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Abstract

In the Best-k-Arm problem, we are given n
stochastic bandit arms, each associated with
an unknown reward distribution. We are re-
quired to identify the k arms with the largest
means by taking as few samples as possible.
In this paper, we make progress towards a
complete characterization of the instance-wise
sample complexity bounds for the Best-k-Arm
problem. On the lower bound side, we ob-
tain a novel complexity term to measure the
sample complexity that every Best-k-Arm in-
stance requires. This is derived by an interest-
ing and nontrivial reduction from the Best-1-
Arm problem. We also provide an elimination-
based algorithm that matches the instance-
wise lower bound within doubly-logarithmic
factors. The sample complexity of our algo-
rithm strictly dominates the state-of-the-art
for Best-k-Arm (module constant factors).

1 INTRODUCTION

The stochastic multi-armed bandit is a classical and
well-studied model for characterizing the exploration-
exploitation tradeoff in various decision-making prob-
lems in stochastic settings. The most well-known ob-
jective in the multi-armed bandit model is to max-
imize the cumulative gain (or equivalently, to mini-
mize the cumulative regret) that the agent achieves.
Another line of research, called the pure exploration
multi-armed bandit problem, which is motivated by a
variety of practical applications including medical tri-
als [Rob85, AB10], communication network [AB10],
and crowdsourcing [ZCL14, CLTL15], has also at-
tracted significant attention recently. In the pure ex-
ploration problem, the agent draws samples from the
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arms adaptively (the exploration phase), and finally
commits to one of the feasible solutions specified by the
problem. In a sense, the exploitation phase in the pure
exploration problem simply consists of exploiting the
solution to which the agent commits indefinitely. There-
fore, the agent’s objective is to identify the optimal (or
near-optimal) feasible solution with high probability.

In this paper, we focus on the problem of identifying
the top-k arms (i.e., the k arms with the largest means)
in a stochastic multi-armed bandit model. The problem
is known as the Best-k-Arm problem, and has been
extensively studied in the past decade [KS10, GGL12,
GGLB11, KTAS12, BWV12, KK13, ZCL14, KCG15,
SJR16]. We formally define the Best-k-Arm problem
as follows.

Definition 1.1 (Best-k-Arm). An instance of Best-k-
Arm is a set of stochastic arms I = {A1, A2, . . . , An}.
Each arm has a 1-sub-Gaussian reward distribution
with an unknown mean in [0, 1/2].

At each step, algorithm A chooses an arm and observes
an i.i.d. sample from its reward distribution. The goal
of A is to identify the k arms with the largest means
in I using as few samples as possible. Let µ[i] denote
the i-th largest mean in an instance of Best-k-Arm.
We assume that µ[k] > µ[k+1] in order to ensure the
uniqueness of the solution.

Note that in our upper bound, we assume that all
reward distributions are 1-sub-Gaussian1, which is a
standard assumption in multi-armed bandit literature.
In our lower bound (Theorem 1.1), however, we assume
that all reward distributions are Gaussian with unit
variance.2

When we only want to identify the single best arm, we
get the following Best-1-Arm problem, which is a well-
studied special case of Best-k-Arm. The problem plays

1
A distribution D is �-sub-Gaussian, if it holds that

EX⇠D[exp(tX � tEX⇠D[X])]  exp(�2t2/2) for all t 2 R.

2
For arbitrary distributions, one may be able to distin-

guish two distributions with very close means using very

few samples. It is impossible to establish a nontrivial lower

bound in such generality.
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an important role in our lower bound for Best-k-Arm.
Definition 1.2 (Best-1-Arm). The Best-1-Arm prob-
lem is a special case of Best-k-Arm where k = 1.

Generally, we focus on algorithms that solve Best-k-
Arm with probability at least 1� �.
Definition 1.3 (�-correct Algorithms). A is a �-
correct algorithm for Best-k-Arm if and only if A re-
turns the correct answer with probability at least 1� �
on every Best-k-Arm instance I.

1.1 Our Results

Before stating our results on the Best-k-Arm problem,
we first define a few useful notations that characterize
the hardness of Best-k-Arm instances.

1.1.1 Notations

Means and gaps. Let µA denote the mean of arm A.
µ[i] denotes the i-th largest mean among all arms in a
specific instance. We define the gap of arm A as

�A =

(
µA � µ[k+1], µA � µ[k],

µ[k] � µA, µA  µ[k+1].

