
Lijie Chen, Jian Li, Mingda Qiao

Organization of the Appendix

In the appendix, we present the missing proofs in this
paper. In Appendix A, we first discuss a specific in-
stance mentioned in Section 1, showing that our upper
bound strictly improves previous algorithms. In Ap-
pendix B, we prove Fact 2.2 in Section 2. In Appendix
C, we prove the Instance Embedding lemma (Lemma
3.1) and the relatively technical Lemma 3.3, which re-
lates a general instance of Best-1-Arm to a symmetric
instance. In Appendix D, we discuss the implementa-
tion of the building blocks of our algorithm, prove a
few useful and observations, and finally complete the
missing proofs of other lemmas and theorems.

A Specific Best-k-Arm Instance

We show that our upper bound results (Theorem 1.2
and Theorem 1.3) strictly improve the state-of-the-
art algorithm for Best-k-Arm obtained in [CGL16] by
calculating the sample complexity of both algorithms
on a specific Best-k-Arm instance.

We consider a family of instances parametrized by
integer n and " 2 (0, 1/4). Each instance consists of n
arms with mean 0, n arms with mean 1/2, along with
two arms with means 1/4 + " and 1/4� " respectively.
We are required to identify the top n + 1 arms. By
definition, the gap of every arm with mean 0 or 1/2 is
1/4+", while the gaps of the remaining two arms are 2".
As " tends to zero, the arms with gap 1/4 + " become
relatively simple: an algorithm can decide whether to
include them in the answer or not with few samples.
The hardness of the instance is then concentrated on
the two arms with close means.

For simplicity, we assume that the confidence level, �,
is set to a constant. Then the O(H ln ��1

) term in the
upper bounds are dominated by the O(

eH) term. By a
direct calculation, we have

eH = ⇥(n+ "�2
ln ln "�1

).

Let m be the integer that satisfies 2" 2 ("m+1, "m].
Then we have

|Glarge

1 | = |Gsmall

1 | = n, and

|Glarge

m | = |Gsmall

m | = 1.

It follows from the definition of eH large and eHsmall that

eH large

=

eHsmall

= O(n lnn+ "�2
).

By Theorem 1.2, for constant �, our algorithm takes

O(

eH +

eH large

+

eHsmall

) = O(n lnn+ "�2
ln ln "�1

)

samples on this instance.

On the other hand, the upper bound achieved by PAC-

SamplePrune algorithm is

O(

eH +H lnn) = O(n lnn+ "�2
ln ln "�1

+ "�2
lnn).

Note that if " = 1/n, our algorithm takes O(n2
ln lnn)

samples, while PAC-SamplePrune takes O(n2
lnn) sam-

ples. This indicates that there is a logarithmic gap
between the state-of-the-art upper bound and the
instance-wise lower bound, while we narrow down the
gap to a doubly-logarithmic factor.

B Missing Proof in Section 2

Fact 2.2 (restated) For 0  y  y0  x0  x  1,
d(x, y) � d(x0, y0).

Proof of Fact 2.2. Taking the partial derivative yields

@d(x, y)

@x
= ln

x(1� y)

y(1� x)
,

@d(x, y)

@y
=

y � x

y(1� y)
.

Therefore when x � y, d(x, y) is increasing in x and
decreasing in y, which proves the fact.

C Missing Proofs in Section 3

C.1 Proof of Lemma 3.1

Lemma 3.1 (restated) Let I be a Best-k-Arm instance.
Let A be an arm among the top k arms, and Iemb be
a Best-1-Arm instance consisting of A and a subset of
arms in I outside the top k arms. If some algorithm
A solves I with probability 1� � while taking less than
N samples on A in expectation, there exists another
algorithm Aemb that solves Iemb with probability 1� �
while taking less than N samples on A in expectation.

Proof of Lemma 3.1. We construct the following algo-
rithm Aemb for Iemb. Given the instance Iemb, Aemb

first augments the instance into I by adding a fictitious
arm for each arm in I \ Iemb. Then Aemb simulates
A on the Best-k-Arm instance I. When A requires
a sample from an arm in Iemb, Aemb draws a sample
and sends it to A. If A requires a sample from an arm
outside Iemb, Aemb generates a fictitious sample on its
own and then sends it to A. When A terminates and
returns a subset S of k arms, Aemb terminates and
returns an arbitrary arm in S \ Iemb.

