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Structured adaptive and random
spinners for fast machine
learning computations

(Supplementary Material)

In the Supplementary material we prove all theorems
presented in the main body of the paper.

5.4 Structured machine learning algorithms
with Structured Spinners

We prove now Lemma 1, Remark 1, as well as Theorem
1 and Theorem 3.

5.4.1 Proof of Remark 1

This result first appeared in [Ailon and Chazelle, 2006].
The following proof was given in
[Choromanski and Sindhwani, 2016], we repeat it
here for completeness. We will use the following
standard concentration result.

Lemma 2 (Azuma’s Inequality) Let X1, ..., Xn be a
martingale and assume that −αi ≤ Xi ≤ βi for some
positive constants α1, ..., αn, β1, ..., βn. Denote X =∑n
i=1Xi. Then the following is true:

P[|X − E[X]| > a] ≤ 2e
− a2

2
∑n
i=1

(αi+βi)
2

(4)

Proof: Denote by x̃j an image of xj under transfor-
mation HD. Note that the ith dimension of x̃j is given
by the formula: x̃ji = hi,1x

j
1 + ...+ hi,nx

j,n, where hl,u
stands for the lth element of the uth column of the ran-
domized Hadamard matrix HD. First, we use Azuma’s
Inequality to find an upper bound on the probability

that |x̃ji | > a, where a = log(n)√
n

. By Azuma’s Inequality,

we have:

P[|hi,1xj1 + ...+ hi,nx
j,n| ≥ a] ≤ 2e−

log2(n)
8 . (5)

We use: αi = βi = 1√
n

. Now we take the union bound

over all n dimensions and the proof is completed. �

5.4.2 Structured Spinners-equivalent
definition

We will introduce here an equivalent definition of the
model of structured spinners that is more technical
(thus we did not give it in the main body of the paper),
yet more convenient to work with in the proofs.

Note that from the definition of structured spinners
we can conclude that each structured matrix Gstruct ∈
Rn×n from the family of structured spinners is a prod-
uct of three main structured blocks, i.e.:

Gstruct = B3B2B1, (6)

where matrices B1,B2,B3 satisfy two conditions that
we give below.

Condition 1: Matrices: B1 and B2B1 are
(δ(n), p(n))-balanced isometries.
Condition 2: Pair of matrices (B2,B3) is
(K,ΛF ,Λ2)-random.

Below we give the definition of (K,ΛF ,Λ2)-
randomness.

Definition 4 ((K,ΛF ,Λ2)-randomness) A pair of
matrices (Y,Z) ∈ Rn×n×Rn×n is (K,ΛF ,Λ2)-random
if there exists r ∈ Rk, and a set of linear isometries
φ = {φ1, ..., φn}, where φi : Rn → Rk, such that:

• r is either a ±1-vector with i.i.d. entries or Gaus-
sian with identity covariance matrix,

• for every x ∈ Rn the jth element (Zx)j of Zx is
of the form: rT · φj(x),

• there exists a set of i.i.d. sub-Gaussian random
variables {ρ1, ..., ρn} with sub-Gaussian norm at
most K, mean 0, the same second moments and
a (ΛF ,Λ2)-smooth set of matrices {Wi}i=1,...,n

such that for every x = (x1, ..., xn)T , we have:

φi(Yx) = Wi(ρ1x1, ..., ρnxn)T .

5.4.3 Proof of Lemma 1

Proof: Let us first assume the GcircD2HD1-setting
(analysis for Toeplitz Gaussian or Hankel Gaussian
is completely analogous). In that setting, it is
easy to see that one can take r to be a Gaussian
vector (this vector corresponds to the first row of
Gcirc). Furthermore linear mappings φi are defined
as: φi((x0, x1, ..., xn−1)T ) = (xn−i, xn−i+1, ..., xi−1)T ,
where operations on indices are modulo n. The value
of δ(n) and p(n) come from the fact that matrix HD1

is used as a (δ(n), p(n))-balanced matrix and from Re-
mark 1. In that setting, sequence (ρ1, ..., ρn) is discrete
and corresponds to the diagonal of D2. Thus we have:
K = 1. To calculate ΛF and Λ2, note first that matrix
W1 is defined as I and subsequent Wis are given as
circulant shifts of the previous ones (i.e. each row is a
circulant shift of the previous row). That observation
comes directly from the circulant structure of Gcirc.
Thus we have: ΛF = O(

