
optimum, in the following by “convergence” we mean

’ Properties \ DR-submodular f(-), Ve,y € X ‘

0t order | £(®) T Fy) = fl@Vy)+ flzAy),
and f(-) is coordinate-wise concave

1% order | the DR property (Definition 1)

2nd order % <0,Vi,j e FE

Table 2: Properties of DR-submodular functions
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Algorithm 1: FRANK-WOLFE variant for monotone
DR-submodular function maximization
Input: maxzecp f(x), P is a down-closed convex set
in the positive orthant with lower bound 0,
prespecified stepsize v € (0, 1]
20— 0,t—0, k0 //k : iteration index
while t < 1 do
find v* s.t. (V¥ Vf(zF)) >
amaxyep (v, Vf(xh)) — 16L; //L >0 is the
Lipschitz parameter, o € (0,1] is the mulplicative
error level, § € [0,0] is the additive error level
find stepsize v € (0,1], e.g., Y& + 7;
and set v < min{yg, 1 —t};
bt — kPt t k= k1
K.

Return = // assuming there are K iterations in total

converging to a point near the global optimum. The
algorithm is a generalization of the continuous greedy
algorithm of [54] for maximizing a smooth submodular
function, and related to the convex Frank-Wolfe algo-
rithm [19, 28] for minimizing a convex function. We
summarize the FRANK-WOLFE variant in Algorithm 1.
In each iteration k, the algorithm uses the lineariza-
tion of f(-) as a surrogate, and moves in the direc-
tion of the maximizer of this surrogate function, i.e.
v* = argmaxyep (v, Vf(x¥)). Intuitively, we search
for the direction in which we can maximize the im-
provement in the function value and still remain fea-
sible. Finding such a direction requires maximizing a
linear objective at each iteration. Meanwhile, it elimi-
nates the need for projecting back to the feasible set in
each iteration, which is an essential step for methods
such as projected gradient ascent. The algorithm uses
stepsize v to update the solution in each iteration,
which can be simply a prespecified value . Note that
the FRANK-WOLFE variant can tolerate both multi-
plicative error o and additive error § when solving the
subproblem (Step 3 of Algorithm 1). Setting a = 1
and 6 = 0, we recover the error-free case.

Notice that the FRANK-WOLFE variant in Algorithm
1 is different from the convex Frank-Wolfe algorithm
mainly in the update direction being used: For Algo-
rithm 1, the update direction (in Step 5) is v*, while
for convex Frank-Wolfe it is v* — a*, ie., zFt1 «
x¥ 4+, (vF —x*). The reason of this difference will soon
be clear by exploring the property of DR-submodular
functions. Specifically, DR-submodular functions are
non-convex/non-concave in general, however, there
is certain connection between DR-submodularity and
concavity.

Proposition 4. A DR-submodular continuous func-
tion f(-) is concave along any non-negative direction,
and any non-positive direction.

Proposition 4 implies that the univariate auxiliary
function gz (£) := f(x + &v),€ € Ry, v € RY is con-
cave. As a result, the FRANK-WOLFE variant can fol-
low a concave direction at each step, which is the main
reason it uses v* as the update direction (notice that

v" is a non-negative direction).

To derive the approximation guarantee, we need as-
sumptions on the non-linearity of f(-) over the domain
‘P, which closely corresponds to a Lipschitz assump-
tion on the derivative of gz o(-). For a gg.(-) with
L-Lipschitz continuous derivative in [0,1] (L > 0), we
have,

S 0alO) ~ Gaa(0) ~ EVaa0) (1)

= f(z+&v) — f(z) — ({v, Vf(=)), V¢ € [0,1].

To prove the approximation guarantee, we first derive
the following lemma.

Lemma 1. = € P. Assuming x* to be the optimal
solution, one has, Vk =0,--- | K — 1,

(W4 VI 2 alf(@) - @] - 3oL (5)

Theorem 1 (Approxim@tion guarantee). For error
levels a € (0,1],6 € [0,0], with K iterations, Algo-
rithm 1 outputs ™ € P s.t.,

L K-1 Lé

f&) > (1—e™)f(") -5 Zk:O 7§—7+6*af(0)-

Theorem 1 gives the approximation guarantee for
arbitrary chosen stepsize ;. By observing that

ff;ol v = 1 and Zf;ol 72 > K~! (see the proof
in Appendix C.5), with constant stepsize, we obtain
the following “tightest” approximation bound,

Corollary 1. For a fized number of iterations K, and
constant stepsize v, = v = K1, Algorithm1 provides
the following approximation guarantee:

f@f) > 1 —e ) f(@*) — o= — = + e *f(0).

Corollary 1 implies that with a constant stepsize 7, 1)
when v — 0 (K — 00), Algorithml will output the
solution with the worst-case guarantee (1 —1/e)f(x*)
in the error-free case if f(0) = 0; and 2) The FRANK-
WOLFE variant has a sub-linear convergence rate for
monotone DR-~submodular maximization over a down-
closed convex constraint.

Time complexity. It can be seen that when using a
constant stepsize, Algorithm 1 needs O(%) iterations to
get e-close to the worst-case guarantee (1 —e™1)f(x*)
in the error-free case. When P is a polytope in the
positive orthant, one iteration of Algorithm 1 costs
approximately the same as solving a positive LP, for
which a nearly-linear time solver exists [3].
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Algorithm 2: DOUBLEGREEDY algorithm for max-
imizing non-monotone submodular continuous func-
tions
Input: maxgc(y,a) f(T), [ is generally
non-monotone, f(u)+ f(a) >0
0 — u, YO+ u;
fork=1—ndo
find iq s.t. f(zF|zhtet,) >
u,, i) S(@ T ua) — 0,
bq  fah b te—iiy) — f(zF~1);  //6€10,0] is
the additive error level
find 4, s.t. f(yF|yE-tea,) >
maXubE[uek,ﬂek] f(yk71|y§,:1<*ub) - 5a

ma.Xua c [u

S  f(y"Hyb tetn) — f(y* 1)
If 6, > &, aF « (x¥ Mk 1ea,),
yb = (Y Yk )
y* (Y b ),

xh (2 |ahledy);

//note that " = y"

Else:

Return ™ (or y™);

4 Maximizing non-monotone
submodular continuous functions

The problem of maximizing a general non-monotone
submodular continuous function under box con-
straints®, i.e., MaXgelu,a)cx f(€), has various real-
world applications, including revenue maximization
with continuous assignments, multi-resolution summa-
rization, etc, as discussed in Section 5. The following
proposition shows the NP-hardness of the problem.