Note that the gap of an arm is the minimum value
by which its mean needs to change in order to alter
the top k arms. We let �[i] denote the gap of the i-th
largest arm.

Arm groups. Let "r denote 2

�r. For an instance I of
Best-k-Arm and positive integer r, we define the arm
groups as

Glarge

r = {A 2 I : µA � µ[k],�A 2 ("r+1, "r]}, and

Gsmall

r = {A 2 I : µA  µ[k+1],�A 2 ("r+1, "r]}.

In other words, Glarge

r and Gsmall

r contain the arms with
gaps in ("r+1, "r] among and outside the best k arms,
respectively.

Note that since we assume that the mean of each arm
is in [0, 1/2], the gap of every arm is at most 1/2.
Therefore by definition each arm is contained in one of
the arm groups.

We also use the following shorthand notations:

Glarge

�r =

1[

i=r

Glarge

i and Gsmall

�r =

1[

i=r

Gsmall

i .

1.1.2 Lower Bound

In order to state our instance-wise lower bound pre-
cisely, we need to elaborate what is an instance. By

Definition 1.1, a given instance is a set of arms, mean-
ing the particular input order of the arms should not
matter. Note that there indeed exists algorithms that
take advantage of the input order and may perform
better for some “lucky” input orders than the others.3
In order to prove a tighter lower bound, we need to
consider all possible input orders and take the aver-
age. From technical perspective, we use the following
definition of an instance.

Definition 1.4 (Instance). An instance is considered
as a random permutation of a sequence of arms. Con-
sequently, the sample complexity of an algorithm on
an instance should be considered as the average of the
number of samples over all permutations.

In fact, the random permutation is crucial to establish-
ing instance-wise lower bounds for Best-k-Arm (i.e.,
the minimum number of samples that every �-correct
algorithm for Best-k-Arm needs to take on an instance).
Without the random permutation, the algorithm might
use fewer samples on some “lucky" permutations than
on others, and it is impossible to prove a tight instance-
wise lower bound as ours. The use of random permuta-
tion to define instance-wise lower bounds is also used in
computational geometry [ABC09] and the Best-1-Arm
problem [CL15, CL16b].

We say that an instance of Best-k-Arm is Gaussian, if
all reward distributions are normal distributions with
unit variance.

Theorem 1.1. There exists a constant �0 > 0, such
that for any � < �0, every �-correct algorithm for Best-
k-Arm takes

⌦

�
H ln ��1

+H large

+Hsmall

�

samples in expectation on every Gaussian instance.
Here H =

Pn
i=1 �

�2
[i] ,

H large

=

1X

i=1

���Glarge

i

��� ·max

ji
"�2
j ln

��Gsmall

�j

�� , and

Hsmall

=

1X

i=1

��Gsmall

i

�� ·max

ji
"�2
j ln

���Glarge

�j

��� .

We notice that Simchowitz et al. [SJR16], indepen-
dently of our work, derived instance-wise lower bounds
for Best-k-Arm similar to Theorem 1.1, using a some-
what different method.

3
For example, a sorting algorithm can first check if the

input sequence a1, . . . , an is in increasing order in O(n)
time, and then run an O(n log n) time algorithm. This

algorithm is particularly fast for a particular input order.
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1.1.3 Upper Bound

Theorem 1.2. For all � > 0, there is a �-correct
algorithm for Best-k-Arm that takes

O
⇣
H ln ��1

+

eH +

eH large

+

eHsmall

⌘

samples in expectation on every instance. Here

eH =

nX

i=1

�

�2
[i] ln ln�

�1
[i] ,

eH large

=

1X

i=1

���Glarge

i

���
iX

j=1

"�2
j ln

��Gsmall

j

�� , and

eHsmall

=

1X

i=1

��Gsmall

i

��
iX

j=1

"�2
j ln

���Glarge

j

��� .

The following theorem relates the eH large and eHsmall

terms to H large and Hsmall in the lower bound.
Theorem 1.3. For every Best-k-Arm instance, the
following statements hold:

1. eH large

+

eHsmall

= O
��
H large

+Hsmall

�
ln lnn

�
.