√
n) and Λ2 = O(1). The

former is true since each Ai,j has O(n) nonzero en-
tries and these are all 1s. The latter is true since each
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nontrivial Ai,j in that setting is an isometry (this is

straightforward from the definition of {Wi}i=1,...,n).

Finally, all other conditions regarding Wi-matrices are
clearly satisfied (each column of each Wi has unit L2

norm and corresponding columns from different Wi

and Wj are clearly orthogonal).

Now let us consider the setting, where the structured
matrix is of the form:

√
nHD3HD2HD1. In that

case, r corresponds to a discrete vector (namely, the
diagonal of D3). Linear mappings φi are defined as:
φi((x1, ..., xn)T ) = (

√
nhi,1x1, ...,

√
nhi,nxn)T , where

(hi,1, ..., hi,n)T is the ith row of H. One can also no-

tice that the set {Wi}i=1,...,n is defined as: wia,b =√
nhi,aha,b. Let us first compute the Frobenius norm

of the matrix Ai,j , defined based on the aforementioned
sequence {Wi}i=1,...,n. We have:

‖Ai,j‖2F =
∑

l,t∈{1,...,n}

(

n∑
k=1

wjk,lw
i
k,t)

2

= n2
∑

l,t∈{1,...,n}

(

n∑
k=1

hj,khk,lhi,khk,t)
2 (7)

To compute the expression above, note first that for
r1 6= r2 we have:

θ =
∑
k,l

hr1,khr1,lhr2,khr2,l

=
∑
k

hr1,khr2,k
∑
l

hr1,lhr2,l = 0, (8)

where the last equality comes from fact that different
rows of H are orthogonal. From the fact that θ = 0
we get:

‖Ai,j‖2F = n2
∑

r=1,...,n

∑
k,l

h2
i,rh

2
j,rh

2
r,kh

2
r,l

= n · n2(
1√
n

)8 · n2 = n. (9)

Thus we have: ΛF ≤
√
n.

Now we compute ‖Ai,j‖2. Notice that from the defini-

tion of Ai,j we get that

Ai,j = Ei,jFi,j , (10)

where the lth row of Ei,j is of the form
(hj,1h1,l, ..., hj,nhn,l) and the tth column of Fi,j is of
the form (hi,1h1,t, ..., hi,nhn,t)

T . Thus one can easily

verify that Ei,j and Hi,j are isometries (since H is)

thus Ai,j is also an isometry and therefore Λ2 = 1. As
in the previous setting, remaining conditions regard-
ing matrices Wi are trivially satisfied (from the basic
properties of Hadamard matrices). That completes the
proof. �

5.4.4 Proof of Theorem 1

Let us briefly give an overview of the proof before
presenting it in detail. Challenges regarding proving
accuracy results for structured matrices come from the
fact that, for any given x ∈ Rn, different dimensions
of y = Gstructx are no longer independent (as it is
the case for the unstructured setting). For matrices
from the family of structured spinners we can, however,
show that with high probability different elements of y
correspond to projections of a given vector r (see Sec-
tion 3) into directions that are close to orthogonal. The
“close-to-orthogonality” characteristic is obtained with
the use of the Hanson-Wright inequality that focuses
on concentration results regarding quadratic forms in-
volving vectors of sub-Gaussian random variables. If r
is Gaussian, then from the well-known fact that projec-
tions of the Gaussian vector into orthogonal directions
are independent, we can conclude that dimensions of y
are “close to independent”. If r is a discrete vector then
we need to show that for n large enough, it “resembles”
the Gaussian vector. This is where we need to apply
the aforementioned techniques regarding multivariate
Berry-Esseen-type central limit theorem results.

