
Distributed Adaptive Sampling for Kernel Matrix Approximation

Daniele Calandriello Alessandro Lazaric Michal Valko
SequeL team, INRIA Lille - Nord Europe

Abstract

Most kernel-based methods, such as kernel
regression, kernel PCA, ICA, or k-means
clustering, do not scale to large datasets, be-
cause constructing and storing the kernel ma-
trix Kn requires at least O(n2) time and
space for n samples. Recent works [1, 9] show
that sampling points with replacement ac-
cording to their ridge leverage scores (RLS)
generates small dictionaries of relevant points
with strong spectral approximation guaran-
tees for Kn. The drawback of RLS-based
methods is that computing exact RLS re-
quires constructing and storing the whole
kernel matrix. In this paper, we introduce
SQUEAK, a new algorithm for kernel ap-
proximation based on RLS sampling that se-
quentially processes the dataset, storing a
dictionary which creates accurate kernel ma-
trix approximations with a number of points
that only depends on the effective dimen-
sion deff(γ) of the dataset. Moreover since all
the RLS estimations are efficiently performed
using only the small dictionary, SQUEAK
never constructs the whole matrix Kn, runs
in linear time Õ(ndeff(γ)3) w.r.t. n, and re-
quires only a single pass over the dataset. We
also propose a parallel and distributed ver-
sion of SQUEAK achieving similar accuracy
in as little as Õ(log(n)deff(γ)3) time.

1 Introduction
One of the major limits of kernel ridge regression
(KRR), kernel PCA [13], and other kernel methods is
that for n samples storing and manipulating the ker-
nel matrix Kn requires O(n2) space, which becomes
rapidly infeasible for even a relatively small n. For
larger sizes (or streams) we cannot even afford to store

Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copy-
right 2017 by the author(s).

or process the data on as single machine. Many solu-
tions focus on how to scale kernel methods by reducing
its space (and time) complexity without compromis-
ing the prediction accuracy. A popular approach is to
construct low-rank approximations of the kernel ma-
trix by randomly selecting a subset (dictionary) of m
columns from Kn, thus reducing the space complexity
to O(nm). These methods, often referred to as Nys-
tröm approximations, mostly differ in the distribution
used to sample the columns of Kn and the construc-
tion of low-rank approximations. Both of these choices
significantly affect the accuracy of the resulting ap-
proximation [12]. Bach [2] showed that uniform sam-
pling preserves the prediction accuracy of KRR (up
to ε) only when the number of columns m is propor-
tional to the maximum degree of freedom of the ker-
nel matrix. This may require sampling O(n) columns
in datasets with high coherence [6], i.e., a kernel ma-
trix with weakly correlated columns. On the other
hand, Alaoui and Mahoney [1] showed that sampling
columns according to their ridge leverage scores (RLS)
(i.e., a measure of the influence of a point on the re-
gression) produces an accurate Nyström approxima-
tion with only a number of columns m proportional to
the average degrees of freedom of the matrix, called
effective dimension. Unfortunately, the complexity of
computing RLS requires storing the whole kernel ma-
trix, thus making this approach infeasible. However,
Alaoui and Mahoney [1] proposed a fast method to
compute a constant-factor approximation of the RLS
and showed that accuracy and space complexity are
close to the case of sampling with exact RLS at the
cost of an extra dependency on the inverse of the
minimal eigenvalue of the kernel matrix. Unfortu-
nately, the minimal eigenvalue can be arbitrarily small
in many problems. Calandriello et al. [3] addressed
this issue by processing the dataset incrementally and
updating estimates of the ridge leverage scores, effec-
tive dimension, and Nyström approximations on-the-
fly. Although the space complexity of the resulting
algorithm (INK-Estimate) does not depend on the
minimal eigenvalue anymore, it introduces a depen-
dency on the largest eigenvalue of Kn, which in the
worst case can be as big as n, thus losing the ad-

Distributed Adaptive Sampling for Kernel Matrix Approximation

vantage of the method. In this paper we introduce
an algorithm for SeQUEntial Approximation of Ker-
nel matrices (SQUEAK), a new algorithm that builds
on INK-Estimate, but uses unnormalized RLS. This
improvement, together with a new analysis, opens the
way to major improvements over current leverage sam-
pling methods (see Sect. 6 for a comparison with ex-
isting methods) closely matching the dictionary size
achieved by exact RLS sampling. First, unlike INK-
Estimate, SQUEAK is simpler, does not need to
compute an estimate of the effective dimension for nor-
malization, and exploits a simpler, more accurate RLS
estimator. This new estimator only requires access to
the points stored in the dictionary. Since the size of
the dictionary is much smaller than the n, SQUEAK
needs to actually observe only a fraction of the kernel
matrix Kn, resulting in a runtime linear in n. Second,
since our dictionary updates require only access to lo-
cal data, our algorithm allows for distributed process-
ing where machines operating on different dictionaries
do not need to communicate with each other. In par-
ticular, intermediate dictionaries can be extracted in
parallel from small portions of the dataset and they
can be later merged in a hierarchical way. Third, the
sequential nature of SQUEAK requires a more so-
phisticated analysis that take into consideration the
complex interactions and dependencies between suc-
cessive resampling steps. The analysis of SQUEAK
builds on a new martingale argument that could be
of independent interest for similar online resampling
schemes. Moreover, our SQUEAK can naturally in-
corporate new data without the need of recomputing
the whole resparsification from scratch and therefore
it can be applied in streaming settings. We note there
exist other ways to avoid the intricate dependencies
with simpler analysis, for example by resampling [9],
but with negative algorithmic side effects: these meth-
ods need to pass through the dataset multiple times.
SQUEAK passes through the dataset only once1 and
is therefore the first provably accurate kernel approxi-
mation algorithm that can handle both streaming and
distributed settings.