Proposition 5. The problem of mazimizing a gen-
erally non-monotone submodular continuous function
subject to box constraints is NP-hard. Furthermore,
there is no (1/2 + €)-approxzimation Ye > 0, unless RP
= NP.

We now describe our algorithm for maximizing a non-
monotone submodular continuous function subject to
box constraints. It provides a 1/3-approximation, is
inspired by the double greedy algorithm of [9] and
[23], and can be viewed as a procedure performing
coordinate-ascent on two solutions.

We view the process as two particles starting from
2’ = u and y° = u, and following a certain “How”
toward each other. The pseudo-code is given in Algo-
rithm 2. We proceed in n rounds that correspond to
some arbitrary order of the coordinates. At iteration k,

we consider solving a one-dimensional (1-D) subprob-

5Tt is also called “unconstrained” maximization in the
combinatorial optimization community, since the domain
X itself is also a box. Note that the box can be in the
negative orthant here.

lem over coordinate ej for each particle, and moving
the particles based on the calculated local gains to-
ward each other. Formally, for a given coordinate ey,
we solve a 1-D subproblem to find the value of the
first solution a along coordinate e that maximizes
[, ie., U, = argmax,, f(z" ak-1u,) — f(z"1),
and calculate its marginal gain J,. We then solve an-
other 1-D subproblem to find the value of the second
solution y along coordinate e; that maximizes f, i.e.,
Gy = argmaxy, f(y’“*1|y§k’1eub) — f(y*1), and cal-
culate the second marginal gain ;. We decide by com-
paring the two marginal gains. If changing z., to be
U, has a larger local benefit, we change both z., and
Ye, t0 be U,. Otherwise, we change both of them to
be 1. After n iterations the particles should meet at
point ™ = y™, which is the final solution. Note that
Algorithm 2 can tolerate additive error § in solving
each 1-D subproblem (Steps 3, 4).

We would like to emphasize that the assumptions re-
quired by DOUBLEGREEDY are submodularity of f,
f(uw) + f(u) > 0 and the (approximate) solvability of
the 1-D subproblem. For proving the approximation
guarantee, the idea is to bound the loss in the objective
value from the assumed optimal objective value be-
tween every two consecutive steps, which is then used
to bound the maximum loss after n iterations.

Theorem 2. Assuming the optimal solution to be x*,
the output of Algorithm 2 has function value no less
than 1f(z*) — 45, where § € [0,6] is the additive
error level for each 1-D subproblem.

Time complexity. It can be seen that the time
complexity of Algorithm 2 is O(n % cost_1D), where
cost_1D is the cost of solving the 1-D subproblem.
Solving a 1-D subproblem is usually very cheap.
For non-convex/non-concave quadratic programming
it has a closed form solution.

5 Examples of submodular continuous
objective functions

In this part, we discuss several concrete problem in-
stances with their corresponding submodular continu-
ous objective functions.

Extensions of submodular set functions. The
multilinear extension [10] and softmax extension [21]
are special cases of DR-submodular functions, that are
extensively used for submodular set function maxi-
mization. The Lovdsz extension [40] used for submod-
ular set function minimization is both submodular and
convex (see Appendix A in [5]).

Non-convex/non-concave quadratic program-
ming (NQP). NQP problem of the form f(x) =
%wTHm + hTx + c under linear constraints naturally



Submodular Maximization over Continuous Domains

arises in many applications, including scheduling [47],
inventory theory, and free boundary problems. A spe-
cial class of NQP is the submodular NQP (the mini-
mization of which was studied in [30]), in which all off-
diagonal entries of H are required to be non-positive.
In this work, we mainly use submodular NQPs as syn-
thetic functions for both monotone DR-submodular
maximization and non-monotone submodular maxi-
mization.

Optimal budget allocation with continuous as-
signments. Optimal budget allocation is a special
case of the influence maximization problem. It can be
modeled as a bipartite graph (S, T; W), where S and T
are collections of advertising channels and customers,
respectively. The edge weight, ps; € W, represents
the influence probability of channel s to customer t.
The goal is to distribute the budget (e.g., time for a
TV advertisement, or space of an inline ad) among the
source nodes, and to maximize the expected influence
on the potential customers [48, 25]. The total influence
of customer ¢ from all channels can be modeled by a
proper monotone DR-submodular function I(x), e.g.,
I(®) =1 = ][5 new (1 — pst)”" where € RY is the
budget assignment among the advertising channels.
For a set of k advertisers, let a* € Rf_ to be the bud-
get assignment for advertiser i, and x := [z',--- , z"]
denote the assignments for all the advertisers. The
overall objective is,

k A i i
gle) = oif(x’) with f(z')=) L"),
o<z <a’,Vi=1, -,k

which is monotone DR-submodular. A concrete ap-
plication is for search marketing advertiser bidding, in
which vendors bid for the right to appear alongside
the results of different search keywords. Here, ' is
the volume of advertising space allocated to the adver-
tiser 7 to show his ad alongside query keyword s. The
search engine company needs to distribute the budget
(advertising space) to all vendors to maximize their in-
fluence on the customers, while respecting various con-
straints. For example, each vendor has a specified bud-
get limit for advertising, and the ad space associated
with each search keyword can not be too large. All
such constraints can be formulated as a down-closed
polytope P, hence the FRANK-WOLFE variant can be
used to find an approximate solution for the problem
maxgcp g(x). Note that one can flexibly add regular-
izers in designing I;(z") as long as it remains monotone
DR-submodular. For example, adding separable regu-
larizers of the form ) _¢(z%) does not change the off-
diagonal entries of the Hessian, and hence maintains
submodularity. Alternatively, bounding the second-
order derivative of ¢(z%) ensures DR-submodularity.

Revenue maximization with continuous assign-

ments. In viral marketing, sellers choose a small sub-
set of buyers to give them some product for free, to
trigger a cascade of further adoptions through “word-
of-mouth” effects, in order to maximize the total rev-
enue [24]. For some products (e.g., software), the
seller usually gives away the product in the form of
a trial, to be used for free for a limited time period.
In this task, except for deciding whether to choose a
user or not, the sellers also need to decide how much
the free assignment should be, in which the assign-
ments should be modeled as continuous variables. We
call this problem revenue maximization with continu-
ous assignments. Assume there are ¢ products and n
buyers/users, let ' € R’} to be the assignments of
product i to the n users, let x := [z!,--- ,x9] denote
the assignments for the ¢ products. The revenue can
be modelled as g(x) = Y_7_, f(z') with

flt)=adD | Re(@)+5Y o) ()
+7izt:mi¢()ﬁt(mi)v 0<a!<a’,

where z¢ is the assignment of product i to user ¢ for
free, e.g., the amount of free trial time or the amount of
the product itself. R(z’) models revenue gain from
user s who did not receive the free assignment. It
can be some non-negative, non-decreasing submodu-
lar function. ¢(x%) models revenue gain from user t
who received the free assignment, since the more one
user tries the product, the more likely he/she will buy
it after the trial period. R;(z') models the revenue
loss from user ¢ (in the free trial time period the seller
cannot get profits), which can be some non-positive,
non-increasing submodular function. With S=y=0, we
recover the classical model of [24]. For products with
continuous assignments, usually the cost of the prod-
uct does not increase with its amount, e.g., the product
as a software, so we only have the box constraint on
each assignment. The objective in Eq. 6 is generally
non-concave/non-convez, and non-monotone submod-
ular (see Appendix E for more details), thus can be
approximately maximized by the proposed DOUBLE-
GREEDY algorithm.