2. eH large

+

eHsmall

= O (H ln k) .

Combining Theorems 1.1, 1.2 and 1.3(1), our algorithm
is instance-wise optimal within doubly-logarithmic fac-
tors (i.e., ln lnn, ln ln��1

[i] ). In other words, the sample
complexity of our algorithm on every single instance
nearly matches the minimum number of samples that
every �-correct algorithm has to take on that instance.

Theorem 1.2 and Theorem 1.3(2) also imply that our
algorithm strictly dominates the state-of-the-art al-
gorithm for Best-k-Arm obtained in [CGL16], which
achieves a sample complexity of

O

 
nX

i=1

�

�2
[i]

⇣
ln ��1

+ ln k + ln ln�

�1
[i]

⌘!

=O
⇣
H ln ��1

+H ln k +

eH
⌘

.

In particular, we give a specific example in Appendix A
in which the sample complexity achieved by Theorem
1.2 is significantly better than that obtained in [CGL16].
See Table 1 for more previous upper bounds on the
sample complexity of Best-k-Arm.

1.2 Related Work

Best-1-Arm. In the Best-1-Arm problem, the algo-
rithm is required to identify the arm with the largest

Table 1: Upper Bounds of Best-k-Arm
Source Sample Complexity

[GGL12] O
�
H ln ��1

+H lnH
�

[KTAS12] O
�
H ln ��1

+H lnH
�

[CLK+14] O
�
H ln ��1

+H lnH
�

[CGL16] O
⇣
H ln ��1

+

eH +H ln k
⌘

This paper O
⇣
H ln ��1

+

eH +

eH large

+

eHsmall

⌘

mean. As a special case of Best-k-Arm, the prob-
lem has a history dating back to 1954 [Bec54]. The
problem continues to attract significant attention over
the past decade [AB10, EDMM06, MT04, JMNB14,
KKS13, CL15, CL16a, GK16, CLQ16].

Combinatorial pure exploration. The combina-
torial pure exploration problem, which further gener-
alizes the cardinality constraint in Best-k-Arm (i.e.,
to choose exactly k arms) to combinatorial con-
straints (e.g., matroid constraints), was also stud-
ied [CLK+14, CGL16, GLG+16].

PAC learning. In the PAC learning setting, the
algorithm is required to find an approximate solution to
the pure exploration problem. The sample complexity
of Best-1-Arm and Best-k-Arm in PAC setting has
been extensively studied. A tight (worst case) bound of
⇥(n"�2

ln ��1
) was obtained for the PAC version of the

Best-1-Arm problem in [EDMM02, EDMM06, MT04].
The worst case sample complexity of Best-k-Arm in the
PAC setting has also been well-studied [KS10, KTAS12,
ZCL14, CLTL15].

2 PRELIMINARIES

Kullback-Leibler divergence. Let KL(P,Q) denote
the Kullback-Leibler divergence from distribution Q
to P . The following well-known fact (e.g., a special
case of [Duc07]) states the Kullback-Leibler divergence
between two normal distributions with unit variance.
Fact 2.1. Let N (µ,�2

) denote the normal distribution
with mean µ and variance �2. It holds that

KL(N (µ1, 1),N (µ2, 1)) =
(µ1 � µ2)

2

2

.

Binary relative entropy. Let

d(x, y) = x ln(x/y) + (1� x) ln[(1� x)/(1� y)]

be the binary relative entropy function. The mono-
tonicity of d(·, ·) is useful to our following analysis.
Fact 2.2. For 0  y  y0  x0  x  1, d(x, y) �
d(x0, y0).



Nearly Instance Optimal Sample Complexity Bounds for Top-k Arm Selection

Probability and expectation. PrA,I and EA,I de-
note the probability and expectation when algorithm
A runs on instance I. These notations are useful since
we frequently consider the execution of different algo-
rithms on various instances in our proof of the lower
bound.

Change of Distribution. The following “Change of
Distribution” lemma, developed in [KCG15], is a useful
tool to quantify the behavior of an algorithm when the
instance is modified.
Lemma 2.1 (Change of Distribution). Suppose algo-
rithm A runs on n arms. I = (A1, A2, . . . , An) and
I 0

= (A0
1, A

0
2, . . . , A

0
n) are two sequences of arms. ⌧i

denotes the number of samples taken on Ai. For any
event E in F�, where � is an almost-surely finite stop-
ping time with respect to the filtration {Ft}t�0, it holds
that

nX

i=1

EA,I [⌧i]KL(Ai, A
0
i) � d

✓
Pr

A,I
[E ], Pr

A,I0
[E ]
◆

.