2 Background
In this section, we introduce the notation and basics
of kernel approximation used through the paper.

Notation. We use curly capital letters A for collec-
tions. We use upper-case bold letters A for matrices
and operators, lower-case bold letters a for vectors,

1Note that there is an important difference in whether
the method passes through kernel matrix only once or
through the dataset only once, in the former, the algo-
rithm may still need access one data point up to n times,
thus making it unsuitable for the streaming setting and less
practical for distributed computation.

and lower-case letters a for scalars, with the excep-
tion of f, g, and h which denote functions. We denote
by [A]ij and [a]i, the (i, j) element of a matrix and
ith element of a vector respectively. We denote by
In ∈ Rn×n, the identity matrix of dimension n and by
Diag(a) ∈ Rn×n the diagonal matrix with the vector
a ∈ Rn on the diagonal. We use en,i ∈ Rn to de-
note the indicator vector for element i of dimension n.
When the dimension of I and ei is clear from the con-
text, we omit the n. We use A � B to indicate that
A−B is a Positive Semi-Definite (PSD) matrix or op-
erator. Finally, the set of integers between 1 and n is
denoted as [n] := {1, . . . , n}, and between i and j as
[i : j] := {i, . . . , j}.
Kernel. We consider a positive definite kernel func-
tion K : X ×X → R and we denote with H its induced
Reproducing Kernel Hilbert Space (RKHS), and with
ϕ : X → H its corresponding feature map. Using ϕ,
and without loss of generality, for the rest of the pa-
per we will replace H with a high dimensional space
RD where D is large and potentially infinite. With
this notation, the kernel evaluated between to points
can be expressed as K(x,x′) = 〈K(x, ·),K(x′, ·)〉H =
〈ϕ(x), ϕ(x′)〉H = ϕ(x)Tϕ(x′). Given a dataset of
points D = {xt}nt=1, we define the (empirical) ker-
nel matrix Kt ∈ Rt×t as the application of the ker-
nel function on all pairs of input values (i.e., [Kt]ij =
ki,j = K(xi,xj) for any i, j ∈ [t]), with kt,i = Ktet,i
as its i-th column. We also define the feature vectors
φi = ϕ(xi) ∈ RD and after introducing the matrix
Φt = [φ1,φ2, . . . ,φt] ∈ RD×t we can rewrite the ker-
nel matrix as Kt = ΦT

t Φt.

Kernel approximation by column sampling.
One of the most popular strategies to have low space
complexity approximations of the kernel Kt is to
randomly select a subset of its columns (possibly
reweighted) and use them to perform the specific ker-
nel task at hand (e.g., kernel regression). More pre-
cisely, we define a column dictionary as a collection
It = {(i, wi)}ti=1, where the first term denotes the in-
dex of the column and wi its weight, which is set to
zero for all columns that are not retained. For the
theoretical analysis, we conveniently keep the dimen-
sion of any dictionary It to t, while in practice, we
only store the non-zero elements. In particular, we de-
note by |It| be the size of the dictionary corresponding
to the elements with non-zero weights wi. Associated
with a column dictionary, there is a selection matrix
St = Diag(

√
w1 . . .

√
wt) ∈ Rt×t such that for any

matrix At ∈ Rt×t, AtSt returns a t × t matrix where
the columns selected by It are properly reweighted and
all other columns are set to 0. Despite the wide range
of kernel applications, it is possible to show that in
most of them, the quality of a dictionary can be mea-

Daniele Calandriello, Alessandro Lazaric, Michal Valko

sured in terms of how well it approximates the pro-
jection associated to the kernel. In kernel regression,
for instance, we use Kt to construct the projection
(hat) matrix that projects the observed labels yt to
ŷt. In particular, let Pt = KtK

+
t be the projection

matrix (where K+
t indicates the pseudoinverse), then

ŷt = Ptyt. If Kt is full-rank, then Pt = It is the iden-
tity matrix and, we can reconstruct any target vec-
tor yt exactly. On the other hand, the only sampling
scheme which guarantees to properly approximate a
full rank Pt requires all columns to be represented in
It. In fact, all columns have the same “importance”
and no low-space approximation is possible. Nonethe-
less, kernel matrices are often either rank deficient or
have extremely small eigenvalues (exponentially decay-
ing spectrum), as a direct (and desired) consequence
of embedding low dimensional points xi into a high
dimensional RKHS. In this case, after soft threshold-
ing the smaller eigenvalues to a given value γ, Kt can
be effectively approximated using a small subset of
columns. This is equivalent to approximating the γ-
ridge projection matrix

Pt
def=(Kt + γI)−1/2Kt(Kt + γI)−1/2.

We say that a column dictionary is accurate if the
following condition is satisfied.
Definition 1. A dictionary It = {(i, wi)}ti=1 and its
associated selection matrix St ∈ Rt×t are ε-accurate
w.r.t. a kernel matrix Kt = K

1/2
t K

1/2
t if 2

‖Pt − P̃t‖ ≤ ε, (1)

where for a given γ > 0, the approximated projection
matrix is defined as

P̃t
def=(Kt + γIt)

− 1
2 K

1/2
t StS

T
t K

1/2
t (Kt + γIt)

− 1
2 .

Notice that this definition of accuracy is purely the-
oretical, since P̃t is never computed. Nonetheless, as
illustrated in Sect. 5, ε-accurate dictionaries can be
used to construct suitable kernel approximation in a
wide range of problems.