Proof: We will use notation from Section 3 and pre-
vious sections of the Supplement. We assume that the
model with structured matrices stacked vertically, each
of m rows, is applied. Without loss of generality, we
can assume that we have just one block since differ-
ent blocks are chosen independently. Let Gstruct be a
matrix from the family of structured spinners. Let us
assume that Gstruct is used by a function f operating in
the d-dimensional space and let us denote by x1, . . . ,xd

some fixed orthonormal basis of that space. Our first
goal is to compute: y1 = Gstructx

1, ...,yd = Gstructx
d.

Denote by x̃i the linearly transformed version of x af-
ter applying block B1, i.e. x̃i = B1x

i. Since B1 is
(δ(n), p(n))-balanced), we conclude that with probabil-
ity at least: pbalanced ≥ 1− dp(n) each element of each

x̃i has absolute value at most δ(n)√
n

. We shortly say that

each x̃i is δ(n)-balanced. We call this event Ebalanced.

Note that by the definition of structured spinners, each
yi is of the form:

yi = (rT · φ1(B2x̃
i), ..., rT · φm(B2x̃

i))T . (11)

For clarity and to reduce notation, we will as-
sume that r is n-dimensional. To obtain results
for vectors r of different dimensionality D, it
suffices to replace in our analysis and theoret-
ical statements n by D. Let us denote A =
{φ1(B2x̃

1), ..., φm(B2x̃
1), ..., φ1(B2x̃

d), ..., φm(B2x̃
d))}.

Our goal is to show that with high probability (in
respect to random choices of B1 and B2) for all
vi,vj ∈ A, i 6= j the following is true:

|(vi)T · vj | ≤ t (12)
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for some given 0 < t� 1.

Fix some t > 0. We would like to compute the lower
bound on the corresponding probability. Let us fix
two vectors v1,v2 ∈ A and denote them as: v1 =
φi(B2x), v2 = φj(B2y) for some x = (x1, ..., xn)T and
y = (y1, ..., yn)T . Note that we have (see denotation
from Section 3):

φi(B2x) = (wi11ρ1x1 + ...

+ wi1,nρnxn, ..., w
i
n,1ρ1x1 + ...+ win,nρnxn)T (13)

and

φj(B2y) = (wj11ρ1y1 + ...+ wj1,nρnyn, ...,

wjn,1ρ1y1 + ...+ wjn,nρnyn)T . (14)

We obtain:

(v1)T ·v2 =
∑

l∈{1,...,n},u∈{1,...,n}

ρlρu(

n∑
k=1

xlyuw
i
k,uw

j
k,l).

(15)

We now show that, under assumptions from Theorem
1, the expected value of the expression above is 0. We
have:

E[(v1)T · v2] = E[
∑

l∈{1,...,n}

ρ2
l xlyl(

n∑
k=1

wik,lw
j
k,l)], (16)

since ρ1, ..., ρn are independent and have expectations
equal to 0. Now notice that if i 6= j then from the
assumption that corresponding columns of matrices
Wi and Wj are orthogonal, we get that the above
expectation is 0. Now assume that i = j. But then x
and y have to be different and thus they are orthogonal
(since they are taken from the orthonormal system
transformed by an isometry). In that setting we get:

E[(v1)T · v2] = E[
∑

l∈{1,...,n}

ρ2
l xlyl(

n∑
k=1

(wik,l)
2)]

= τw

n∑
l=1

xlyl = 0, (17)

where τ stands for the second moment of each ρi, w
is the squared L2-norm of each column of Wi (τ and
w are well defined due to the properties of structured
spinners). The last inequality comes from the fact that

x and y are orthogonal. Now if we define matrices Ai,j

as in the definition of the model of structured spinners
then we see that

(v1)T · v2 =
∑

l,u∈{1,...,n}

ρlρuT
i,j
l,u , (18)

where: T i,jl,u = xlyuA
i,j
l,u.