Note that when Aemb runs on instance Iemb, the al-
gorithm A simulated by Aemb effectively runs on the

Nearly Instance Optimal Sample Complexity Bounds for Top-k Arm Selection

instance I. It follows that with probability 1 � �, A
returns the correct answer of the Best-k-Arm instance
I, and thus A is the only arm in both Iemb and the
set S returned by A. Therefore, Aemb correctly solves
the Best-1-Arm instance Iemb with probability at least
1��. Moreover, the expected number of samples drawn
from arm A is less than N by our assumptions.

C.2 Proof of Lemma 3.3

Lemma 3.3 (restated) Let I be an instance of Best-1-
Arm consisting of one arm with mean µ and n arms
with means on [µ ��, µ). There exist universal con-
stants � and c (independent of n and �) such that for
all algorithm A that correctly solves I with probability
1� �, the expected number of samples drawn from the
optimal arm is at least c��2

lnn.

Proof of Lemma 3.3. Let �0 and c0 be the constants
in Lemma 3.4. We claim that Lemma 3.3 holds for
constants � = �0/3 and c = c0�0/30.

Suppose for a contradiction that when algorithm A
runs on Best-1-Arm instance I, it outputs the correct
answer with probability 1� � and the optimal arm A0

is sampled less than c��2
lnn times in expectation.

Overview. Our proof follows the following five steps.

Step 1. We apply Instance Embedding to obtain a
smaller yet denser (in the sense that all suboptimal
arms have almost identical means) instance Idense, to-
gether with a new algorithm Anew that solves Idense

by taking few samples on the optimal arm with high
probability.

Step 2. We obtain a symmetric instance Isym from
Idense by making the suboptimal arms identical to each
other. We also define an algorithm Asym for instance
Isym.

Step 3. To analyze algorithm Asym on instance Isym,
we define the notion of “mixed arms”, which return a
fixed number of samples from one distribution, and
then switch to another distribution permanently. We
transform Idense into an intance Imix with mixed arms.

Step 4. We show by Change of Distribution that when
Anew runs on Imix, it also returns the correct answer
with few samples on the optimal arm.

Step 5. We show that the execution of Asym on Isym is,
in a sense, equivalent to the execution of Anew on Imix.
This finally leads to a contradiction to Lemma 3.4.

The reductions involved in the proof is illustrated in
Figure 1.

Step 1: Construct Idense and Anew. We first con-
struct a new Best-1-Arm instance Idense in which the

sub-optimal arms have almost identical means. Let µ0

denote the mean of the optimal arm A0. We divide
the interval [µ0 ��, µ0] into n0.9 segments, each with
length �/n0.9. Set m = n0.1. By the pigeonhole prin-
ciple, we can assume that A1, A2, . . . , Am are m arms
with means in the same interval. Let µi denote the
mean of arm Ai. By construction, µ0 � µi  � for all
1  i  m and |µi � µj |  �/n0.9 for all 1  i, j  m.

We simply let Idense

= {A0, A1, A2, . . . , Am}. By In-
stance Embedding (Lemma 3.1), there exists an algo-
rithm Anew that solves Idense with probability 1 � �
while taking less than c��2

lnn samples on A0 in ex-
pectation. We will focus on instance Idense in the rest
of our proof.

Recall that PrA,I and EA,I denote the probability and
expectation when algorithm A runs on instance I re-
spectively. Let ⌧i denote the number of samples taken
on Ai. Then we have

EAnew,Idense

[⌧0]  c��2
lnn.

Let N = c��1
�

�2
lnn. By Markov’s inequality,

Pr

Anew,Idense

[⌧0 � N]  c��2
lnn

N
= �.

Let E denote the event that the algorithm returns the
correct answer while taking at most N samples on arm
A0. The union bound implies that

Pr

Anew,Idense

[E] � 1� 2�.

Step 2: Construct Isym and Asym. Let Isym be the
Best-1-Arm instance consisting of arm A0 and m =

n0.1 copies of arm A1. We define algorithm Asym as
follows. Given instance Isym, Asym simulates algorithm
Anew as if Anew is running on instance Idense. When
Anew requires a sample from an arm A that has not
been pulled N times (recall that N = c��1

�

�2
lnn),

Asym draws a sample from A and sends it to Anew.
When the number of pulls on A exceeds N for the
first time, Asym assigns a random number ⇡(A) from
{1, 2, . . . ,m} to arm A, such that ⇡(A) is different
from every number that has already been assigned to
another arm. If this step cannot be performed because
all numbers in {1, 2, . . . ,m} have been used up, Asym

simply terminates without returning an answer.4 After
that, upon each pull of A, Asym sends a sample drawn
from N (µ⇡(A), 1) to Anew. (Recall that µi denotes the
mean of arm Ai in Idense.) Finally, Asym outputs what
Anew outputs.