Ridge leverage scores sampling. Alaoui and Ma-
honey [1] showed that an ε-accurate dictionary can be
obtained by sampling columns proportionally to their
γ-ridge leverage scores (RLS) defined as follows.
Definition 2. Given a kernel matrix Kt ∈ Rt×t, the
γ-ridge leverage score (RLS) of column i ∈ [t] is

τt,i = eT
t,iKt(Kt + γIt)

−1et,i, (2)

Furthermore, the effective dimension deff(γ)t of the
kernel matrix Kt is defined as

deff(γ)t =

t∑
i=1

τt,i(γ) = Tr
(
Kt(Kt + γIt)

−1) . (3)

2the matrix norm we use is the operator (induced) norm

Algorithm 1 The SQUEAK algorithm
Input: Dataset D, parameters γ, ε, δ
Output: In
1: Initialize I0 as empty, q (see Thm. 1)
2: for t = 1, . . . , n do
3: Read point xt from D
4: I = It−1 ∪ {(t, p̃t−1,t=1, qt−1,t=q)} .Expand
5: It = Dict-Update(I) using Eq. 4
6: end for

Subroutine 1 The Dict-Update algorithm
Input: I
Output: It
1: Initialize It = ∅
2: for all i ∈ {1, . . . , t} do .Shrink
3: if qt−1,i 6= 0 then
4: Compute τ̃t,i using I
5: Set p̃t,i = min{τ̃t,i, p̃t−1,i}
6: Set qt,i ∼ B(p̃t,i/p̃t−1,i, qt−1,i)
7: else
8: p̃t,i = p̃t−1,i and qt,i = qt−1,i
9: end if

10: end for

The RLS can be interpreted and derived in many ways,
and they are well studied [5, 4, 16] in the linear setting
(e.g. φt = xt). Patel et al. [11] used them as a measure
of incoherence to select important points, but their
deterministic algorithm provides guarantees only when
Kt is exactly low-rank. Here we notice that

τt,i = eT
t,iKt(Kt + γIt)

−1et,i = eT
t,iPtet,i,

which means that they correspond to the diagonal el-
ements of the Pt itself. Intuitively, this correspond to
selecting each column i with probability pt,i = τt,i will
capture the most important columns to define Pt, thus
minimizing the approximation error ‖Pt − P̃t‖. More
formally, Alaoui and Mahoney [1] state the following.

Proposition 1. Let ε ∈ [0, 1] and In be the dictio-
nary built with m columns randomly selected propor-
tionally to RLSs {τn,i} with weight wi = 1/(mτn,i). If
m = O(1

ε2 deff(γ)n log(
n
δ)), then w.p. at least 1− δ, the

corresponding dictionary is ε-accurate.

Unfortunately, computing exact RLS requires storing
Kn and this is seldom possible in practice. In the next
section, we introduce SQUEAK, an RLS-based incre-
mental algorithm able to preserve the same accuracy
of Prop. 1 without requiring to know the RLS in ad-
vance. We prove that it generates a dictionary only a
constant factor larger than exact RLS sampling.

Distributed Adaptive Sampling for Kernel Matrix Approximation

3 Sequential RLS Sampling
In the previous section, we showed that sampling pro-
portionally to the RLS {τt,i} leads to a dictionary such
that ‖Pt − P̃t‖ ≤ ε. Furthermore, since the RLS
correspond to the diagonal entries of Pt, an accurate
approximation P̃t may be used in turn to compute
accurate estimates of τt,i. The SQUEAK algorithm
(Alg. 1) builds on this intuition to sequentially process
the kernel matrix Kn so that exact RLS computed on
a small matrix (Kt with t� n) are used to create an
ε-accurate dictionary, which is then used to estimate
the RLS for bigger kernels, which are in turn used
to update the dictionary and so on. While SQUEAK
shares a similar structure with INK-Estimate [3], the
sampling probabilities are computed from different es-
timates of the RLS τt,i and no renormalization by an
estimate of deff(γ)t is needed. Before giving the de-
tails of the algorithm, we redefine a dictionary as a
collection I = {(i, p̃i, qi)}i, where i is the index of the
point xi stored in the dictionary, p̃i tracks the proba-
bility used to sample it, and qi is the number of copies
(multiplicity) of i. The weights are then computed as
wi = qi/(qp̃i), where q is an algorithmic parameter
discussed later. We use p̃i to stress the fact that these
probabilities will be computed as approximations of
the actual probabilities that should be used to sample
each point, i.e., their RLS τi.

SQUEAK receives as input a dataset D = {xt}nt=1

and processes it sequentially. Starting with an empty
dictionary I0, at each time step t, SQUEAK receives
a new point xt. Adding a new point xt to the kernel
matrix can either decrease the importance of points
observed before (i.e., if they are correlated with the
new point) or leave it unchanged (i.e., if their corre-
sponding kernel columns are orthogonal) and thus for
any i ≤ t, the RLS evolves as follows.
Lemma 1. For any kernel matrix Kt−1 at time t− 1
and its extension Kt at time t, we have that the RLS
are monotonically decreasing and the effective dimen-
sion is monotonically increasing,

1

τt−1,i + 1
τt−1,i ≤ τt,i ≤ τt−1,i, deff(γ)t ≥ deff(γ)t−1.