Now we will use the following inequality:

Theorem 6 (Hanson-Wright Inequality) Let
X = (X1, ..., Xn)T ∈ Rn be a random vector with
independent components Xi which satisfy: E[Xi] = 0
and have sub-Gaussian norm at most K for some
given K > 0. Let A be an n × n matrix. Then for
every t ≥ 0 the following is true:

P[XTAX− E[XTAX] > t]

≤ 2e
−cmin( t2

K4‖A‖2
F

, t
K2‖A‖2

)
, (19)

where c is some universal positive constant.

Note that, assuming δ(n)-balancedness, we have:

‖Ti,j‖F ≤ δ2(n)
n ‖A

i,j‖F and ‖Ti,j‖2 ≤ δ2(n)
n ‖A

i,j‖2.

Now we take X = (ρ1, ..., ρn)T and A = Ti,j in the
theorem above. Applying the Hanson-Wright inequality
in that setting, taking the union bound over all pairs
of different vectors vi,vj ∈ A (this number is exactly:(
md
2

)
) and the event Ebalanced, finally taking the union

bound over all s functions fi, we conclude that with
probability at least:

pgood = 1− p(n)ds

− 2

(
md

2

)
se
−Ω(min( t2n2

K4Λ2
F
δ4(n)

, tn
K2Λ2δ

2(n)
))

(20)

for every f any two different vectors vi,vj ∈ A satisfy:
|(vi)T · vj | ≤ t.

Note that from the fact that B2B1 is (δ(n), p(n))-
balanced and from Equation 20, we get that with
probability at least:

pright = 1− 2p(n)ds

− 2

(
md

2

)
se
−Ω(min( t2n2

K4Λ2
F
δ4(n)

, tn
K2Λ2δ

2(n)
))
. (21)

for every f any two different vectors vi,vj ∈ A sat-
isfy: |(vi)T · vj | ≤ t and furthermore each vi is δ(n)-
balanced.

Assume now that this event happens. Consider the
vector

q′ = ((y1)T , ..., (yd)T )T ∈ Rmd. (22)

Note that q′ can be equivalently represented as:

q′ = (rT · v1, ..., rT · vmd), (23)

where: A = {v1, ...,vmd}. From the fact that φiB2

and B1 are isometries we conclude that: ‖vi‖2 = 1 for
i = 1, ....

Now we will need the following Berry-Esseen type result
for random vectors:
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Theorem 7 (Bentkus [Bentkus, 2003]) Let
X1, ...,Xn be independent vectors taken from Rk with
common mean E[Xi] = 0. Let S = X1 + ... + Xn.
Assume that the covariance operator C2 = cov(S)
is invertible. Denote βi = E[‖C−1Xi‖32] and
β = β1 + ...+ βn. Let C be the set of all convex subsets
of Rk. Denote ∆(C) = supA∈C |P[S ∈ A] − P[Z ∈ A]|,
where Z is the multivariate Gaussian distribution with
mean 0 and covariance operator C2. Then:

∆(C) ≤ ck 1
4 β (24)

for some universal constant c.

Denote: Xi = (riv
1
i , ..., riv

k
i )T for k = md, r =

(r1, ..., rn)T and vj = (vj1, ..., v
j
n). Note that q′ =

X1 + ...+ Xn. Clearly we have: E[Xi] = 0 (the expec-
tation is taken with respect to the random choice of r).
Furthermore, given the choices of v1, ...,vk, random
vectors X1, ..,Xn are independent.

Let us calculate now the covariance matrix of q′. We
have:

q′i = r1v
i
1 + ...+ rnv

i
n, (25)

where: q′ = (q′1, ...,q
′
k).

Thus for i1, i2 we have:

E[q′i1q
′
i2 ] =

n∑
j=1

vi1j v
i2
j E[r2

j ] + 2
∑

1≤j1<j2≤n

vi1j1v
i2
j2
E[rj1rj2 ]

= (vi1)T · vi2 , (26)

where the last equation comes from the fact rj are
either Gaussian from N (0, 1) or discrete with entries
from {−1,+1} and furthermore different rjs are inde-
pendent.