Step 3: Construct mixed arms and Imix. In order
to analyze the execution of Asym on instance Isym, it is

4
As shown in the analysis in Step 5, we only care the

behavior of Asym
when the labels are not used up.

Lijie Chen, Jian Li, Mingda Qiao

A on I Anew on Idense

Anew on Imix

(Exprmix)
Asym on Isym

(Exprsym)
Step 1

Instance
Embedding

Step 4

Change of
Distribution

Step 5
Equivalence

Figure 1: Each rectangle denotes the execution of an algorithm on an instance. The arrows specify the step in
which each reduction is performed and the major technique involved in the reduction.

helpful to define m “mixed arms”. For 1  i  m, the i-
th mixed arm, denoted by Mi, returns a sample drawn
from N (µ1, 1) (i.e., the reward distribution of arm A1)
when it is pulled for the first N times. After N pulls,
Mi returns samples from N (µi, 1) as Ai does. For ease
of notation, we also let M0 denote A0. Let Imix denote
the Best-1-Arm instance {M0,M1,M2, . . . ,Mm}.

Step 4: Run Anew on Imix. Now suppose we run
Anew on instance Imix. In fact, we may view each arm
(either Ai or Mi) as two separate “semi-arms”. When
Anew samples arm Ai in the first N times, it pulls the
first semi-arm of Ai. After Ai has been pulled N times,
Anew pulls the second semi-arm. From this perspective,
Imix is simply obtained from Idense by changing the first
semi-arm of each arm Ai (1  i  m) from N (µi, 1) to
N (µ1, 1). Since the first semi-arm is sampled at most
N times by Anew, it follows from Change of Distribution
(Lemma 2.1) that

d

✓
Pr

Anew,Idense

[E], Pr

Anew,Imix

[E]
◆


mX

i=1

N ·KL (N (µi, 1),N (µ1, 1))

=

N

2

mX

i=1

(µi � µ1)
2

c��1
�

�2
lnn

2

· n0.1 · (�/n0.9
)

2  c

2�
n�1.7

lnn.

Here the second step follows from

KL(N (µ1, 1),N (µ2, 1)) = (µ1 � µ2)
2/2.

The third step is due to N = c��1
�

�2
lnn, m = n0.1,

and |µ1 � µi|  �/n0.9.

For sufficiently large n, we have
c

2�
n�1.7

lnn < d(1� 2�, 1� 3�).

Recall that PrAnew,Idense

[E] � 1 � 2�. It follows from
the monotonicity of d(·, ·) (Fact 2.2) that

Pr

Anew,Imix

[E] � 1� 3�.

Step 5: Analyze Asym and derive a contradiction
to Lemma 3.4. For clarity, let Exprmix denote the

experiment that Anew runs on Imix, and Exprsym denote
the experiment that Asym runs on Isym. Step 4 implies
that event E happens with probability at least 1� 3�
in experiment Exprmix.

In the following, we derive the likelihood of an arbitrary
execution of Exprmix in which event E happens, and
prove that this execution has the same likelihood in
experiment Exprsym. As a result, Asym also returns
the correct answer with probability at least 1 � 3�.
Moreover, according to our construction, Asym always
takes at most N samples on arm A0. On the other
hand, since µ0 � µ1  �, Lemma 3.4 implies that no
algorithm can solve Asym correctly with probability
1� �0 = 1� 3� while taking less than

c0�
�2

lnm = 30c��1
0 ·��2 · (0.1 lnn) = N

samples on A0 in expectation. This leads to a contra-
diction and finishes the proof.

Technicalities: equivalence between Exprmix

and Exprsym. For ease of notation, we assume in the
following that algorithm Anew is deterministic.5 Then
the only randomness in experiment Exprmix stems from
the random permutation of arms at the beginning, and
the samples drawn from the arms.

We consider an arbitrary run of experiment Exprmix in
which event E happens (i.e., Anew returns the optimal
arm before taking more than N samples from it). For
0  i  m, let �(i) denote the index of the i-th arm
received by algorithm Anew. (i.e., the i-th arm received
by Anew is M�(i).) By definition, � is a uniformly
random permutation of {0, 1, . . . ,m}. Let obsi denote
the sequence of samples that Anew observes from the
i-th arm. Then the likelihood of this execution is given
by

1

(m+ 1)!

X

�

mY

i=0

fM�(i)
(obsi). (8)

Here we sum over all random permutations � on
{0, 1, 2, . . . ,m}, and fM�(i)

(obsi) denote the probability
density of observing obsi on arm M�(i).