The previous lemma also shows that the RLS cannot
decrease too quickly and since τt−1,i ≤ 1, they can
at most halve when τt−1,i = 1. After receiving the
new point xt, we need to update our dictionary It−1
to reflect the changes of the τt,i. We proceed in two
phases. During the Expand phase, we directly add
the new element xt to It−1 and obtain a temporary
dictionary I, where the new element t is added with a
sampling probability p̃t−1,t = 1 and a number of copies
qt−1,t = q, i.e., I = It−1 ∪ {(t, p̃t−1,t = 1, qt−1,t =
q)}. This increases our memory usage, forcing us to

update the dictionary using Dict-Update, in order to
decrease its size. Given as input I, we use the following
estimator to compute the approximate RLS τ̃t,i,

τ̃t,i = (1− ε)φT
i (ΦtSS

T
ΦT
t + γI)−1φi

= 1−ε
γ (ki,i − kT

t,iS(S
T
KtS + γIt)

−1S
T
kt,i), (4)

where ε is the accuracy parameter, γ is the regular-
ization and S is the selection matrix associated to I.
This estimator follows naturally from a reformulation
of the RLS. In particular, if we consider φi, the RKHS
representation of xi, the RLS τt,i can be formulated
as τt,i = φT

i (ΦtItΦ
T
t + γI)−1φi, where we see that the

importance of point xi is quantified by how orthogonal
(in the RKHS) it is w.r.t. the other points. Because
we do not have access to all the columns (SS

T 6= It),
similarly to what [4] did for the special case φi = xi,
we choose to use τ̃t,i ≈ φT(ΦtSS

T
ΦT
t + γI)−1φi, and

then we use the kernel trick to derive a form that we
can actually compute, resulting in Eq. 4. The approx-
imate RLSs are then used to define the new sampling
probabilities as p̃t,i = min{τ̃t,i, p̃t−1,i}. For each el-
ement in I, the Shrink step draws a sample from
the binomial B(p̃t,i/p̃t−1,i, qt−1,i), where the minimum
taken in the definition of p̃t,i ensures that the bino-
mial probability is well defined (i.e., p̃t,i ≤ p̃t−1,i).
This resampling step basically tracks the changes in
the RLS and constructs a new dictionary It, which is
as if it was created from scratch using all the RLS up
to time t (with high probability). We see that the new
element xt is only added to the dictionary with a large
number of copies (from 0 to q) if its estimated relevance
p̃t,t is high, and that over time elements originally in
It−1 are stochastically reduced to reflect the reduc-
tions of the RLSs. The lower p̃t,i w.r.t. p̃t−1,i, the lower
the number of copies qt,i w.r.t. qt−1,i. If the probabil-
ity p̃t,i continues to decrease over time, then qt,i may
become zero, and the column i is completely dropped
from the dictionary (by setting its weight to zero). The
approximate RLSs enjoy the following guarantees.
Lemma 2. Given an ε-approximate dictionary It−1
of matrix Kt−1, construct I by adding element (t, 1, q)
to it, and compute the selection matrix S. Then for
all i in I such that qt−1,i 6= 0, the estimator in Eq. 4
is α-accurate, i.e., it satisfies τt,i/α ≤ τ̃t,i ≤ τt,i, with
α = (1 + ε)/(1 − ε). Moreover, given RLS τt−1,i
and τt,i, and two α-accurate RLSs, τ̃t−1,i and τ̃t,i, the
quantity min {τ̃t,i, τ̃t−1,i} is also an α-accurate RLS.

This result is based on the property that whenever
It−1 is ε-accurate for Kt−1, the projection matrix Pt

can be approximated by Pt constructed using the tem-
porary dictionary I and thus, the RLSs can be accu-
rately estimated and used to update It−1 and obtain
a new ε-accurate dictionary for Kt. Since τ̃t,i is used

Daniele Calandriello, Alessandro Lazaric, Michal Valko

to sample the new dictionary It, we need each point
to be sampled almost as frequently as with the true
RLS τt,i, which is guaranteed by the lower bound of
Lem. 2. Since RLSs are always smaller or equal than 1,
this could be trivially achieved by setting τ̃t,i to 1.
Nonetheless, this would keep all columns in the dictio-
nary. Consequently, we need to force the RLS estimate
to decrease as much as possible, so that low probabili-
ties allow reducing the space as much as possible. This
is obtained by the upper bound in Lem. 2, which guar-
antees that the estimated RLS are always smaller than
the exact RLS. As a result, Shrink sequentially pre-
serves the overall accuracy of the dictionary and at the
same time keeps its size as small as possible, as shown
in the following theorem.

Theorem 1. Let ε > 0 be the accuracy parameter, γ >
1 the regularization, and 0 < δ < 1 the probability of
failure. Given an arbitrary dataset D in input together
with parameters ε, γ, and δ, we run SQUEAK with

q =
39α log (2n/δ)

ε2
,

where α = (1 + ε)/(1 − ε). Then, w.p. at least 1 − δ,
SQUEAK generates a sequence of random dictionar-
ies {It}nt=1 that are ε-accurate (Eq. 1) w.r.t. any of
the intermediate kernels Kt, and the size of the dictio-
naries is bounded as max

t=1,...,n
|It| ≤ 3qdeff(γ)n.

As a consequence, on a successful run the overall com-
plexity of SQUEAK is bounded as

space complexity =
(

max
t=1,...,n

|It|
)2
≤ (3qdeff(γ)n)

2
,

time complexity = O
(
ndeff(γ)

3
nq

3
)
.