3 LOWER BOUND

Throughout our proof of the lower bound, we assume
that the reward distributions of all arms are Gaussian
distributions with unit variance. Moreover, we assume
that the number of arms is sufficiently large. This
assumption is used only once in the proof of Lemma
3.3. Note that when there is only a constant number
of arms, our lower bound ⌦(H large

+Hsmall

) is implied
by the ⌦(H ln ��1

) term.

3.1 Instance Embedding

The following simple lemma is useful in lower bounding
the expected number of samples taken from an arm in
the top-k set, by restricting to a Best-1-Arm instance
embedded in the original Best-k-Arm instance. We
postpone its proof to Appendix C.
Lemma 3.1 (Instance Embedding). Let I be a Best-
k-Arm instance. Let A be an arm among the top k
arms, and Iemb be a Best-1-Arm instance consisting of
A and a subset of arms in I outside the top k arms.
If some algorithm A solves I with probability 1 � �
while taking less than N samples on A in expectation,
there exists another algorithm Aemb that solves Iemb

with probability 1� � while taking less than N samples
on A in expectation.

3.2 Proof of Theorem 1.1

We show a lower bound on the number of samples
required by each arm separately, and then the lower
bound stated in Theorem 1.1 follows from a direct
summation. Formally, we have the following lemma.

Lemma 3.2. Let I be an instance of Best-k-Arm.
There exist universal constants � and c such that for
all 1  j  i, any �-correct algorithm for Best-k-
Arm takes at least c"�2

j ln

��Gsmall

�j

�� samples on every
arm A 2 Glarge

i . The same holds if we swap Glarge and
Gsmall.

Before proving Lemma 3.2, we show that Theorem 1.1
follows from Lemma 3.2 directly.

Proof of Theorem 1.1. Since the ⌦(H ln ��1
) lower

bound has been established in Theorem 2 of [CLK+14],
it remains to show that the sample complexity is lower
bounded by both ⌦(H large

) and ⌦(Hsmall

). Let A be
a �-correct algorithm for Best-k-Arm. According to
Lemma 3.2, A draws at least c ·maxji "

�2
j ln

��Gsmall

�j

��

samples from each arm in Glarge

i . Therefore A draws at
least

1X

i=1

���Glarge

i

��� · c ·max

ji
"�2
j ln

��Gsmall

�j

��
= ⌦(H large

)

samples in total from the arms in Glarge. The ⌦(Hsmall

)

lower bound is analogous.

3.3 Reduction to Best-1-Arm

In order to prove Lemma 3.2, we construct a Best-1-
Arm instance consisting of one arm in Glarge

i and all
arms in Gsmall

�j . By Instance Embedding (Lemma 3.1),
to lower bound the number of samples taken on each
arm in Glarge

i , it suffices to prove that every algorithm
for Best-1-Arm takes sufficiently many samples on the
best arm. Formally, we would like to show the following
key technical lemma.
Lemma 3.3. Let I be an instance of Best-1-Arm con-
sisting of one arm with mean µ and n arms with means
on [µ��, µ). There exist universal constants � and c
(independent of n and �) such that for any algorithm
A that correctly solves I with probability 1 � �, the
expected number of samples drawn from the optimal
arm is at least c��2

lnn.

The proof of Lemma 3.3 is somewhat technical and
we present it in the next subsection. Now we prove
Lemma 3.2 from Lemma 3.3, by reducing a Best-1-
Arm instance to an instance of Best-k-Arm using the
Instance Embedding technique. Intuitively, if an algo-
rithm A solves Best-k-Arm without taking sufficient
number of samples from a specific arm, we may extract
an instance of Best-1-Arm and derive a contradiction
to Lemma 3.3.

Proof of Lemma 3.2. Let �0 and c0 be the constants
in Lemma 3.3. We claim that Lemma 3.2 holds for
constants � = �0 and c = c0/4.
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Suppose for a contradiction that when �-correct algo-
rithm A runs on Best-k-Arm instance I, the number
of samples drawn from arm A 2 Glarge

i is less than
c"�2

j ln

��Gsmall

�j

�� for some j  i.