Lemma 2. If R (x') is non-decreasing submodular
and Ry(x") is non-increasing submodular, then f(z?)
in Fq. 6 is submodular.

Sensor energy management. For cost-sensitive
outbreak detection in sensor networks [36], one needs
to place sensors in a subset of locations selected from
all the possible locations F, to quickly detect a set of
contamination events V', while respecting the cost con-
straints of the sensors. For each location e € F and
each event v € V, a value t(e,v) is provided as the
time it takes for the placed sensor in e to detect event
v. [49] considered the sensors with discrete energy lev-
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els. It is also natural to model the energy levels of
sensors to be a continuous variable = € Rf. For a
sensor with energy level x., the success probability it
detects the event is 1 — (1 —p)®e, which models that by
spending one unit of energy one has an extra chance of
detecting the event with probability p. In this model,
beyond deciding whether to place a sensor or not, one
also needs to decide the optimal energy levels. Let
too = MaXecp ey t(e, v), let e, be the first sensor that
detects event v (e, is a random variable). One can de-
fine the objective as the expected detection time that
could be saved,

f(:l?) = EyevEe, [too - t(eva 'U)]v (7)

which is monotone DR-submodular. Maximizing f(x)
w.r.t. the cost constraints pursues the goal of finding
the optimal energy levels of the sensors, to maximize
the expected detection time that could be saved.

Other applications. More applications with sub-
modular continuous objectives exist, e.g., multi-
resolution summarization, facility location with con-
tinuous opening scales, maximum coverage with con-
fidence level and the problem of text summarization
with submodular objectives [38]. We defer details to
Appendix F.

6 Experimental results

We compare the performance of our proposed al-
gorithms, the FRANK-WOLFE variant and DOUBLE-
GREEDY, with the following baselines: a) RANDOM:
uniformly sample ks solutions from the constraint set
using the hit-and-run sampler [35], and select the
best one. For the constraint set as a very high-
dimensional polytope, this approach is computation-
ally very expensive. To accelerate sampling from a
high-dimensional polytope, we also use b) RANDOM-
CuBE: randomly sample k4 solutions from the hyper-
cube, and decrease their elements until they are inside
the polytope. In addition we consider ¢) PROJGRAD:
projected gradient ascent with an empirically tuned
step size; and d) SINGLEGREEDY: for non-monotone
submodular functions maximization over a box con-
straint, we greedily increase each coordinate, as long as
it remains feasible. This approach is similar to the co-
ordinate ascent method. In all of the experiments, we
use random order of coordinates for DOUBLEGREEDY.
We use constant step size for the FRANK-WOLFE vari-
ant since it gives the tightest approximation guarantee
(see Corollary 1). The performance of the methods are
evaluated for the following tasks.
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Figure 2: (Both FRANK-WOLFE and PROJGRAD were
ran for 50 iterations): a) FRANK-WOLFE function
value for 4 instances with different b; b) NQP func-
tion value returned w.r.t. different b; ¢, d) Influence
returned w.r.t. different budgets on volume of ads and
different budgets of advertisers, respectively;

6.1 Results for monotone maximization

Monotone DR-submodular NQP. We randomly
generated monotone DR-submodular NQP functions
of the form f(x) = 2o Hx + h'x, where H € R™*"
is a random matrix with uniformly distributed non-
positive entries in [—100, 0], n = 100. We further gen-
erated a set of m = 50 linear constraints to construct
the positive polytope P = {x € R"|Az < b,0 < x <
@}, where A has uniformly distributed entries in [0, 1],
b =14 = 1. To make the gradient non-negative,
we set h = —HT@. We empirically tuned step size
ap for PROJGRAD and ran all algorithms for 50 iter-
ations. Figure 2a shows the utility obtained by the
FRANK-WOLFE variant v.s. the iteration index for
4 function instances with different values of b. Fig-
ure 2b shows the average utility obtained by different
algorithms with increasing values of b, which is the
average of 20 repeated experiments. For PROJGRAD,
we plotted the curves for three different values of .
One can see that the performance of PROJGRAD fluc-
tuates with different step sizes. With the best-tuned
step size, PROJGRAD performs close to the FRANK-
WOLFE variant.

Optimal budget allocation. As our real-world ex-
periments, we used the Yahoo! Search Marketing Ad-
vertiser Bidding Data®, which consists of 1,000 search

Shttps://webscope.sandbox.yahoo.com/catalog.
php?datatype=a


https://webscope.sandbox.yahoo.com/catalog.php?datatype=a
https://webscope.sandbox.yahoo.com/catalog.php?datatype=a

Submodular Maximization over Continuous Domains

keywords, 10,475 customers and 52,567 edges. We con-
sidered the frequency of (keyword, customer) pairs to
estimate the influence probabilities, and used the av-
erage of the bidding prices to put a limit on the bud-
get of each advertiser. Since the RANDOM sampling
was too slow, we compared with the RANDOMCUBE
method. Figures 2c and 2d show the value of the util-
ity function (influence) when varying the budget on
volume of ads and on budget of advertisers, respec-
tively. Again, we observe that the FRANK-WOLFE
variant outperforms the other baselines, and the per-
formance of PROJGRAD highly depends on the choice
of the step size.

6.2 Results for non-monotone maximization

................

=== Larger solution T,
9 1.005 e
—— Smaller solution .