We show later that Thm. 1 is special case of Thm. 2
and give a sketch of the proof with the statement of
Thm. 2. We postpone the discussion about this result
and the comparison with previous results to Sect. 6
and focus now on the space and time complexity. Note
that while the dictionaries It always contain t elements
for notational convenience, Shrink actually never up-
dates the probabilities of the elements with qt−1,i = 0.
This feature is particularly important, since at any
step t, it only requires to compute approximate RLSs
for the elements which are actually included in It−1
and the new point xt (i.e., the elements in I) and thus
it does not require recomputing the RLSs of points xs
(s < t) that have been dropped before! This is why
SQUEAK computes an ε-accurate dictionary with a
single pass over the dataset. Furthermore, the esti-
mator in Eq. 4 does not require computing the whole
kernel column kt,i of dimension t. In fact, the com-
ponents of kt,i, corresponding to points which are no
longer in I, are directly set to zero when computing

Algorithm 2 The distributed SQUEAK algorithm
Input: Dataset D, parameters γ, ε, δ
Output: ID
1: Partition D into disjoint sub-datasets Di
2: Initialize IDi

= {(j, p̃0,i = 1, q0,i = q) : j ∈ Di}
3: Build set S1 = {IDi

}ki=1

4: for h = 1, . . . , k − 1 do
5: if |Sh| > 1 then .Dict-Merge
6: Pick two dictionaries ID, ID′ from Sh
7: I = ID ∪ ID′

8: ID,D′ = Dict-Update(I) using Eq. 5
9: Place ID,D′ back into Sh+1

10: else
11: Sh+1 = Sh
12: end if
13: end for
14: Return ID, the last dictionary in Sk

kT
t,iS. As a result, for any new point xt we need to eval-

uate K(xs,xt) only for the indices s in I. Therefore,
SQUEAK never performs more than n(3qdeff(γ)n)

2

kernel evaluations, which means that it does not even
need to observe large portions of the kernel matrix.
Finally, the runtime is dominated by the n matrix in-
versions used in Eq. 4. Therefore, the total runtime is
O(n

(
maxt=1,...,n |It|

)3
) = O(ndeff(γ)3nq3). In the next

section, we introduce DISQUEAK, which improves
the runtime by independently constructing separate
dictionaries in parallel and then merging them recur-
sively to construct a final ε-accurate dictionary.

4 Distributed RLS Sampling
In this section, we show that a minor change in the
structure of SQUEAK allows us to parallelize and
distribute the computation of the dictionary In over
multiple machines, thus reducing even further its time
complexity. Beside the computational advantage, a
distributed architecture is needed as soon as the in-
put dimension d and the number of points n is so
large that having the dataset on a single machine is
impossible. Furthermore, distributed processing can
reduce contention on bottleneck data sources such
as databases or network connections. DIstributed-
SQUEAK (DISQUEAK, Alg. 2) partitions D over
multiple machines and the (small) dictionaries that are
generated from different portions of the dataset are
integrated in a hierarchical way. The initial dataset
is partitioned over k disjoint sub-datasets Di with
i = 1, . . . , k and k dictionaries IDi

= {(j, p̃0,i =
1, q0,i = q) : j ∈ Di} are initialized simply by placing
all samples in Di into I with weight 1 and multiplicity
q. Alternatively, if the datasets Di are too large to
fit in memory, we can run SQUEAK to generate the
initial dictionaries. The dictionaries IDi

are added to

Distributed Adaptive Sampling for Kernel Matrix Approximation

I{4,1}

I{3,1} + I{3,2}

I{3,1}

I{2,1} + I{2,2}

I{2,1}

I{1,1}

D1

I{2,2}

I{1,2} + I{1,3}

I{1,2}

D2

I{1,3}

D3

I{3,2}

I{2,3}

I{2,3}

I{1,4} + I{1,5}

I{1,4}

D4

I{1,5}

D5

h = 4

h = 3

h = 2

h = 1

Figure 1: Merge tree for Alg. 2 with an arbitrary par-
titioning and merging scheme.

a dictionary collection S, and following any predefined
merge tree as in Fig. 1, these dictionaries are progres-
sively merged together with Dict-Merge. Given two
input dictionaries ID and ID′ , we combine them into
a single dictionary I (the equivalent of the Expand
phase in SQUEAK) and then Dict-Update is run
on the merged dictionaries to create an updated dic-
tionary ID∪D′ , which is placed back in the dictionary
collection S. Since Dict-Merge only takes the two
dictionaries as input and does not require any informa-
tion on the dictionaries in the rest of the tree, separate
branches can be run simultaneously on different ma-
chines, and only the resulting (small) dictionary needs
to be propagated to the parent node for the future
Dict-Merge. Unlike in SQUEAK, Dict-Update is
run on the union of two distinct dictionaries rather
than one dictionary and a new single point. As a re-
sult, we need to derive the “distributed” counterparts
of Lemmas 1 and 2 to analyze the behavior of the RLSs
and the quality of the estimator.
Lemma 3. Given two disjoint datasets D,D′, for ev-
ery i ∈ D ∪ D′, τi,D ≥ τi,D∪D′ and

2deff(γ)D∪D′ ≥ deff(γ)D + deff(γ)D′ ≥ deff(γ)D∪D′ .

While in SQUEAK we were merging an ε-accurate
dictionary It and a new point, which is equivalent to
a perfect, 0-accurate dictionary, in DISQUEAK both
dictionaries used in a merge are only ε-accurate. To
compensate for this loss in accuracy, we introduce a
new estimator,

τ̃D∪D′,i =
1−ε
γ (ki,i − kT

i S(S
T
KS + (1 + ε)γI)−1S

T
ki),

(5)

where S is the selection matrix associated with the
temporary dictionary I = ID ∪ ID′ . Eq. 5 has similar
guarantees as Lem. 2, with only a slightly larger α.