We construct a Best-1-Arm instance Inew consisting
of A and all arms in Gsmall

�j . By Instance Embedding
(Lemma 3.1), there exists algorithm Anew that solves
Inew with probability 1��, while the number of samples
drawn from arm A is upper bounded by c"�2

j ln

��Gsmall

�j

��
in expectation.

However, Lemma 3.3 implies that Anew must take more
than

c0�
�2

lnn � 4c("i + "j)
�2

ln

��Gsmall

�j

�� � c"�2
j ln

��Gsmall

�j

��

samples on the optimal arm, which leads to a contra-
diction. The case that Glarge and Gsmall are swapped is
analogous.

3.4 Reduction to Symmetric Best-1-Arm

In order to prove Lemma 3.3, we first study a special
case that the instance consists of one optimal arm
and several sub-optimal arms with equal means (we
call it a Symmetric Best-1-Arm instance). For the
symmetric Best-1-Arm instances, we have the following
lower bound on the best arm.
Lemma 3.4. Let I be an instance of Best-1-Arm with
one arm with mean µ and n arms with mean µ ��.
There exist universal constants � and c (independent
of n and �) such that for any algorithm A that cor-
rectly solves I with probability 1� �, the expected num-
ber of samples drawn from the optimal arm is at least
c��2

lnn.

Proof of Lemma 3.4. We claim that the lemma holds
for constants � = 0.5 and c = 1.

Recall that N (µ,�2
) denotes the normal distribution

with mean µ and variance �2. Let I be the instance
consisting of arm A⇤ with mean µ and n arms with
mean µ��, and Inew be the instance obtained from I
by replacing the reward distribution of A⇤ with N (µ�
�, 1). ⌧ denotes the number of samples drawn from
A⇤.

Let E be the event that A identifies arm A⇤ as the best
arm. Recall that PrA,I and EA,I denote the probability
and expectation when algorithm A runs on instance I
respectively. Since A solves I correctly with probability
at least 1 � �, we have PrA,I [E ] � 1 � �. On the
other hand, Inew consists of n+ 1 completely identical
arms. By Definition 1.4, A takes a random permutation
of Inew as its input. Therefore the probability that
A returns each arm is the same, and it follows that
PrA,Inew

[E ]  1/(n+ 1).

By Change of Distribution (Lemma 2.1), we have

1

2

EA,I [⌧ ]�
2
=EA,I [⌧ ] ·KL(N (µ, 1),N (µ��, 1))

�d
✓
Pr

A,I
[E ], Pr

A,Inew

[E ]
◆

�d(1� �, 1/(n+ 1))

�(1� �) lnn.

Therefore we conclude that

EA,I [⌧ ] � 2(1� �)��2
lnn � c��2

lnn.

Given Lemma 3.4, Lemma 3.3 may appear to be quite
intuitive, as the symmetric instance Isym seems to be
the worst case. However, a rigorous proof of Lemma 3.3
is still quite nontrivial and is in fact the most technical
part of the lower bound proof. The proof consists of
several steps which transform a general instance I of
Best-1-Arm to a symmetric instance Isym.

Suppose that some algorithm A violates Lemma 3.3
on a Best-1-Arm instance I. We divide the interval
[µ��, µ) into n0.9 short segments, then at least one
segment contains n0.1 arms. We construct a smaller
and denser instance Idense consisting of the optimal arm
and n0.1 arms from the same segment. By Instance
Embedding, there exists algorithm Anew that solves
Idense while taking few samples on the optimal arm.
Note that the reduction crucially relies on the fact that
since our lower bound is logarithmic in n, the bound
merely shrinks by a constant factor after the number
of arms decreases to n0.1.

Finally, we transform Idense into a symmetric Best-1-
Arm instance Isym consisting of the optimal arm in
Idense along with n0.1 copies of one of the sub-optimal
arms. We also define an algorithm Asym that solves
Isym with few samples drawn from the optimal arm,
thus contradicting Lemma 3.4. The full proof of Lemma
3.3 is postponed to Appendix C.

4 UPPER BOUND

4.1 Building Blocks

We start by introducing three subroutines that are
useful for building our algorithm for Best-k-Arm.