SingleGreedy
Random -,
|~ ProjGrad (.0001) =
- ProjGrad (.001) g,
++ ProjGrad (.01)

Function value
o
Function value
-

B T S S T S S S 3

0 200 400 600 800 1000 0 2 4 6 8 10
Iterations Increasing upper bound

(a) DOUBLEGREEDY utility  (b) Non-monotone NQP

%104 x10*

i ———r—
s = = i = B
—nm———
- = e o i = = W =

12 A Random
SingleGreedy
—e= DoubleGreedy

10 - Random
SingleGreedy
== DoubleGreedy

=
1S

Revenue
©
Revenue

IS
NN
[
14

0 2 4 6 8 10
Increasing upper bound

(c)a=p=~v=10

)
~

4 6 8 10
Increasing upper bound

(d) a=10,8="5,v =10

Figure 3: Non-monotone experiments. a) Function
values of the two intermediate solutions of DOUBLE-
GREEDY in each iteration; b) Non-monotone NQP
function value w.r.t. different upper bounds; ¢, d)
Revenue returned with different upper bounds # on
the Youtube social network dataset.

Non-monotone submodular NQP. We randomly
generated non-monotone submodular NQPs of the
form f(z) = 32 "Hz+h 'z +c, where H e R " is a
sparse matrix with uniformly distributed non-positive
off-diagonal entries in [—10,0], n = 1000. We consid-
ered a matrix for which around 50% of the eigenvalues
are positive and the other 50% are negative. We set
h = —0.2+ H'4 to make f(x) non-monotone. We
then selected a value for ¢ such that f(0) + f(w) > 0.
PRrROJGRAD was executed for n iterations, with empiri-
cally tuned step sizes. For the RANDOM method we set
ks = 1,000. Figure 3a shows the utility of the two in-
termediate solutions maintained by DOUBLEGREEDY.
One can observe that they both increase in each itera-

tion. Figure 3b shows the values of the utility function
for varying upper bound w. The result is the average
over 20 repeated experiments. We can see that Dou-
BLEGREEDY has strong approximation performance,
while PROJGRAD’s results depend on the choice of the
step size. With carefully hand-tuned step size, its per-
formance is comparable to DOUBLEGREEDY.

Revenue maximization. W.l.o.g., we considered
maximizing the revenue from selling one product (cor-
responding to ¢ = 1, see Appendix E for more details
on this model). Notice that the objective in Eq. 6 is
generally non-smooth and discontinuous at any point
« which contains the element of 0. Since the subdif-
ferential can be empty, we cannot use the subgradient-
based method and could not compare with PROJ-
GRAD. We performed our experiments on the top
500 largest communities of the YouTube social net-
work” consisting of 39,841 nodes and 224,235 edges.
The edge weights were assigned according to a uniform
distribution U(0,1). See Figure 3¢, 3d for an illustra-
tion of revenue for varying upper bound () and differ-
ent combinations of the parameters (a, §8,7) (see Eq.
6). For different values of the upper bound, DOUBLE-
GREEDY outperforms the other baselines, while SIN-
GLEGREEDY maintaining only one intermediate solu-
tion obtained a lower utility than DOUBLEGREEDY.

7 Conclusion

We characterized submodular continuous functions,
and proposed two approximation algorithms to effi-
ciently maximize them. In particular, for maximizing
monotone DR-submodular continuous functions s.t.
general down-closed convex constraints, we proposed a
(1—1/e)-approximation algorithm, and for maximizing
non-monotone submodular continuous functions s.t. a
box constraint, we proposed a 1/3-approximation al-
gorithm. We demonstrate the effectiveness of our algo-
rithms through a set of experiments on real-world ap-
plications, including budget allocation, revenue max-
imization, and submodular quadratic programming,
and show that our proposed methods outperform the
baselines in all the experiments. This work demon-
strates that submodularity can ensure guaranteed op-
timization in the continuous setting for problems with
non-convex/non-concave objectives.
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Appendix

A More on background and related work

Notions of submodularity. Submodularity is often viewed as a discrete analogue of convexity, and provides
computationally effective structure so that many discrete problems with this property are efficiently solvable or
approximable. Of particular interest is a (1 — 1/e)-approximation for maximizing a monotone submodular set
function subject to a cardinality, a matroid, or a knapsack constraint [42, 54, 52]. Another result relevant to
this work is unconstrained maximization of non-monotone submodular set functions, for which [9] propose the
deterministic double greedy algorithm with 1/3 approximation guarantee, and the randomized double greedy
algorithm which achieves the tight 1/2 approximation guarantee.

Although most commonly associated with set functions, in many practical scenarios, it is natural to consider
generalizations of submodular set functions. [22] introduce the notion of adaptive submodularity to generalize
submodular set functions to adaptive policies. [31] studies tree-submodular functions and presents a polynomial
algorithm for minimizing them. For distributive lattices, it is well-known that the combinatorial polynomial-time
algorithms for minimizing a submodular set function can be adopted to minimize a submodular function over
a bounded integer lattice [20]. Recently, maximizing a submodular function over integer lattices has attracted
considerable attention. In particular, [48] develop a (1—1/e)-approximation algorithm for maximizing a monotone
DR-submodular integer-lattice function under a knapsack constraint. For non-monotone submodular functions
over the bounded integer lattice, [23] provide a 1/3-approximation. Approximation algorithms for maximizing
bisubmodular functions and k-submodular functions have also been proposed by [46, 55].

[56] considers maximizing a special class of submodular continuous functions subject to one knapsack constraint,
in the context of solving location problems. That class of functions are additionally required to be monotone,
piecewise linear and concave. [10, 54] discuss a subclass of submodular continuous functions, which is termed
smooth submodular functions®, to describe the multilinear extension of a submodular set function. They propose
the continuous greedy algorithm, which has a (1 — 1/e) approximation guarantee on maximizing a smooth
submodular functions under a down-monotone polytope constraint. Recently, [5] considers the minimization
of a submodular continuous function, and proves that efficient techniques from convex optimization may be
used for minimization. Very recently, [16] provide a reduction from a integer-lattice DR~-submodular function
maximization problem to a submodular set function maximization problem, which suggests a way to optimize
submodular continuous functions over simple continuous constriants: Discretize the continuous function and
constraint to be an integer-lattice instance, and then optimize it using the reduction. However, for monotone
DR-submodular functions maximization, this method can not handle the general continuous constraints discussed
in this work, i.e., arbitrary down-closed convex sets. And for general submodular function maximization, this
method cannot be applied, since the reduction needs the additional diminishing returns property. Therefore we
focus on continuous methods in this work.

Non-convex optimization. Optimizing non-convex continuous functions has received renewed interest in the
last decades. Recently, tensor methods have been used in various non-convex problems, e.g., learning latent
variable models [4] and training neural networks [29]. A fundamental problem in non-convex optimization is to
reach a stationary point assuming the smoothness of the objective [51, 37, 45, 2]. With extra assumptions, certain
global convergence results can be obtained. For example, for functions with Lipschitz continuous Hessians, the
regularized Newton scheme of [43] achieves global convergence results for functions with an additional star-
convexity property or with an additional gradient-dominance property [44]. [26] introduce the family of o-nice
functions and propose a graduated optimization-based algorithm, that provably converges to a global optimum
for this family of (generally) non-convex functions. However, it is typically difficult to verify whether these
assumptions hold in real-world problems.