Lemma 4. Given two disjoint datasets D,D′, and two
ε-approximate dictionaries ID, ID′ , let I = ID ∪ ID′

and S be the associated selection matrix. Let K be
the kernel matrix computed on D ∪ D′, ki its i-th col-
umn, and τD∪D′,i the RLS of ki. Then for all i in I
such that qi 6= 0, the estimator in Eq. 5 is α-accurate,
i.e. it satisfies τD∪D′,i/α ≤ τ̃D∪D′,i ≤ τD∪D′,i, with
α = (1− ε)/(1 + 3ε).

Given these guarantees, the analysis of DISQUEAK
follows similar steps as SQUEAK. Given ε-accurate
dictionaries, we obtain α-accurate RLS estimates
τ̃D∪D′,i that can be used to resample all points in I and
generate a new dictionary ID,D′ that is ε-accurate. To
formalize a result equivalent to Thm. 1, we introduce
additional notation: We index each node in the merge
tree by its height h and position l. We denote the
dictionary associated to node {h, l} by I{h,l} and the
collection of all dictionaries available at height h of the
merge tree by Sh = {I{h,l}}. We also use K{h,l} to re-
fer to the kernel matrix constructed from the datasets
D{h,l}, which contains all points present in the leaves
reachable from node {h, l}. For instance in Fig. 1,
node {3, 1} is associated with I{3,1}, which is an ε-
approximate dictionary of the kernel matrix K{3,1}
constructed from the dataset D{3,1}. D{3,1} contains
D1, D2, D3 (descendent nodes are highlighted in red)
and it has dimension (|D1|+ |D2|+ |D3|). Theorem 2
summarizes the guarantees for DISQUEAK.

Theorem 2. Let ε > 0 be the accuracy parameter,
γ > 1 the regularization factor, and 0 < δ < 1 the
prob. of failure. Given an arbitrary dataset D and a
merge tree structure of height k as input together with
parameters ε, γ, and δ, we run DISQUEAK with

q =
39α log (2n/δ)

ε2
·

where α = (1 + 3ε)/(1− ε). Then, w.p. at least 1− δ,
DISQUEAK generates a sequence of collections of
dictionaries {Sh}kh=1 such that each dictionary I{h,l}
in Sh is ε-accurate (Eq. 1) w.r.t. to K{h,l}, and that
at any node l of height h the size of the dictionary
is bounded as |I{h,l}| ≤ 3qdeff(γ){h,l}. The cumulative
(across nodes) space and time requirementsof the algo-
rithm depend on the exact shape of the merge tree.

Theorem 2 gives approximation and space guarantees
for every node of the tree. In other words, it guar-
antees that each intermediate dictionary processed
by DISQUEAK is both an ε-accurate approxima-
tion of the datasets used to generate it, and requires
a small space proportional to the effective dimension

Daniele Calandriello, Alessandro Lazaric, Michal Valko

of the same dataset. From an accuracy perspective,
DISQUEAK provides exactly the same guarantees of
SQUEAK. Analysing the complexity of DISQUEAK
is however more complex, since the order and argu-
ments of the Dict-Update operations is determined
by the merge tree. We distinguish between the time
and work complexity of a tree by defining the time
complexity as the amount of time necessary to com-
pute the final solution, and the work complexity as the
total amount of operations carried out by all machines
in the tree in order to compute the final solution. We
consider two special cases, a fully balanced tree (all
inner nodes have either two inner nodes as children
or two leaves), and a fully unbalanced tree (all in-
ner nodes have exactly one inner node and one leaf
as children). For both cases, we consider trees where
each leaf dataset contains a single point Di = {xi}.
In the fully unbalanced tree, we always merge the
current dictionary with a new dataset (a single new
point) and no Dict-Merge operation can be carried
out in parallel. Unsurprisingly, the sequential algo-
rithm induced by this merge tree is strictly equivalent
to SQUEAK. Computing a solution in the fully unbal-
anced tree takes O(ndeff(γ)3Dq3) time with a total work
that is also O(ndeff(γ)3Dq3), as reported in Thm. 1.
On the opposite end, the fully balanced tree needs to
invert a deff(γ){h,l} dimensional matrix at each layer
of the tree for a total of log(n) layers. Bounding
all deff(γ){h,l} with deff(γ)D, gives a complexity for
computing the final solution of O(log(n)q3deff(γ)3D)
time, with a huge improvement on SQUEAK. Sur-
prisingly, the total work is only twice O(nq3deff(γ)3D),
since at each layer h we perform n/2h inversions
(on n/2h machines), and the sum across all layers is∑log(n)
h=1 n/2h ≤ 2n. Therefore, we can compute a so-

lution in a much shorter time than SQUEAK, with a
comparable amount of work, but at the expense of re-
quiring much more memory across multiple machines,
since at layer h, the sum

∑|Sh|
l=1 deff(γ){h,l} can be much

larger than deff(γ)D. Nonetheless, this is partly allevi-
ated by the fact that each node {h, l} locally requires
only deff(γ)2{h,l} ≤ deff(γ)2D memory.

Proof sketch: Although DISQUEAK is conceptu-
ally simple, providing guarantees on its space/time
complexity and accuracy is far from trivial. The first
step in the proof is to carefully decompose the failure
event across the whole merge tree into separate failure
events for each merge node {h, l}, and for each node
construct a random process Y that models how Alg. 2
generates the dictionary I{h,l}. Notice that these pro-
cesses are sequential in nature and the various steps
(layers in the tree) are not i.i.d. Furthermore, the vari-
ance of Y is potentially large, and cannot be bounded
uniformly. Instead, we take a more refined approach,
inspired by Pachocki [10], that 1) uses Freedman’s in-

equality to treat W, the variance of process Y, as a
random object itself, 2) applies a stochastic dominance
argument to W to reduce it to a sum of i.i.d. r.v. and
only then we can 3) apply i.i.d. concentrations to ob-
tain the desired result.