Therefore if i1 = i2 = i, since each vi has unit L2-norm,
we have that

E[q′iq
′
i] = 1, (27)

and for i1 6= i2 we get:

|E[q′i1q
′
i2 ]| ≤ t. (28)

We conclude that the covariance matrix Σq′ of the
distribution q′ is a matrix with entries 1 on the diagonal
and other entries of absolute value at most t.

For t = ok(1) small enough and from the δ(n)-
balancedness of vectors v1, ...,vk we can conclude that:

E[‖C−1Xi‖32] = O(E[‖Xi‖32]) = O(

√
(
k

n
)3δ3(n)),

(29)

Now, using Theorem 7, we conclude that

sup
A∈C
|P[q′ ∈ A]− P[Z ∈ A]| = O(k

1
4n · k

3
2

n
3
2

δ3(n))

= O(
δ3(n)√
n
k

7
4 ), (30)

where Z is taken from the multivariate Gaussian dis-
tribution with covariance matrix I + E and C is the
set of all convex sets. Now if we apply the above in-
equality to the pairwise disjoint convex sets A1, ..., Aj ,

where A1 ∪ ...∪Aj = f−1
i (S) and l ≤ b (such sets exist

form the b-convexity of f−1
i (S)), take η = δ3(n)√

n
k

7
4 ,

ε = t = omd(1) and take n large enough, the statement
of the theorem follows. �

5.4.5 Proof of Theorem 2

Proof: Let us assume that fi is a convex function
of qfi (if fi is concave then the proof completely anal-
ogous). For any t ∈ R let St = {qfi : fi(qfi) ≤ t}
for fi and St = {qf ′i : f ′i(qf ′i ) ≤ t} for f ′i . From the

convexity assumption we get that St is a convex set.
Thus we can directly apply Theorem 1 and the result
regarding cdf functions follows. To obtain the result
regarding the characteristic functions, notice first that
we have:

φX(t) =

∫ 1

−1

P[cos(tX) > s]ds+i

∫ 1

−1

P[sin(tX) > s]ds

(31)
The event {cos(tX) > s} for t 6= 0 is equivalent to:
X ∈ ∪I∈II for some family of intervals I. Similar
observation is true for the event {sin(tX) > s}.

In our scenario, from the fact that fi is bounded, we
conclude that the corresponding families I are finite.
Furthermore, the probability of belonging to a par-
ticular interval can be expressed by the values of the
cdf function in the endpoints of that interval. From
this observation and the result on cdfs that we have
just obtained, the result for the characteristic functions
follows immediately. �

5.4.6 Proof of Theorem 3

Proof: This comes directly from Theorem 1 and
Lemma 1. �

5.4.7 Proof of Theorem 4

Proof: For clarity we will assume that the structured
matrix consists of just one block of m rows and will
compare its performance with the unstructured variant
of m rows (the more general case when the structured
matrix is obtained by stacking vertically many blocks is
analogous since the blocks are chosen independently).

Consider the two-dimensional linear space H spanned
by x and y. Fix some orthonormal basis B = {u1,u2}
of H. Take vectors q and q′. Note that they are 2m-
dimensional, where m is the number of rows of the
block used in the structured setting. From Theorem
3 we conclude that will probability at least psuccess,
where psuccess is as in the statement of the theorem
the following holds for any convex 2m-dimensional set
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A:
|P[q(ε) ∈ A]− P[q′ ∈ A]| ≤ η, (32)

where η = log3(n)

n
2
5

. Take two corresponding entries of

vectors v1
x,y and v2

x,y indexed by a pair (ei, ej) for some
fixed i, j ∈ {1, ...,m} (for the case when the pair is not
of the form (e, ej), but of a general form: (±ei,±ej)
the analysis is exactly the same). Call them p1 and p2

respectively. Our goal is to compute |p1 − p2|. Notice
that p1 is the probability that h(x) = ei and h(y) = ej
for the unstructured setting and p2 is that probability
for the structured variant.