PAC algorithm for Best-k-Arm. PAC-Best-k is
a PAC algorithm for Best-k-Arm adapted from the
PAC-SamplePrune algorithm in [CGL16]. PAC-Best-k

is guaranteed to partition the given arm set into two
sets S large and Ssmall, such that S large approximates the
best k arms with high probability.
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Lemma 4.1. PAC-Best-k(S, k, ", �) takes

O
�
|S|"�2

⇥
ln ��1

+ lnmin(k, |S|� k)
⇤�

samples and returns a partition (S large, Ssmall

) of S with
|S large| = k and |Ssmall| = |S|� k. Let µ[k] and µ[k+1]

denote the the k-th and the (k + 1)-th largest means in
S. With probability 1� �, it holds that

µA � µ[k] � " for all A 2 S large, (1)

µA  µ[k+1] + " for all A 2 Ssmall. (2)

Lemma 4.1 is proved in Appendix D. We say that a
specific call to PAC-Best-k returns correctly if both (1)
and (2) hold.

PAC algorithms for Best-1-Arm. EstMean-Large

and EstMean-Small approximate the largest and the
smallest mean among several arms respectively. Both
algorithms can be easily implemented by calling
PAC-Best-k with k = 1, and then sampling the best
arm identified by PAC-Best-k.
Lemma 4.2. Both EstMean-Large(S, ", �) and
EstMean-Small(S, ", �) take O(|S|"�2

ln ��1
) samples

and output a real number. Each of the following
inequalities holds with probability 1� �:

����EstMean-Large(S, ", �)�max

A2S
µA

����  " (3)

����EstMean-Small(S, ", �)�min

A2S
µA

����  " (4)

Lemma 4.2 is proved in Appendix D. We say that a spe-
cific call to EstMean-Large (or EstMean-Small) returns
correctly if inequality (3) (or (4)) holds.

Elimination procedures. Finally, Elim-Large and
Elim-Small are two elimination procedures. Roughly
speaking, Elim-Large guarantees that after the elimina-
tion, the fraction of arms with means above the larger
threshold ✓large is bounded by a constant. Meanwhile, a
fixed arm with mean below the smaller threshold ✓small

are unlikely to be eliminated. Analogously, Elim-Small

removes arms with means below ✓small, and preserves
arms above ✓large. The properties of Elim-Large and
Elim-Small are formally stated below.
Lemma 4.3. Both Elim-Large(S, ✓small, ✓large, �) and
Elim-Small(S, ✓small, ✓large, �) take O(|S|"�2

ln ��1
) sam-

ples and return a set T ✓ S. For Elim-Large and a fixed
arm A⇤ 2 S with µA⇤  ✓small, it holds with probability
1� � that A⇤ 2 T and

��{A 2 T : µA � ✓large}
��  |T |/10. (5)

Similarly, for Elim-Small and fixed A⇤ 2 S with µA⇤ �
✓large, it holds with probability 1� � that A⇤ 2 T and

��{A 2 T : µA  ✓small}
��  |T |/10. (6)

Lemma 4.3 is proved in Appendix D. We say that a
call to Elim-Large (or Elim-Small) returns correctly if
inequality (5) (or (6)) holds.

4.2 Algorithm

Our algorithm for Best-k-Arm, Bilateral-Elimination, is
formally described below. Bilateral-Elimination takes
a parameter k, an instance I of Best-k-Arm and a
confidence level � as input, and returns the best k arms
in I.

Algorithm 1: Bilateral-Elimination

Input: Parameter k, instance I, and confidence �.
Output: The best k arms in I.

1 S1  I; T1  ;;
2 for r = 1 to 1 do
3 klarge

r  k � |Tr|; ksmall

r  |Sr|� klarge

r ;
4 if klarge

r = 0 then return Tr;
5 if ksmall

r = 0 then return Tr [ Sr;
6 �r  �/(20r2);
7 (S large

r , Ssmall

r ) PAC-Best-k(Sr, klarge

r , "r/8, �r);
8 ✓large

r  EstMean-Large(Ssmall

r , "r/8, �r);
9 ✓small

r  EstMean-Small(S large

r , "r/8, �r);
10 �0r  �/min(klarge

r , ksmall

r );
11 Sr+1  

Elim-Large(S large

r , ✓large

r + "r/8, ✓large

r + "r/4, �0r) [
Elim-Small(Ssmall

r , ✓small

r � "r/4, ✓small

r � "r/8, �0r);
12 Tr+1  Tr [

�
S large

r \ Sr+1

�
;