5 Applications
In this section, we show how our approximation guar-
antees translate into guarantees for typical kernel
methods. As an example, we use kernel ridge regres-
sion. We begin by showing how to get an accurate
approximation K̃n from an ε-accurate dictionary.
Lemma 5. Given an ε-accurate dictionary It of ma-
trix Kt, and the selection matrix St, the regularized
Nyström approximation of Kt is defined as

K̃n = KnSn(S
T
nKnSn + γIm)−1ST

nKn, (6)

and satisfies

0 � Kt − K̃t �
γ

1− εKt(Kt + γI)−1 � γ

1− εI. (7)

This is not the only choice of an approximation from
dictionary In. For instance, Musco and Musco [9]
show similar result for an unregularized Nyström ap-
proximation and Rudi et al. [12] for a smaller Kn,
construct the estimator only for the points in In. Let
m = |In|, W = (ST

nKnSn+γIm) ∈ Rm×m is nonsingu-
lar and C = KnSn ∈ Rn×m, applying the Woodbury
formula we compute the regression weights as

w̃n =(K̃n + µIn)
−1yn = (CW−1CT + µIn)

−1yn

=
1

µ

(
yn −C

(
CTC + µW

)−1
CTyn

)
. (8)

Computing (CTC + µW)−1 takes O(nm2) time to
construct the matrix and O(m3) to invert it, while
the other matrix-matrix multiplication take at most
O(nm2) time. Overall, these operations require to
store at most an n × m matrix. Therefore the final
complexity of computing a KRR using the dictionary
is reduced from O(n3) to O(nm2 + m3) time, and
from O(n2) to O(nm) space. The following corollary
provides guarantees for the empirical risk of the solu-
tion w̃n in a fixed design setting.
Corollary 1 ([1, Thm. 3]). For an arbitrary dataset
D, let K be the kernel matrix constructed on D. Run
SQUEAK or DISQUEAK with regularization pa-
rameter γ. Then, the solution w̃ computed using the
regularized Nyström approximation K̃ satisfies

RD(w̃) ≤
(
1 +

γ

µ

1

1− ε

)2

RD(ŵ),

where µ is the regularization of kernel ridge regression
and RD(w̃) is the empirical risk on D.

Distributed Adaptive Sampling for Kernel Matrix Approximation

Time |In| (Total space = O(n|In|)) Increm.
Exact n3 n -

Bach [2]
ndmax

2
n

ε
+
dmax

3
n

ε

dmax,n

ε
No

Alaoui and Mahoney [1] n(|In|)2
(
λmin + nµε

λmin − nµε

)
deff(γ)n +

Tr(Kn)

µε
No

Calandriello et al. [3]
λ2max

γ2
n2deff(γ)

2
n

ε2
λmax

γ

deff(γ)n
ε2

Yes

SQUEAK
n2deff(γ)

2
n

ε2
deff(γ)n
ε2

Yes

RLS-sampling
ndeff(γ)

2
n

ε2
deff(γ)n
ε2

-

Table 1: Comparison of Nyström methods. λmax and λmin refer to largest and smallest eigenvalues of Kn.

For the random design setting, [12] provides a sim-
ilar bound for batch RLS sampling, under some
mild assumption on the kernel function K(·, ·) and
the dataset D. Deriving identical guarantees for
SQUEAK and DISQUEAK is straightforward.

Other applications. The projection matrix Pn nat-
urally appears in some form in nearly all kernel-based
methods. Therefore, in addition to KRR in the fixed
design [1] and in the random design [12], any kernel
matrix approximation that provides ε-accuracy guar-
antees on Pn can be used to provide guarantees for
a variety of kernel-based methods. As an example,
Musco and Musco [9] show this is the case for kernel
PCA [13], kernel CCA with regularization, and kernel
K-means clustering.

6 Discussion

Tab. 1 compares several kernel approximation meth-
ods w.r.t. their space and time complexity. For all
methods, we omit O(log(n)) factors. We first re-
port RLS-sampling, a fictitious algorithm that re-
ceives the exact RLSs as input, as an ideal baseline for
all RLS sampling algorithms. The space complexity
of uniform sampling [2] scales with the maximal de-
gree of freedom dmax. Since dmax = nmaxi τn,i ≥∑
i τn,i = deff(γ)n, uniform sampling is often out-

performed by RLS sampling. While Alaoui and Ma-
honey [1] also sample according to RLS, their two-pass
estimator does not preserve the same level of accu-
racy. In particular, the first pass requires to sample
O (nµε/(λmin − nµε)) columns, which quickly grows
above n2 when λmin becomes small. Finally, Calan-
driello et al. [3] require that the maximum dictionary
size is fixed in advance, which implies some informa-
tion about the effective dimensions deff(γ)n, and re-
quires estimating both τ̃t,i and d̃eff(γ)t. This extra es-
timation effort causes an additional λmax/γ factor to
appear in the space complexity. This factor cannot be
easily estimated, and it leads to a space complexity of
n3 in the worst case. Therefore, we can see from the
table that SQUEAK achieves the same space com-

plexity (up to constant factors) as knowing the RLS
in advance and hence outperforms previous methods.