Let us consider now the event E1 = {h(x) = ei∧h(y) =
ej}, where the setting is unstructured. Denote the
corresponding event for the structured setting as E2.
Denote q = (q1, ..., q2m). Assume that x = α1u

1+α2u
2

for some scalars α1, α2 > 0. Denote the unstructured
Gaussian matrix by G. We have:

Gx = α1Gu1 + α2Gu2 (33)

Note that we have: Gu1 = (q1, ..., qm)T and Gu2 =
(qm+1, ..., q2m)T . Denote by A(ei) the set of all the
points in Rm such that their angular distance to ei is
at most the angular distance to all other m−1 canonical
vectors. Note that this is definitely the convex set. Now
denote:

Q(ei) = {(q1, ..., q2m)T ∈ R2m :

α1(q1, ..., qm)T + α2(qm+1, ..., q2m)T ∈ A(ei)}. (34)

Note that since A(ei) is convex, we can conclude that
Q(ei) is also convex. Note that

{h(x) = ei} = {q ∈ Q(ei)}. (35)

By repeating the analysis for the event {h(y) = ej},
we conclude that:

{h(x) = ei ∧ h(y) = ej} = {q ∈ Y (ei, ej)} (36)

for convex set Y (ei, ej) = Q(ei) ∩Q(ej). Now observe
that

|p1 − p2| = |P[q ∈ Y (ei, ej)]− P[q′ ∈ Y (ei, ej)]| (37)

Thus we have:

|p1 − p2| ≤ |P[q ∈ Y (ei, ej)]− P[q(ε) ∈ Y (ei, ej)]|
+ |P[q(ε) ∈ Y (ei, ej)]− P[q′ ∈ Y (ei, ej)]| (38)

Therefore we have:

|p1 − p2| ≤ |P[q ∈ Y (ei, ej)]− P[q(ε) ∈ Y (ei, ej)]|+ η.
(39)

Thus we just need to upper-bound:

ξ = |P[q ∈ Y (ei, ej)]− P[q(ε) ∈ Y (ei, ej)]|. (40)

Denote the covariance matrix of the distribution q(ε)
as I + E. Note that E is equal to 0 on the diagonal
and the absolute value of all other off-diagonal entries
is at most ε.

Denote k = 2m. We have

ξ = |A−B| ,

where A =
1

(2π)
k
2

√
det(I + E)

∫
Y (ei,ej)

e−
xT (I+E)−1x

2 dx

and B =
1

(2π)
k
2

∫
Y (ei,ej)

e−
xT x

2 dx.

Expanding: (I + E)−1 = I − E + E2 − ..., noticing
that |det(I + E)− 1| = O(ε2m), and using the above
formula, we easily get:

ξ = O(ε). (41)

That completes the proof. �

5.4.8 b-convexity for angular kernel
approximation

Let us now consider the setting, where linear projec-
tions are used to approximate angular kernels between
paris of vectors via random feature maps. In this case,
the linear projection is followed by the pointwise nonlin-
ear mapping, where the applied nonlinear mapping is a
sign function. The angular kernel is retrieved from the
Hamming distance between {−1,+1}-hashes obtained
in such a way. Note that in this case we can assign to
each pair x,y of vectors from a database a function
fx,y that outputs the binary vector which length is the
size of the hash and with these indices turned on for
which the hashes of x and y disagree. Such a binary
vector uniquely determines the Hadamard distance be-
tween the hashes. Notice that for a fixed-length hash
fx,y produces only finitely many outputs. If S is a
set-singleton consisting of one of the possible outputs,
then one can notice (straightforwardly from the way
the hash is created) that f−1

x,y(S) is an intersection of
the convex sets (as a function of qfx,y). Thus it is
convex and thus for sets S which are singletons we can
take b = 1.

5.4.9 Proof of Theorem 5

In this section, we show that by learning vector r ∈
Rk from the definition above, one can approximate
well any matrix M ∈ Rm×n learned by the neural
network, providing that the size k or r is large enough
in comparison with the number of projections and the
intrinsic dimensionality d of the data X .

Take the parametrized structured spinner matrix
Mstruct ∈ Rm×n with a learnable vector r. Let
M ∈ Rm×n be a matrix learned in the unstructured
setting.
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Let B = {x1, ...,xd} be some orthonormal basis of the
linear space, where data X is taken from.