Now we compute the likelihood that in experiment
Exprsym, the algorithm Anew simulated by Asym ob-

5
In fact this assumption is without loss of generality:

the argument still holds conditioning on the randomness of

Anew
.

Nearly Instance Optimal Sample Complexity Bounds for Top-k Arm Selection

serves the same sequence of samples. Let � denote the
random permutation of arms given to Asym. We define

p⇤ = ��1
(0),

Long = {i 2 {0, 1, 2, . . . ,m} : |obsi| > N}, and

Short = {0, 1, . . . ,m} \ (Long [{p⇤}) .

In other words, p⇤ is the position of the optimal arm A0

in Isym. Long denote the positions of suboptimal arms
that have been sampled more than N times, while Short
denote the remaining suboptimal arms. Note that since
less than N samples are taken on the optimal arm, p⇤
is excluded from both sets.

Another source of randomness in Exprsym is the ran-
dom numbers ⇡(·) that Asym assigns to different arms.
In this specific execution, function ⇡(·) chosen by Asym

is a random injection from Long to {1, 2, . . . ,m}. By
our construction of Asym, for each i 2 Long, the algo-
rithm Anew simulated by Asym first observes N samples
drawn from N (µ1, 1) (i.e., the reward distribution of
arm A1) on the i-th arm. After that, Anew starts to
observe samples drawn from N (µ⇡(i), 1). Recall that
the mixed arm M⇡(i) also returns samples in this pat-
tern. Therefore, the likelihood of observations on the
i-th arm is exactly

fM⇡(i)
(obsi). (9)

In fact, we may express the likelihood for all arms
as in (9) by extending ⇡ into a permutation on
{0, 1, 2, . . . ,m}. First, we set ⇡(p⇤) = 0. Recall
that the optimal arm is sampled less than N times,
all the samples observed from it are drawn from
N (µ0, 1), which is exactly the reward distribution of
M0 = M⇡(p⇤). Therefore the likelihood of observations
obsp⇤ is given by

fM⇡(p⇤)
(obsp⇤

).

Second, we let R = {1, 2, . . . ,m} \ ⇡(Long) denote the
available labels among {1, 2, . . . ,m}. We define ⇡ on
Short by matching Short with R uniformly at random.
Note that since all arms in Short are sampled at most N
times, Anew simulated by Asym always observes samples
drawn from N (µ1, 1), which agrees with the first N
samples from every mixed arm Mi (i 6= 0). Therefore,
the likelihood of observations on the i-th arm where
i 2 Short is also given by

fM⇡(i)
(obsi).

According to our analysis above, the samples from the
i-th arm observed by the simulated Anew in experiment
Exprsym follows the same distribution as samples drawn

from M⇡(i). Moreover, ⇡ is a uniformly random permu-
tation with the only condition that ⇡(p⇤) = 0, which
is equivalent to ⇡�1

(0) = p⇤ = ��1
(0). Therefore, the

likelihood is given by

1

m! · (m+ 1)!

X

⇡�1(0)=��1(0)

mY

i=0

fM⇡(i)
(obsi). (10)

Note that conditioning on ��1
(0) = ⇡�1

(0), ⇡ is still
a uniformly random permutation on {0, 1, 2, . . . ,m}.
Therefore the two likelihoods in (8) and (10) are equal.
This finishes the proof of the equivalence.

D Missing Proofs in Section 4

D.1 Building Blocks

D.1.1 PAC algorithm for Best-k-Arm

On an instance of Best-k-Arm with n arms, the PAC-

SamplePrune algorithm in [CGL16] is guaranteed to
return a "-optimal answer of Best-k-Arm with proba-
bility 1� �, using

O(n"�2
(ln ��1

+ ln k))

samples. Here a subset of k arms T ✓ I is called "-
optimal, if after adding " to the mean of each arm in
T , T becomes the best k arms in I.

We implement our PAC-Best-k(S, k, ", �) subroutine as
follows. Recall that PAC-Best-k is expected to return a
partition (S large, Ssmall

) of the arm set S. If k  |S|/2,
we directly run PAC-SamplePrune on the Best-k-Arm
instance S and return its output as S large. We let
Ssmall

= S \ S large. Otherwise, we negate the mean of
all arms in S and run PAC-SamplePrune to find the
top |S|� k arms in the negated instance.6 Finally, we
return the output of PAC-SamplePrune as Ssmall and let
S large

= S \ Ssmall. In the following we prove Lemma
4.1.