To the best of our knowledge, this work is the first to address the general problem of monotone and non-
monotone submodular maximization over continuous domains. It is also the first to propose a sufficient and
necessary diminishing-return-style characterization of submodularity for general functions. We propose efficient
algorithms with strong approximation guarantees. We further show that continuous submodularity is a common

8A function f :[0,1]™ — R is smooth submodular if it has second partial derivatives everywhere and all entries of its
Hessian matrix are non-positive.
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property of many well-known objectives and finds various real-world applications.

B Proofs of properties of submodular continuous functions

Since A} is a compact subset of R, we denote its lower bound and upper bound to be u, and ;, respectively in
this section.

B.1 Alternative formulation of the weak DR property

First of all, we will prove that weak DR has the following alternative formulation, which will be used to prove
Proposition 1.

Lemma 3 (Alternative formulation of weak DR). The weak DR property (Eq. 3, denoted as Formulation I)
has the following equilvalent formulation (Eq. 8, denoted as Formulation II):Va <be X, Vi€ {i'|a;y = by =
w, B, VE > >0 st (Kxi+a), Uxi+a), (Kxi;+b) and (I'x; + b) are still in X, the following inequality is
satisfied,
f(K'xi +a)— f(U'xi+a) > f(k'xi +b) — f(I'xi +b) (Formulation II) (8)

Proof. Let Dy = {ila; = b; = u;}, Do = {ilu; < a; = b; < ;}, and D3 = {ila; = b; = u;}.
1) Formulation II = Formulation I
When ¢ € Dy, set I’ =0 in Formulation II one can get f(k'x; +a)— f(a) > f(k'x; +b) — f(b).
When i € Dy, Yk > 0,let ! = a;—u; = bi—u; > 0, k' = k+1' = k+(a;—v,), and let @ = (ala—u;),b = (b|bs<—u,).
It is easy to see that @ < b, and a; = b; = u;. Then from Formulation II,

f'xi +a) = f(I'x; + a) = f(kxi +a) — f(a)

> f(K'xi +b) = f(I'xi +b) = f(kx; +b) — f(b).
When ¢ € D3, Eq. 3 holds trivially.
The above three situations proves the Formulation I.

2) Formulation II < Formulation I

Va < b, Vi € Dy, one has a; = b; = u,;. VK’ > 1" >0, let@a=1x;+a,b=10x;+b,let k=Fk —1' >0, it can be

verified that @ < b and a; = b;, from Formulation I,

flkx; +a)— f(a) = f(K'xi +a)— f(I'x; + a)
>f(kx; +b) — f(b) = f(k'xi +b) — f(I'x; +b)

which proves Formulation II. O

B.2 Proof of Proposition 1
Proof. 1) submodularity = weak DR:

Let us prove the Formulation II (Eq. 8) of weak DR, which is,
Va <be X, Vie {ilag =by =u; },Vk' > 1" >0, the following inequality holds,

J(K'xi+a)— f(I'xi +a) > f(K'xi+b) — f(I'xi + b).

And f is asubmodular function iff Ve, y € X, f(x)+f(y) > f(xVy)+f(xAy),so f(y)—f(xAy) > f(xVy)—f(x).

Now Va < b € X, one can set « = I"x; + b and y = k'x; + a. It can be easily verified that x Ay = l'x; + a
and  Vy = k'x; + b. Substituting all the above equalities into f(y) — f(x Ay) > f(x Vy) — f(x) one can get

f(K'xi +a) = f(I'xi +a) > f(K'xi +b) = f('x; +b).
2) submodularity < weak DR:
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Let us use Formulation I (Eq. 3) of weak DR to prove the submodularity property.

Ve,y € X, let D := {el,~-~_,ed} to be fche set of elements for which ye > w., let ke, := ye, — ze,. Now set
a’ ==z /\y,bO = x and a’ = (a* !|a’ 7_ “Ye;) = ke;xi + a1 b = (b e ye,) = ke,xi + b, for
i=1,---,d. One can verify that a’ < b’,a’  =b.  foralli' € D,i=0,---,d, and that al =y bl=xVvy.

) e il

Applying Eq. 3 of the weak DR property for i =1,--- ,d one can get

fkerXe, +a°) = f(@®) = fkeyxe, + %) = f(°)
f(kaez + al) - f(al) > f(k62X€2 + bl) - f(bl)

FlheaXea+a'™") = f(@®™) 2> flkegXes + 571 = F(BO7).
Taking a sum over all the above d inequalities, one can get
FkeaXey + %) = f(a%) 2 flke,Xeq +5771) = F(B°) &

-
fly) = flxny) > (w\/y) f(z) &
f(@)+ fy) > flxVy)+ flxAry),

which proves the submodularity. O

B.3 Proof of Proposition 2

Proof. 1) submodular + coordinate-wise concave = DR:
From coordinate-wise concavity we have f(a+kx;)—f(a) > f(a+(b;—a;+k)x:)— f(a+(b; —a;)xi). Therefore,
to prove DR it suffices to show that

fla+(bi —ai + k)xi) — fla+ (b — ai)xi) = f(b+ kxi) — f(b). (9)

Let ¢ :=b,y:= (a+ (b; —a; + k)xi),so x ANy = (a+ (b; —a;)x:),x Vy = (b+ kx;). From submodularity, one
can see that inequality 9 holds.

2) submodular + coordinate-wise concave <= DR:
From DR property, the weak DR (Eq. 3) property is implied, which equivalently proves the submodularity property.

To prove coordinate-wise concavity, one just need to set b := a + Ixy, then it reads f(a + kx;) — f(a) >
fla+ (k+1D)x:) — fla+Ixq) O

C Proofs for the monotone DR-submodular continuous functions maximization

C.1 Proof of Proposition 3

Proof. On a high level, the proof idea follows from the reduction from the problem of maximizing a monotone
submodular set function subject to cardinality constraints.

Let us denote II; as the problem of maximizing a monotone submodular set function subject to cardinality
constraints, and II, as the problem of maximizing a monotone DR-submodular continuous function under general
down-closed polytope constraints. Following [11], there exist an algorithm &7 for IT; that consists of a polynomial
time computation in addition to polynomial number of subroutine calls to an algorithm for Il;. For details on
a7 see the following.