Throughout the algorithm, Bilateral-Elimination main-
tains two sets of arms Sr and Tr for each round r. Sr

contains the arms that are still under consideration at
the beginning of round r, while Tr denotes the set of
arms that have been included in the answer. We say
that an arm is removed (or eliminated) at round r, if it
is in Sr \Sr+1. Note that we may remove an arm either
because its mean is so small that it cannot be among
the best k arms, or its mean is large enough so that
we decide to include it in the answer. This justifies the
name of our algorithm, Bilateral-Elimination.

In each round r, Bilateral-Elimination performs the fol-
lowing four steps.

Step 1: Initialization. Bilateral-Elimination first cal-
culates klarge

r and ksmall

r , which indicate that it needs
to identify the klarge

r largest arms (or equivalently, the
ksmall

r smallest arms) in Sr. In the base case that either
klarge

r = 0 or ksmall

= 0, it directly returns the answer.

Step 2: Find a PAC solution. Then Bilateral-

Elimination calls PAC-Best-k to partition Sr into S large

r

and Ssmall

r with size klarge

r and ksmall

r respectively, such
that S large

r denotes an approximation of the best klarge

r
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arms in Sr.

Step 3: Estimate Thresholds. After that, Bilateral-

Elimination calls EstMean-Large and EstMean-Small to
compute two thresholds ✓large

r and ✓small

r . ✓large

r is an
estimation of the largest mean in Ssmall

r , which is ap-
proximately the mean of the (klarge

r + 1)-th largest arm
in Sr. Analogously, ✓small

r approximates the klarge

r -th
largest mean in Sr.

It might seem weird at first glance that ✓large

r and ✓small

r

approximates the (klarge

r + 1)-th mean and the klarge

r -
th mean respectively, implying that ✓large

r is expected
to be smaller than ✓small

r . In fact, the superscript
“ large” in ✓large

r indicates that it is the threshold used
for eliminating arms in S large

r .

Step 4: Elimination. Finally, Bilateral-Elimination

calls Elim-Large and Elim-Small to eliminate the arms
in S large

r that are significantly larger than ✓large

r , and the
arms in Ssmall

r that are much smaller than ✓small

r . The
arms removed from S large

r are included into the answer.

Caveats. Note that our algorithm uses a different
confidence level, �0r, in Step 4. Intuitively, at most
min(klarge

r , ksmall

r ) arms among the best klarge

r arms in
Sr are misclassified as “small arms” by PAC-Best-k.
Therefore during the elimination process, it is crucial
that such misclassified arms are not mistakenly elim-
inated. As a result, we need a union bound on these
arms, which contributes to the min(klarge

r , ksmall

r ) factor
in our confidence level.

4.3 Observations

We start our analysis of Bilateral-Elimination with a few
simple yet useful observations.

Good events. We define Egood

r as the event that in
round r, all the five calls to PAC-Best-k, EstMean, and
Elim return correctly. These events are crucial to our
following analysis, as they guarantee that the partition
(S large

r , Ssmall

r ) and thresholds ✓large

r and ✓small

r are suf-
ficiently accurate, and additionally, Elim eliminates a
sufficiently large fraction of arms. The following obser-
vation, due to a simple union bound, lower bounds the
probability of each good event.
Observation 4.1. Pr[Egood

r ] � 1� 5�r.

Valid executions. We say that an execution of
Bilateral-Elimination is valid at round r, if and only
if the following two conditions are satisfied:

• For each 1  i < r, event Egood

i happens. (i.e., all
calls to subroutines return correctly in previous
rounds.)

• The union of Tr and the best klarge

r arms in Sr

is the correct answer of the Best-k-Arm instance.

In other words, no arms have been incorrectly
eliminated in previous rounds.

Moreover, an execution is valid if it is valid at every
round before it terminates. We define Evalid to be the
event that an execution of Bilateral-Elimination is valid.