Proof: Note that from the definition of the
parametrized structured spinner model we can con-
clude that with probability at least p1 = 1− p(n) with
respect to the choices of M1 and M2 each Mstructx

i

is of the form:

Mstructx
i = (rT · z1(qi), ..., rT · zm(qi))T , (42)

where each zj(q
i) is of the form:

zj(q
i) = (wj1,1ρ1q

i
1+wj1,nρnq

i
n, ..., w

j
k,1ρ1q

i
1+wjk,nρnq

i
n)T

(43)

and B′ = {q1, ...,qd} is an orthonormal basis such that:

‖qi‖∞ ≤ δ(n)√
n

for i = 1, ..., n.

Note that the system of equations:

Mstructxi = Mxi (44)

for i = 1, ..., d has the solution in r if the vectors from
the set A = {zj(qi) : j = 1, ...,m, i = 1, ...d} are
independent.

Construct a matrix G ∈ Rmd×k, where rows are vectors
from A. We want to show that rank(G) = md. It suf-

fices to show that det(GGT ) 6= 0. Denote B = GGT .
Note that Bi,j = (vi)Tvj , where A = {v1, ...,vmd}.
Take two vectors va,vb ∈ A. Note that from the defi-
nition of A we get:

(va)Tvb =
∑

l∈{1,...,n},u∈{1,...,n}

ρlρuxlyu(

k∑
s=1

wis,lw
j
s,u)

(45)
for some i, j and some vectors x = (x1, ..., xn)T , y =
(y1, ..., yn)T . Furthermore,

• i = j and x = y if a = b,

• ‖x‖2 = ‖y‖2 = 1,

• xTy = 0 or x = y and i 6= j for a 6= b.

We also have:

E[(va)Tvb] = E[
∑

l∈{1,...,n}

ρ2
l xlyl(

k∑
s=1

wis,lw
j
s,u)]. (46)

From the previous observations and the properties of
matrices W1, ...,Wn we conclude that the entries of the
diagonal of B are equal to 1. Furthermore, all other
entries are 0 on expectation. Using Hanson-Wright

inequality, we conclude that for any t > 0 we have:
|Bi,j | ≤ t for all i 6= j with probability at least:

psucc = 1−2p(n)d−2

(
md

2

)
e
−cmin( t2n2

K4Λ2
F
δ4(n)

, tn
K2Λ2δ

2(n)
)
.

If this is the case, we let B̃ ∈ R(md)×(md) be a matrix
with diagonal entries B̃i,i = 0 and off-diagonal entries

B̃i,j = −Bi,j . Furthermore, let B∗ ∈ R(md)×(md) be a
matrix with diagonal entries B∗i,i = 0 and off-diagonal
entries B∗i,j = t.

Following a similar argument as in [Brent et al., 2014],
note that B∗ = t(J − I) where J is the matrix of all
ones (thus of rank 1) and I is the identity matrix. Then
the eigenvalues of B∗ are t(md− 1) with multiplicity 1
and t(0− 1) with multiplicity (md− 1). We, thereby,
are able to explicitly compute det(I−B∗)=(1− t(md−
1))(1 + t)md−1.

If ρ(B∗) ≤ 1, we can apply Theorem 1 of
[Brent et al., 2014] by replacing F with B∗ and E with

B̃. For the convenience of the reader, we state their
theorem here: Let F ∈ Rn×n with non-negative entries
and ρ(F ) ≤ 1. Let E ∈ Rn×n with entries | ei,j |≤ fi,j ,
then det(I−E) ≥ det(I− F).