First of all, the multilinear extension [10] of a monotone submodular set function is a monotone submodular
continuous function, and it is coordinate-wise linear, thus falls into a special case of monotone DR-~submodular
continuous functions.

So the algorithm &7 can be: 1) Maximize the multilinear extension of the submodular set function over the
matroid polytope associated with the cardinality constraint, which can be achieved by solving an instance of
IT;. We call the solution obtained the fractional solution; 2) Round the fractional solution to a feasible integeral
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solution using polynomial time rounding technique in [1, 10] (called the pipage rounding). Thus we prove the
reduction from II; to IIs.

Our reduction algorithm 7 implies the NP-hardness and inapproximability of problem II.
For the NP-hardness, because II; is well known to be NP-hard [10, 17], so II5 is NP-hard as well.

For the inapproximability: Assume there exists a polynomial algorithm % that can solve II5 better than 1 —1/e,
then we can use # as the subroutine algorithm in the reduction, which implies that one can solve II; better
than 1 — 1/e. Now we slightly adapt the proof of inapproximability on max-k-cover in [17], since max-k-cover
is a special case of II;. According to Theorem 5.3 in [17] and our reduction <7, we have a reduction from
approximating 3SAT-5 to problem IIy. Using the rest proof of Theorem 5.3 in [17], we reach the result that one
cannot solve Il better than 1 — 1/e, unless RP = NP. O

C.2 Proof of Proposition 4
Proof. Consider a function g(§) := f(z + &v*),£ > 0,v* > 0. d%—f) = (v*, Vf(z + {v*)).
g(&) is concave <

d?g(€)
de?

= () V2 f(z+ v =D vioiVif+ Y (0])PViLf <0
i#£j i

The non-positiveness of V?j f is ensured by submodularity of f(-), and the non-positiveness of V2 f results from
the coordinate-wise concavity of f(-).

The proof of concavity along any non-positive direction is similar, which is omitted here. O
C.3 Proof of Lemma 1

Proof. Tt is easy to see that &€ is a convex linear combination of points in P, so & € P.

Consider the point v* := (x*Va)—x = (x* —x) V0 > 0. Because v* < * and P is down-closed, we get v* € P.
By monotonicity, f(x + v*) = f(z* V) > f(x*).

lr(ljonsider the function ¢(§) := f(x +&v*), & > 0. df’i—(g) = (v*,Vf(x+&v*)). From Proposition 4, g(§) is concave,
ence

o(1) = 9(0) = fla+v") - f@) € 2| x1= (0" Vf(@).

Then one can get
(@) 1
(0. V(@) 2 alv', V(@) - 3L >
« 1 . 1
ol f( +v") — (@)~ 30L > a(f(@) ~ f(z)) — 5oL
where (a) is from the selection rule in Step 3 of Algorithml. O

C.4 Proof of Theorem 1

Proof. From the Lipschitz continuous derivative assumption of g(:) (Eq. 4):
F@h) = f@*) = f@" +po®) — f2")
= g(y) —9(0)

L
>y, (vF, Vf(xF)) — 57,3 (Lipschitz assumption in Eq. 4)

> ypolf(@) — f(a)] ~ 50l o7 (Lemma 1)
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After rearrangement,

X . 1 L
F@h) = (@) 2 (1 - am)[f(a¥) - f(@")] - 5L = 222
Therefore,
K—1 P P
f@) = f@) = [T 0= am)lfO0) = F@)] = 5 D w—5 > i
k=0 k=0 k=0
One can observe that 25;01 v = 1, and since 1 —y < e™Y when y > 0,
K-1
* * (0% K—1 5L L
fla@*) = f@™) < [f(@") = fO)emZi0 M =2+ 23 9F
k=0
K—1
. e  OL L
— [f@) — fOe + T+ 5 3o
k=0
After rearrangement, we get,
K—1
. L Lé o
)2 (1= 1/e)f@) = 5 3 aE =5 +ef(0)
k=0
O
C.5 Proof of Corollary 1
Proof. Fixing K, to reach the tightest bound in Theorem 1 amounts to solving the following problem:
K—1
min Z ’y,g
k=0
K-1
s.t. Z Y =1,7% = 0.
k=0
Using Lagrangian method, let A be the Lagrangian multiplier, then
K—1 K—1
b ) = o4 [ S|
k=0 k=0
It can be easily verified that when y9 = -+ = yg_1 = K1, 215;01 'y,% reaches the minimum (which is K~1).
Therefore we obtain the tightest worst-case bound in Corollary 1. O

D Proofs for the non-monotone submodular continuous functions maximization

D.1 Proof of Proposition 5

Proof. The main proof follows from the reduction from the problem of maximizing an unconstrained non-
monotone submodular set function.

Let us denote II; as the problem of maximizing an unconstrained non-monotone submodular set function, and
II5 as the problem of maximizing a box constrained non-monotone submodular continuous function. Following
the Appendix A of [9], there exist an algorithm &7 for II; that consists of a polynomial time computation in
addition to polynomial number of subroutine calls to an algorithm for Il;. For details see the following.

Given a submodular set function F : 2F — R, | its multilinear extension [10] is a function f : [0,1]¥ — R, , whose
value at a point € [0, 1]¥ is the expected value of F' over a random subset R(x) C F, where R(z) contains each
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element e € E independently with probability z.. Formally, f(z) := E[R(z)] = > Sgcp F'(5) [Iees ze [1ergs(1 —
Ter). It can be easily seen that f(x) is a non-monotone submodular continuous function.

Then the algorithm o7 can be: 1) Maximize the multilinear extension f(z) over the box constraint [0, 1], which
can be achieved by solving an instance of II5. Obtain the fractional solution & € [0, 1]™; 2) Return the random
set R(x). According to the definition of multilinear extension, the expected value of F'(R(&)) is f(&). Thus
proving the reduction from IT; to Il.

Given the reduction, the hardness result follows from the hardness of unconstrained non-monotone submodular
set function maximization.

The inapproximability result comes from that of the unconstrained non-monotone submodular set function

maximization in [18] and [14]. O

D.2 Proof of Theorem 2

To better illustrate the proof, we reformulate Algorithm?2 into its equivalent form in Algorithm3, where we split
the update into two steps: when J§, > J;, update x first while keeping y fixed and then update y first while
keeping @ fixed (x' < (x'~Hal ti,), y' <yl &'« ',y (y'|yl +i,) ), when §, < 0, update y
first. This iteration index change is only used to ease the analysis.

To prove the theorem, we first prove the following Lemmas.