Proof of Lemma 4.1. By construction, the algorithm
PAC-Best-k(S, k, ", �) takes

O(|S|"�2
[ln ��1

+ lnmin(k, |S|� k)])

samples. In the following we prove that if k  |S|/2,
the set T returned by PAC-SamplePrune is "-optimal
with probability 1 � �. The case k > |S|/2 can be
proved by an analogous argument.

Let S0 denote the instance in which the mean of every
arm in T is increased by ". By definition of "-optimality,

6
More precisely, when the algorithm requires a sample

from an arm, we draw a sample and return the opposite.

Lijie Chen, Jian Li, Mingda Qiao

T contains the best k arms in S0. Note that the k-th
largest mean is S0 is at least µ[k]. Thus for each arm
A 2 T , µA must be at least µ[k] � ", since otherwise
even after µA increases by ", A is still not among the
best k arms.

It also holds that every arm in S \ T must have a
mean smaller than or equal to µ[k+1]+". Suppose for a
contradiction that A 2 S\T has a mean µA > µ[k+1]+".
Then every arm with mean less than or equal to µ[k+1]

in S still have a mean smaller than µA in S0. This
implies that A is among the best k arms in S0, which
contradicts our assumption that A /2 T .

D.1.2 PAC algorithms for Best-1-Arm

By symmetry, it suffices to implement the subroutine
EstMean-Large and prove its property. In order to
estimate the mean of the largest arm in S, we first
call PAC-Best-k(S, 1, "/2, �/2) to find an approximately
largest arm. Then we sample the arm 2"�2

ln(4/�)
times, and finally return its empirical mean. We prove
Lemma 4.2 as follows.

Proof of Lemma 4.2. Let A⇤ denote the largest arm
in S, and let A0 denote the arm returned by
PAC-Best-k(S, 1, "/2, �/2). According to Lemma 4.1,
with probability 1 � �/2, µA0 2 [µA⇤ � "/2, µA⇤

]. It
follows that, with probability 1� �/2,

����µA0 �max

A2S
µA

����  "/2.

Let µ̂ denote the empirical mean of arm A0. By a
Chernoff bound, with probability 1� �/2,

|µ̂� µA0 |  "/2.

It follows from a union bound that with probability
1� �, ����µ̂�max

A2S
µA

����  ".

Finally, we note that PAC-Best-k consumes
O(|S|"�2

ln ��1
) samples as k = 1, while sam-

pling A0 takes O("�2
ln ��1

) samples. This finishes
the proof.

D.1.3 Elimination procedures

We use the Elimination procedure defined in [CL15]
as our subroutine Elim-Small(S, ✓small, ✓large, �). The
other building block Elim-Large(S, ✓small, ✓large, �) can
be implemented either using a procedure sym-
metric to Elimination, or simply by running
Elim-Small(S0,�✓large,�✓small, �), where S0 is obtained
from S by negating the arms. In the following, we
prove Lemma 4.3.

Proof of Lemma 4.3. Let T denote the set of arms re-
turned by Elim-Small(S, ✓small, ✓large, �). Lemma B.4
in [CL15] guarantees that with probability 1� �, the
following three properties are satisfied: (1) Elim-Small

takes O(|S|"�2
ln ��1

) samples, where " = ✓large�✓small;
(2) ��{A 2 T : µA  ✓small}

��  |T |/10;

(3) Let A⇤ be the largest arm in S. If µA⇤ � ✓large,
then A⇤ 2 T .

In fact, the proof of Lemma B.4 does not rely on the
fact that A⇤ is the largest arm in S. Thus property (3)
holds for any fixed arm in S. This proves the properties
of Elim-Small. The properties of Elim-Large hold due
to the symmetry.

D.2 Observations

D.2.1 Proof of Observation 4.2

Proof of Observation 4.2. Let A denote the arm with
the largest mean in Ssmall

r . Recall that µsmall

r denote
the mean of the (klarge

r + 1)-th largest arm in Sr. The
correctness of PAC-Best-k and Lemma 4.1 guarantee
that µA  µsmall

r + "r/8. Note that µsmall

r is the ksmall

r -
th smallest mean in Sr, while µA is the largest mean
among the ksmall

r arms in Ssmall

r ✓ Sr. So it also holds
that µA � µsmall

r . Thus we have

µA 2 [µsmall

r , µsmall

r + "r/8].

Moreover, as EstMean-Large returns correctly condi-
tioning on Egood

r , by Lemma 4.2 we have

✓large

r 2 [µsmall

r � "r/8, µ
small

r + "r/4].

The second property follows from a symmetric argu-
ment.