A recent method by Musco and Musco [9] achieves
comparable space and time guarantees as SQUEAK.3
While they rely on a similar estimator, the two ap-
proaches are very different. Their method is batch in
nature, as it processes the whole dataset at the same
time and it requires multiple passes on the data for the
estimation of the leverage scores and the sampling. On
the other hand, SQUEAK is intrinsically sequential
and it only requires one single pass on D, as points are
“forgotten” once they are dropped from the dictionary.
Furthermore, the different structure requires remark-
ably different tools for the analysis. While the method
of Musco and Musco [9] can directly use i.i.d. concen-
tration inequalities (for the price of needing several
passes), we need to rely on more sophisticated mar-
tingale arguments to consider the sequential stochas-
tic process of SQUEAK. Furthermore, DISQUEAK
smoothly extends the ideas of SQUEAK over dis-
tributed architectures, while it is not clear whether [9]
could be parallelized or distributed.

Future developments Both SQUEAK and DIS-
QUEAK need to know in advance the size of the
dataset n to tune q. An interesting question is whether
it is possible to adaptively adjust the q parameter at
runtime. This would allow us to continue updating
In and indefinitely process new data beyond the ini-
tial dataset D. It is also interesting to see whether
SQUEAK could be used in conjuntion with existing
meta-algorithms (e.g., [7] with model averaging) for
kernel matrix approximation that can leverage an ac-
curate sampling scheme as a black-box, and what kind
of improvements we could obtain.
Acknowledgements The research presented was sup-
ported by French Ministry of Higher Education and Re-
search, Nord-Pas-de-Calais Regional Council and French
National Research Agency projects ExTra-Learn (n.ANR-
14-CE24-0010-01) and BoB (n.ANR-16-CE23-0003)

3The technical report of Musco and Musco [9] was de-
veloped independently from our work.

Daniele Calandriello, Alessandro Lazaric, Michal Valko

References
[1] Ahmed El Alaoui and Michael W. Mahoney. Fast

randomized kernel methods with statistical guar-
antees. In Neural Information Processing Sys-
tems, 2015.

[2] Francis Bach. Sharp analysis of low-rank kernel
matrix approximations. In Conference on Learn-
ing Theory, 2013.

[3] Daniele Calandriello, Alessandro Lazaric, and
Michal Valko. Analysis of Nyström method with
sequential ridge leverage scores. In Uncertainty in
Artificial Intelligence, 2016.

[4] Michael B. Cohen, Cameron Musco, and Jakub
Pachocki. Online row sampling. Interna-
tional Workshop on Approximation, Randomiza-
tion, and Combinatorial Optimization, 2016.

[5] Michael B. Cohen, Cameron Musco, and Christo-
pher Musco. Input sparsity time low-rank approx-
imation via ridge leverage score sampling. In Sym-
posium on Discrete Algorithms, 2017.

[6] Alex Gittens and Michael W Mahoney. Revisit-
ing the Nyström method for improved large-scale
machine learning. In International Conference on
Machine Learning, 2013.

[7] Sanjiv Kumar, Mehryar Mohri, and Ameet Tal-
walkar. Sampling methods for the Nyström
method. Journal of Machine Learning Research,
13(Apr):981–1006, 2012.

[8] Haim Levy. Stochastic dominance: Investment
decision making under uncertainty. Springer,
2015.

[9] Cameron Musco and Christopher Musco. Prov-
ably useful kernel matrix approximation in lin-
ear time. Technical report, 2016. URL http:
//arxiv.org/abs/1605.07583.

[10] Jakub Pachocki. Analysis of resparsification.
Technical report, 2016. URL http://arxiv.org/
abs/1605.08194.

[11] Raajen Patel, Thomas A. Goldstein, Eva L. Dyer,
Azalia Mirhoseini, and Richard G. Baraniuk. oA-
SIS: Adaptive column sampling for kernel ma-
trix approximation. Technical report, 2015. URL
http://arxiv.org/abs/1505.05208.

[12] Alessandro Rudi, Raffaello Camoriano, and
Lorenzo Rosasco. Less is more: Nyström com-
putational regularization. In Neural Information
Processing Systems, 2015.

[13] Bernhard Schölkopf, Alexander J. Smola, and
Klaus-Robert Müller. Kernel principal compo-
nent analysis. In Advances in kernel methods,
pages 327–352. MIT Press Cambridge, MA, USA,
1999.

[14] Joel Aaron Tropp. Freedman’s inequality for ma-
trix martingales. Electronic Communications in
Probability, 16:262–270, 2011.

[15] Joel Aaron Tropp. An introduction to matrix con-
centration inequalities. Foundations and Trends
in Machine Learning, 8(1-2):1–230, 2015.

[16] David P Woodruff et al. Sketching as a tool for
numerical linear algebra. Foundations and Trends
in Theoretical Computer Science, 10(1–2):1–157,
2014.

http://arxiv.org/abs/1605.07583
http://arxiv.org/abs/1605.07583
http://arxiv.org/abs/1605.08194
http://arxiv.org/abs/1605.08194
http://arxiv.org/abs/1505.05208

	Introduction
	Background
	Sequential RLS Sampling
	Distributed RLS Sampling
	Applications
	Discussion
	Preliminaries
	Ridge Leverage Scores and Effective Dimension (Proof of Lemma 1 and 3)
	Ridge Leverage Scores Estimation (Proof of Lemma 2 and 4)
	Proof of Thm. 1 and Thm. 2
	Bounding the projection error "026B30D P{h,l} - P"0365P{h,l} "026B30D
	Bounding Yh
	Proof of Lemma 8 (bound on predictable quadratic variation)
	Space complexity bound

	Applications