Algorithm 3: DOUBLEGREEDY algorithm reformulation (for analysis only)

Input: max f(x), ¢ € |u, ], f is generally non-monotone, f(u)+ f(a) >0
20— u, y° «— u;
for:=1,3,5,---,2n— 1 do
find g st @~ o i) 2 sl o) S el ) =6, 80 e fla el i) — S
//3 € [0,8] is the additive error level.
find dy s.t. f(y" |yl i) > maxy, e, a.,) ST YL ew) =6, 8 fyTH yE i) — fyT)
if 6, > 6, then
Tt (wi_1|xéi_1<—&a), Yt~y
L et - al Yy (Y'Yl ) ;
else
Y (Y e, 2 e et
L Y eyl @t e (@ );

Return 2" (or y?") ; //note that " = y*"

Lemma 4 is used to demonstrate that the objective value of each intermediate solution is non-decreasing,

Lemma 4. Vi=1,2,---,2n, one has,
fla') = f@™") =0, f(y') = fly™") -0 (10)
Proof of Lemma 4. Let j := e; be the coordinate that is going to be changed. From submodularity,
Fla' Moy eay) + fy' ™y o) > fe) 4 fly'TY
So one can verify that §, + d, > —24. Let us consider the following two situations:
1) If 64 > 0p, @ is changed first.

We can see that the Lemma holds for the first change (where ‘! — % y* = y*~!). For the second change, we
are left to prove f(y‘*!) > f(y*) — 6. From submodularity:

i i) + fa i emy) > f@ e ) + f () 1

Therefore, f(y**!) — f(y?) > f(wi_1|a:§-_1<—ﬁa) - f(mi_1|x§_1<—aj) > —§, the last inequality comes from the
selection rule of d, in the algorithm.
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2) Otherwise, 0, < dp, y is changed first.
The Lemma holds for the first change (y*~! — y’ ' = x'~1). For the second change, we are left to prove
f(zi™) > f(x') — §. From submodularity,

Fl@ ™ ™ etn) + f(y" yy ey) > f(y" Y ) + f(2), (12)

So f(x't1) - f(z?) > f(yi_1|y;-71<—db) —f(yi_1|y§71<—gj) > —4, the last inequality also comes from the selection
rule of d. O
Let OPT" := (xz* V ') A y*, it is easy to observe that OPT? = &* and OPT?" = 2" = y?".

Lemma 5. Vi=1,2,---,2n, it holds,

FOPT'™Y) = f(OPT") < f(') — f(='™") + f(y") — f(y'™") + 20. (13)

Before proving Lemma 5, let us get some intuition about it. We can see that when changing ¢ from 0 to 2n, the
objective value changes from the optimal value f(z*) to the value returned by the algorithm: f(x*"). Lemma
5 is then used to bound the objective loss from the assumed optimal objective in each iteration.

Proof. Let j := e; be the coordinate that will be changed.

First of all, let us assume « is changed, y is kept unchanged (z* # z'~!, y* = y*~1), this could happen in four
situations: 1.1) z% < 2} and 0, > G 1.2) % < 5 and 8, < &; 2.1) @ > 2§ and 6, > G; 2.2) 2} > 7} and
dq < 0p. Let us prove the four situations one by one.

If w; < ac;ﬁ the Lemma holds in the following two situations:

1.1) When 4, > 8, it happens in the first change: x; =g < 7, 80 OPT? = OPT'!; According to Lemma 4,
8o + 0y > =26, 50 f(x') — f(x1) + f(y") — f(y*™!) + 25 > 0, so the Lemma holds;

1.2) When 4, < 8, it happens in the second change: = = @, < x},y} = yjfl = 1y, and since OPT™! =

(z*Vazi=H) Ayt so OPT;71 = 1 and OPT; = 1y, so one still has OPT? = OPT*"!'. So it amouts to prove
that d, + & > —24, which is true according to Lemma 4.

Else if ) > 7, it holds that OPT} = x%, all other coordinates of OPT*~! remain unchanged. The Lemma

holds in the following two situations:

2.1) When 6, > &, it happens in the first change. One has OPT; = mz = Ug, ac;-*l = u;, SO OPT;*1 =zj. And

i * o i—1
Tt = Ug > x5, Y;

b i~ = u;. From submodularity,

FOPTY) + fy''y;~"a}) > FOPT™Y) + f(y' |y~ ' +—ia) (14)
Suppose by virtue of contradiction that,
FOPT'™1) = FOPT") > f(a') — f(a'") +26 (15)
Summing Eq. 14 and 15 we get:
0> f@') = f@ )+ 0+ fly' Nyl etia) — fFy' Myl al) + 6 (16)
Because §, > d; then from the selection rule of dy,
ba = f(a) — f(&') 26, > fly' Myl ) — fly' ™) = 0, Vu; < c < . (17)
Setting ¢ = x and substitite (17) into (16), one can get,
0> fly'Hyj eta) = fly" ™) + 6= fFy™h) - fy)) +6, (18)

which contradicts with Lemma 4.
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2.2) When 6, < dp, it happens in the second change. y;fl = ab,xé =up > 73, OPT; = Uy, OPT;*1 = z;. From
submodularity,

FOPT") + f(y'Hy;™ =) = FOPT™Y) + fy'y; ™ ) (19)
Suppose by virtue of contradiction that,
fOPT*™Y) — f(OPT?) > f(x') — f(x'"') + 26. (20)
Summing Equations 19 and 20 we get:
0> f(a) = fla'™) + 0+ fly'y; i) — Fly' ™y~ ) + 6. (21)

From Lemma 4 we have f(x') — f(x*~!)+46 > 0, s0 0 > f(yi_1|y;71<—ﬁb) - f(yi_1|y§-71<—x;f) + 9, which
contradicts with the selection rule of .

The case when y is changed, x is kept unchanged is similar, the proof of which is omitted here. O

With Lemma 5 at hand, one can prove Theorem 2: Taking a sum over ¢ from 1 to 2n, one can get,

FOPT?) — f(OPT?™) < f(x**) — f(=°) + f(¥*") — f(y°) + 4nd
= f(@*") + f(y*") — (f(u) + f(@)) + 4nd
< f(®*) + f(y*") +4nd

Then it is easy to see that f(x®") = f(y*") > 1 f(x*) — 2.

E Details of revenue maximization with continuous assignments

E.1 More details about the model

From the discussion in the main text, Rs(x*) should be some non-negative, non-decreasing, submodular function,
we set Ry(z?) := | /Ztm#o Tiwg, where wy; is the weight of edge connecting users s and t. The first part in

R.H.S. of Eq. 6 models the revenue from users who have not received free assignments, while the second and
third parts model the revenue from users who have gotten the free assignments. We use wy to denote the
“self-activation rate” of user t: Given certain amount of free trail to user ¢, how probable is it that he/she will
buy after the trial. The intuition of modeling the second part in R.H.S. of Eq. 6 is: Given the users more free
assignments, they are more likely to buy the product after using it. Therefore, we model the expected revenue
in this part by ¢(xi) = wyal; The intuition of modeling the third part in R.H.S. of Eq. 6 is: Giving the users
more free assignments, the revenue could decrease, since the users use the product for free for a longer period.
As a simple example, the decrease in the revenue can be modeled as y Zm? £0 —at.