D.2.2 Proof of Observation 4.3

Proof of Observation 4.3. Recall that Evalid denotes
the event that the execution of Bilateral-Elimination

is valid. We condition on Evalid in the following proof.
In particular, conditioning on Evalid, Egood

r�1 happens and
Tr�1 along with the best klarge

r�1 arms in Sr�1 constitute
the correct answer of the original instance.

Let µlarge

r�1 and µsmall

r�1 be the klarge

r�1 -th and the (klarge

r�1 +1)-
th largest mean in Sr�1. As the arm with mean µlarge

r�1 is
among the correct answer, we have µlarge

r�1 � µ[k], where
µ[k] is the k-th largest mean in the original instance.
We also have µsmall

r�1  µ[k+1] for the same reason.

Since Egood

r�1 happens, by Observation 4.2 we have

✓large

r�1  µsmall

r�1 + "r�1/4  µ[k+1] + "r�1/4.

Nearly Instance Optimal Sample Complexity Bounds for Top-k Arm Selection

Then the larger threshold used in Elim-Large is upper
bounded by

✓large

r�1 + "r�1/4  µ[k+1] + "r�1/2 = µ[k+1] + "r.

Let T denote the set of arms returned Elim-Large in
round r � 1. We partition T into the following three
parts:

T (1)
=

�
A 2 T : µA > µ[k+1] + "r

,

T (2)
=

�
A 2 T : µ[k]  µA  µ[k+1] + "r

,

T (3)
=

�
A 2 T : µA  µ[k+1]

.

By Lemma 4.3 and the correctness of Elim conditioning
on Egood

r�1 , we have

|T (1)|  |T |/10.

It follows that

|T (2)|+ |T (3)| � 9|T |/10 � |T |/2.

By definition of arm groups, every arm in T (2) is in
Glarge

�r . In order to bound T (3), we say that an arm is
misclassified into S large

r�1 , if the arm is not among the
best klarge

r�1 arms in Sr�1, but is included in S large

r�1 . We
may define misclassification into Ssmall

r�1 similarly. As
|S large

r�1 | = klarge

r�1 , the numbers of arms misclassified into
both sides are the same.

Since the arms in T (3) are misclassified into S large

r�1 , there
are at least |T (3)| other arms misclassified into Ssmall

r�1 .
Lemma 4.1 (along with the correctness of PAC-Best-k)
guarantees that all arms misclassified into Ssmall

r�1 have
means smaller than or equal to µ[k+1] + "r�1/8. Thus
by definition of arm groups, all these |T (3)| arms are
also in Glarge

�r . Therefore, we have

|Glarge

�r | � |T (2)|+ |T (3)| � |T |/2.

Note that |T | = klarge

r . Therefore we conclude that
klarge

r  2|Glarge

�r |. The bound on ksmall

r can be proved
using a symmetric argument.

D.3 Proof of Lemma 4.4

Lemma 4.4 (restated) Pr

⇥
Evalid

⇤
� 1� �.

Proof of Lemma 4.4. We prove the lemma by upper
bounding the probability of Evalid, the complement of
Evalid.

Split Evalid. Let Ebad

r denote the event that Bilateral-

Elimination is valid at round r, yet it becomes invalid
at round r + 1. Then we have

Pr

h
Evalid

i
=

1X

r=1

Pr

⇥
Ebad

r

⇤
.

By definition of validity, event Ebad

r happens in one of
the following two cases:

• Case 1: Egood

r does not happen.

• Case 2: Egood

r happens, yet Tr+1 together with the
best klarge

r+1 arms in Sr+1 is no longer the correct
answer.

The probability of Case 1 is upper bounded by 5�r
according to Observation 4.1. We focus on bounding
the probability of Case 2 in the following.

Misclassified arms. Recall that µlarge

r and µsmall

r de-
note the means of the klarge

r -th and the (klarge

r + 1)-th
largest arms in Sr respectively. Conditioning on the
validity of the execution at round r, the arm with mean
µlarge

r is among the best k arms in the original instance,
while the arm with mean µsmall

r is not. Thus we have

µlarge

r � µ[k] > µ[k+1] � µsmall

r .

Define

U large

r = {A 2 S large

r : µA  µsmall

r }

and
U small

r = {A 2 Ssmall

r : µA � µlarge

r }.
In other words, U large

r and U small

r denote the set of arms
“misclassified” by the PAC-Best-k subroutine into S large

r

and Ssmall

r in round r.