That is: if ρ(B∗) ≤ 1, then

det(I−B∗) = (1− t(md− 1))(1 + t)md−1

≤ det(I− B̃) = det(B). (47)

The final step is to observe that:
ρ(B∗) ≤ 1 ⇐⇒ max{| t(md − 1) |, | −t |} = t(md −
1) ≤ 1 ⇐⇒ t ≤ 1

md−1 . Using this result, we, hence,

see that det(B) ≥ (1− t(md− 1))(1 + t)md−1 ≥ 0, in
particular det(B) > 0 for t = 1

md . That completes the
proof. �

5.4.10 Additional experiments

This experiment focuses on the Newton sketch ap-
proach [Pilanci and Wainwright, 2015], a generic op-
timization framework. It guarantees super-linear con-
vergence with exponentially high probability for self-
concordant functions, and a reduced computational
complexity compared to the original second-order New-
ton method. The method relies on using a sketched
version of the Hessian matrix, in place of the origi-
nal one. In the subsequent experiment we show that
matrices from the family of strucured spinners can be
used for this purpose, thus can speed up several convex
optimization problems solvers.

We consider the unconstrained large scale logistic re-
gression problem, i.e. given a set of n observations
{(ai, yi)}i=1..n, with ai ∈ Rd and yi ∈ {−1, 1}, find
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Figure 5: Accuracy of random feature map kernel approximation for the USPST dataset.
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Figure 6: Numerical illustration of the convergence
(top) and computational complexity (bottom) of the
Newton sketch algorithm with various structured spin-
ners. (left) Various sketching structures are compared
in terms of the convergence against iteration number.
(bottom) Wall-clock times of structured spinners are
compared in various dimensionality settings.

x ∈ Rd minimizing the cost function

f(x) =

n∑
i=1

log(1 + exp(−yiaTi x)) .

The Newton approach to solving this optimization prob-
lem entails solving at each iteration the least squares
equation ∇2f(xt)∆t = −∇f(xt), where

∇2f(xt) =

ATdiag

(
1

1 + exp(−aTi x)
(1− 1

1 + exp(−aTi x)
)

)
A

∈ Rd×d

is the Hessian matrix of f(xt), A = [aT1 a
T
2 · · · aTn ] ∈

Rn×d, ∆t = xt+1 − xt is the increment at iter-
ation t and ∇f(xt) ∈ Rd is the gradient of the
cost function. In [Pilanci and Wainwright, 2015]
it is proposed to consider the sketched version
of the least square equation, based on a Hessian
square root of ∇2f(xt), denoted ∇2f(xt)1/2 =

diag
(

1
1+exp(−aTi x)

(1− 1
1+exp(−aTi x)

)
)1/2

A ∈ Rn×d.
The least squares problem at each iteration t is of
the form:(

(St∇2f(xt)1/2)TSt∇2f(xt)1/2
)

∆t = −∇f(xt) ,

where St ∈ Rm×n is a sequence of isotropic sketch
matrices. Let’s finally recall that the gradient of the
cost function is

∇f(xt) =

n∑
i=1

(
1

1 + exp(−yiaTi x)
− 1

)
yiai .

In our experiment, the goal is to find x ∈ Rd, which
minimizes the logistic regression cost, given a dataset
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{(ai, yi)}i=1..n, with ai ∈ Rd sampled according to a
Gaussian centered multivariate distribution with co-
variance Σi,j = 0.99|i−j| and yi ∈ {−1, 1}, generated
at random. Various sketching matrices St ∈ Rm×n are
considered.

In Figure 6 we report the convergence of the Newton
sketch algorithm, as measured by the optimality gap
defined in [Pilanci and Wainwright, 2015], versus the
iteration number. As expected, the structured sketched
versions of the algorithm do not converge as quickly
as the exact Newton-sketch approach, however vari-
ous matrices from the family of structured spinners
exhibit equivalent convergence properties as shown in
the figure.

When the dimensionality of the problem in-
creases, the cost of computing the Hessian in
the exact Newton-sketch approach becomes very
large [Pilanci and Wainwright, 2015], scaling as
O(nd2). The complexity of the structured Newton-
sketch approach with the matrices from the family of
structured spinners is instead only O(dn log(n) +md2).
Figure 6 also illustrates the wall-clock times of
computing single Hessian matrices and confirms that
the increase in number of iterations of the Newton
sketch compared to the exact sketch is compensated by
the efficiency of sketched computations, in particular
Hadamard-based sketches yield improvements at the
lowest dimensions.