E.2 Proof of Lemma 2

Proof. First of all, we prove that g(z) := >_,., _, Rs(x) is a non-negative submodular function.

It is easy to see that g(«) is non-negative. To prove that g(x) is submodular, one just need,
gla)+ g(b) > g(aVvb)+g(arb), Va,bel0,ul. (22)

Let A := supp(a), B := supp(b), where supp(x) := {i|x; # 0} is the support of the vector . First of all, because
Rs(x) is non-decreasing, and b > a Ab, a > aAb,

> Ri(b)+ > Ria)> D Rianb)+ > RiaAb). (23)

seA\B s€eB\A s€eA\B s€eB\A

By submodularity of Rs(x), and summing over s € E\(AU B),

> R{a)+ > RJ(b)>= > RdaVvb+ > RiaAb). (24)

sEE\(AUB) sEE\(AUB) sEE\(AUB) sEE\(AUB)
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Summing Equations 23 and 24 one can get
> Ria)+ > R(b)> > Riavb)+ Y RiaAb)
SEE\A s€E\B s€E\(AUB) s€E\(ANB)

which is equivalent to Eq. 22.

Then we prove that h(z) = >, 4o Ri(z) is submodular. Because R;(z) is non-increasing, and a < a V b,
b<aVvhb,
Z Rt(a)+ Z Rt Z Rta\/b Z Rta\/b (25)
te A\B teB\A teA\B teB\A

By submodularity of R;(z), and summing over t € AN B,
Z Rt(a)+ Z Rt Z Rt a\/b Z Rt a/\b (26)
teANB teANB ans teANB
Summing Equations 25, 26 we get,
ZRt(a)+ZRt Z Rt a\/b Z Rt a/\b
teA teB éaus teANB
which is equivalent to h(a) + h(b) > h(a V b) + h(a Ab), Va,b € [0, u], thus proving the submodularity of h(x).

Finally, because f(x) is the sum of two submodular functions and one modular function, so it is submodular. [
E.3 Solving the 1-D subproblem when applying the DoubleGreedy algorithm

Suppose we are varying z; € [0,4;] to maximize f(ax), notice that this 1-D subproblem is non-smooth and
discontinuous at point 0. First of all, let us leave z; = 0 out, one can see that f(x) is concave and smooth along
X when Tj € (O,’l]j],

8%@ —a Y = — 7+ Bwy;
Ly s£jime=0 QW
Pfl) _ 1 ws;

Oz 1 Z 5 =0
j s Tma=0 (\/m)

Let f(z) be the univariate function when z; € (0, 1,], then we extend the domain of f(z) to be z € [0, ;] as,

F)=fa):=a Y Rdx)+8 Y o)+ Y Re(@)+Bo(x;) +1R;(@).
s#jws=0 t#j:x #0 t#j:@ 70
One can see that f(z) is concave and smooth. Now to solve the 1-D subproblem, we can first of all solve the

smooth concave 1-D maximization problem?: z* := arg max. (o z,] f(2), then compare f(z*) with the function
value at the discontinuous point 0: f(x|z;+-0), and return the point with the larger function value.

F More applications

Multi-resolution summarization. Suppose we have a collection of items, e.g., images E = {e1, -+ ,e,}.
Our goal is to extract a representative summary, where representativeness is defined w.r.t. a submodular set
function F : 2F — R. However, instead of returning a single set, our goal is to obtain summaries at multiple
levels of detail or resolution. One way to achieve this goal is to assign each item e; a nonnegative score x;. Given
a user-tunable threshold 7, the resulting summary S, = {e;|x; > 7} is the set of items with scores exceeding 7.
Thus, instead of solving the discrete problem of selecting a fixed set S, we pursue the goal to optimize over the
scores, e.g., to use the following submodular continuous function,

- ZieE ZjeE lws)sis - ZieE ZjeE TS, (27)

where s; ; > 0 is the similarity between items ¢, j, and ¢(-) is a non-decreasing concave function.

91t can be efficienlty solved by various methods, e.g., the bisection method or Newton method.
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Facility location. The classical discrete facility location problem can be naturally generalized to the continuous
case where the scale of a facility is determined by a continuous value in interval [0, @]. For a set of facilities F, let
T € Rf be the scale of all facilities. The goal is to decide how large each facility should be in order to optimally
serve a set T of customers. For a facility s of scale xg, let ps(zs) be the value of service it can provide to
customer t € T, where pg(x5) is a normalized monotone function (ps:(0) = 0). Assuming each customer chooses
the facility with highest value, the total service provided to all customers is f(x) = ), p max,ep por(zs). It
can be shown that f is monotone submodular.

Maximum coverage. In the maximum coverage problem, there are n subsets Ci,---,C),, from the ground
set V. One subset C; can be chosen with “confidence” level x; € [0,1], the set of covered elements when
choosing subset C; with confidence x; can be modeled with the following monotone normalized covering function:
pi: Ry =2V, i=1,--- n. The target is to choose subsets from C1,--- ,C,, with confidence level to maximize
the number of covered elements | U, p;(z;)|, at the same time respecting the budget constraint ) . c;z; < b
(where ¢; is the cost of choosing subset C;). This problem generalizes the classical maximum coverage problem. It
is easy to see that the objective function is monotone submodular, and the constraint is a down-closed polytope.

Text summarization. Submodularity-based objective functions for text summarization perform well in prac-
tice [38]. Let C to be the set of all concepts, and F to be the set of all sentences. As a typical example, the
concept-based summarization aims to find a subset S of the sentences to maximize the total credit of concepts
covered by S. [48] discussed extending the submodular text summarization model to the one that incorporates
“confidence” of a sentence, which has discrete value, and modeling the objective to be a monotone submodular
lattice function. It is also natural to model the confidence level of sentence i to be a continuous value z; € [0, 1].
Let us use p;(x;) to denote the set of covered concepts when selecting sentence ¢ with confidence level x;, it can
be a monotone covering function p; : Ry — 2¢,Vi € E. Then the objective function of the extended model
is f(x) = Zjeu,-pi(:ci) ¢j, where ¢; € Ry is the credit of concept j. It can be verified that this objective is a
monotone submodular continuous function.
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