Bound the number of misclassified arms. Note
that since |U large

r |  |S large

r | = klarge

r , and in addition,
less than ksmall

r arms in Sr have means smaller than or
equal to µsmall

r ,

|U large

r |  min(klarge

r , ksmall

r).

For the same reason, it holds that

|U small

r |  min(klarge

r , ksmall

r).

With high probability, no misclassified arms are
removed. By Observation 4.2, conditioning on Egood

r ,
we have

✓large

r � µsmall

r � "r/8.

Therefore, when Elim-Large in Line 11 is called at round
r, the smaller threshold is at least

✓large

r + "r/8 � µsmall

r ,

Lijie Chen, Jian Li, Mingda Qiao

which is larger than the mean of every arm in U large

r .
By Lemma 4.3 and a union bound, with probability

1� |U large

r |�0r � 1�min(klarge

r , ksmall

r)�0r = 1� �r,

no arms in U large are removed by Elim-Large. For the
same reason, with probability 1� �r, no arms in U small

are removed by Elim-Small.

Bound the probability of Case 2. Thus, with prob-
ability at least 1�2�r conditioning on Egood

r , Elim-Large

only removes arms with means larger than or equal to
µlarge

r , and Elim-Small only removes arms with means
smaller than or equal to µsmall

r . Consequently, every
arm in Sr with mean greater than or equal to µlarge

r

either moves to Tr+1 or stays in Sr+1, which implies
that Case 2 does not happen.

Therefore, the Case 2 happens with probability at most
2�r, and it follows that

Pr

⇥
Ebad

r

⇤
 5�r + 2�r = 7�r.

Finally, we have

Pr

h
Evalid

i


1X

r=1

7�r 
1X

r=1

7�

20r2
� �.

D.4 Missing Calculation in the Proof of
Lemma 4.6

Lemma 4.6 (restated) Conditioning on event Evalid,
Bilateral-Elimination takes O(H ln ��1

+

eH large

+

eHsmall

+

eH) samples.

Proof (continued). Recall that

H(1)
r =

⇣
|Glarge

�r |+ |Gsmall

�r |
⌘
"�2
r (ln ��1

+ ln r),

H(2,large)
r = "�2

r |Glarge

�r | ln |Gsmall

�r |,

H(2,small)
r = "�2

r |Gsmall

�r | ln |Glarge

�r |.

Our goal is to show that

1X

r=1

H(1)
r = O

⇣
H ln ��1

+

eH
⌘

,

1X

r=1

H(2,large)
r = O

⇣
eH large

⌘
, and

1X

r=1

H(2,small)
r = O

⇣
eHsmall

⌘
.

Upper bound the H(1) term: It follows from a
directly calculation that

1X

r=1

H(1)
r =

1X

r=1

1X

i=r

⇣
|Glarge

i |+ |Gsmall

i |
⌘
"�2
r (ln ��1

+ ln r)

=

1X

i=1

⇣
|Glarge

i |+ |Gsmall

i |
⌘ iX

r=1

"�2
r (ln ��1

+ ln r)

=O

 1X

i=1

⇣
|Glarge

i |+ |Gsmall

i |
⌘
"�2
i (ln ��1

+ ln i)

!

=O

nX

i=1

�

�2
[i]

⇣
ln ��1

+ ln ln�

�1
[i]

⌘!
.

Here the second step interchanges the order of summa-
tion. The third step holds since the inner summation
is always dominated by the last term. Finally, the last
step is due to the fact that �A = ⇥("i) for every arm
A 2 Glarge

i [Gsmall

i . Therefore we have

1X

r=1

H(1)
r = O(H ln ��1

+

eH).

Upper bound H(2,large) and H(2,small): By definition
of H(2,large)

r , we have

1X

r=1

H(2,large)
r =

1X

r=1

1X

i=r

"�2
r |Glarge

i | ln |Gsmall

�r |

=

1X

i=1

|Glarge

i |
iX

r=1

"�2
r ln |Gsmall

�r |.

Therefore we conclude that
1X

r=1

H(2,large)
r = O(

eH large

).

The bound on the sum of H(2,small)
r follows from an

analogous calculation.

D.5 Proof of Theorem 1.3

Theorem 1.3 (restated) For every Best-k-Arm in-
stance, the following statements hold:

1. eH large

+

eHsmall

= O
��
H large

+Hsmall

�
ln lnn

�
.

2. eH large

+

eHsmall

= O (H ln k) .

Proof of Theorem 1.3. First Upper Bound. Recall
that

H large

=

1X

i=1

���Glarge

i

��� ·max

ji
"�2
j ln

��Gsmall

�j

�� , and

Nearly Instance Optimal Sample Complexity Bounds for Top-k Arm Selection

eH large

=

1X

i=1

���Glarge

i

���
iX

j=1

"�2
j ln

��Gsmall

�j

�� .

For brevity, let Nr denote "�2
r ln |Gsmall

�r | = 4

r
ln |Gsmall

�r |.
We fix the value i. Then the i-th term in eH large reduces
to
���Glarge

i

���
Pi

r=1 Nr. Let r⇤ = argmax1riNr. Thus

the i-th term in H large is simply
���Glarge

i

���Nr⇤ , which

is in general smaller than
���Glarge

i

���
Pi

r=1 Nr. However,
we will show that the ratio between the two terms is
bounded by O(ln lnn).

By definition of r⇤, we have Nr⇤ � Ni. Substituting
Nr⇤ and Ni yields

4

r⇤
ln

��Gsmall

�r⇤
�� � 4

i
ln

��Gsmall

�i

�� .

It follows that

4

i�r⇤
ln

��Gsmall

�i

��  ln

��Gsmall

�r⇤
��  lnn,

and thus i� r⇤ = O(ln lnn).

Let 1  r1  r⇤ be the smallest integer such that
Nr1 � 2

r1�r⇤Nr⇤ . By substituting Nr1 and Nr⇤ , we
obtain

4

r1
ln

��Gsmall

�r1

�� � 2

r1�r⇤ · 4r
⇤
ln

��Gsmall

�r⇤
�� ,

which further implies that

2

r⇤�r1
ln |Gsmall

�r⇤ |  ln |Gsmall

�r1 |  lnn

and thus r⇤ � r1 = O(ln lnn).

Therefore we have i � r1 = O(ln lnn), and we can
bound the sum of Nr as follows:

iX

r=1

Nr =

r1�1X

r=1

Nr +

iX

r=r1

Nr

Nr⇤

r1�1X

r=1

2

r�r⇤
+ (i� r1 + 1)Nr⇤

(i� r1 + 2)Nr⇤ = O(Nr⇤ ln lnn).

Here the second step follows from Nr < 2

r�r⇤Nr⇤ for
r < r1 (by definition of r1) and Nr  Nr⇤ for r � r1
(by definition of r⇤).

It then follows from a direct summation over all i that

eH large

= O(H large

ln lnn).

The bound on eHsmall can be proved similarly.

Second Upper Bound. Note that

eH large

=

1X

i=1

���Glarge

i

���
iX

j=1

"�2
j ln

��Gsmall

�j

��

=

1X

j=1

"�2
j ln

��Gsmall

�j

��
1X

i=j

���Glarge

i

���

=

1X

i=1

"�2
i

���Glarge

�i

��� ln
��Gsmall

�i

�� .

(11)

Here the second step interchanges the order of summa-
tion. By symmetry we also have

eHsmall

=

1X

i=1

"�2
i

��Gsmall

�i

��
ln

���Glarge

�i

��� . (12)

It can be easily verified that for 1  x  y, we have

x ln y + y lnx  (x+ y)(2 lnx+ 1). (13)

Note that min

⇣
|Glarge

�i |, |Gsmall

�i |
⌘
 k for all i. There-

fore we can bound eH large

+

eHsmall as follows:

eH large

+

eHsmall

=

1X

i=1

"�2
i

⇣
|Glarge

�i | ln |Gsmall

�i |+ |Gsmall

�i | ln |Glarge

�i |
⌘

=O

 1X

i=1

"�2
i

⇣
|Glarge

�i |+ |Gsmall

�i |
⌘
lnmin

⇣
|Glarge

�i |, |Gsmall

�i |
⌘!

=O

 1X

i=1

"�2
i

⇣
|Glarge

�i |+ |Gsmall

�i |
⌘
ln k

!
= O(H ln k).

The first step follows from (11) and (12). The second
step is due to (13). The third step is due to the ob-
servation that min

⇣
|Glarge

�i |, |Gsmall

�i |
⌘
 k. Finally, the

last step follows from a simple rearrangement of the
summation:

1X

i=1

"�2
i

⇣
|Glarge

�i |+ |Gsmall

�i |
⌘

=

1X

i=1

"�2
i

1X

j=i

⇣
|Glarge

j |+ |Gsmall

j |
⌘

=

1X

j=1

⇣
|Glarge

j |+ |Gsmall

j |
⌘ jX

i=1

"�2
i

=O

0

@
1X

j=1

"�2
j

⇣
|Glarge

j |+ |Gsmall

j |
⌘
1

A
= O(H).