Thresholds. In the following, we bound the thresh-
olds ✓large

r and ✓small

r returned by subroutine EstMean

conditioning on Egood

r . Let µlarge

r and µsmall

r denote the
means of the klarge

r -th and the (klarge

r + 1)-th largest
arms in Sr. We show that ✓large

r and ✓small

r are O("r)-
approximations of µsmall

r and µlarge

r conditioning on the
good event Egood

r . The proof of the following observa-
tion is postponed to Appendix D.
Observation 4.2. Conditioning on Egood

r ,

✓large

r 2
⇥
µsmall

r � "r/8, µ
small

r + "r/4
⇤
,

✓small

r 2
⇥
µlarge

r � "r/4, µ
large

r + "r/8
⇤
.

Number of remaining arms. Finally, we show that
conditioning on the validity of an execution, the number
of remaining arms at the beginning of each round can
be upper bounded in terms of |Glarge

�r | and |Gsmall

�r |. The
following observation, proved in Appendix D, is crucial
to analyzing the sample complexity of our algorithm.
Observation 4.3. Conditioning on Evalid, it holds that
klarge

r  2|Glarge

�r | and ksmall

r  2|Gsmall

�r |.

4.4 Correctness

Recall that Evalid denotes the event that the execution
of Bilateral-Elimination is valid. The following lemma,
proved in Appendix D, shows that event Evalid happens
with high probability.
Lemma 4.4. Pr

⇥
Evalid

⇤
� 1� �.

We show that Bilateral-Elimination always returns the
correct answer conditioning on Evalid, thus proving that
Bilateral-Elimination is �-correct.
Lemma 4.5. Bilateral-Elimination returns the correct
answer with probability at least 1� �.

Proof of Lemma 4.5. It suffices to show that condition-
ing on Evalid, the algorithm always returns the correct
answer. In fact, if Bilateral-Elimination terminates at
round r, it either returns Tr at Line 4 or returns Tr[Sr

at Line 5. According to the second property guaran-
teed by the validity at round r, the answer returned
by Bilateral-Elimination must be correct.

It remains to show that Bilateral-Elimination does not
run forever. Recall that �[k] = µ[k] � µ[k+1] is the
gap between the k-th and the (k + 1)-th largest means
in the original instance I. We choose a sufficiently
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large r⇤ that satisfies "r⇤ < �[k]. By definition, we
have Glarge

�r⇤ = Gsmall

�r⇤ = ;. Then Observation 4.3 implies
that klarge

r⇤ = ksmall

r⇤ = 0, if the algorithm does not
terminate before round r⇤. Therefore the algorithm
either terminates at or before round r⇤. This completes
the proof.

4.5 Sample Complexity

We prove the following Lemma 4.6, which bounds the
sample complexity of Bilateral-Elimination conditioning
on Evalid. Then Theorem 1.2 directly follows from
Lemma 4.5 and Lemma 4.6. The proof of Theorem
1.3 is postponed to the appendix.
Lemma 4.6. Conditioning on event Evalid, Bilateral-

Elimination takes O(H ln ��1
+

eH large

+

eHsmall

+

eH)

samples.

Proof of Lemma 4.6. We consider the r-th round of the
algorithm. Recall that klarge

r + ksmall

r = |Sr|. According
to Lemmas 4.1 through 4.3, PAC-Best-k takes

O
�
|Sr|"�2

r

⇥
ln ��1

r + lnmin

�
klarge

r , ksmall

r

�⇤�
(7)

samples. EstMean-Large and EstMean-Small take

O
�
(klarge

r + ksmall

r )"�2
r ln ��1

r

�
= O

�
|Sr|"�2

r ln ��1
r

�

samples in total, while Elim-Large and Elim-Small take

O
⇣
klarge

r "�2
r ln �0r

�1
⌘
+O

⇣
ksmall

r "�2
r ln �0r

�1
⌘

=O
�
|Sr|"�2

r

⇥
ln ��1

r + lnmin

�
klarge

r , ksmall

r

�⇤�

samples conditioning on Evalid. Clearly the sample
complexity in round r is dominated by (7).

Simplify and split the sum: By Observation
4.3, conditioning on event Evalid, klarge

r and ksmall

r are
bounded by 2

���Glarge

�r

��� and 2

��Gsmall

�r

�� respectively. Thus

it suffices to bound the sum of H(1)
r + H(2,large)

r +

H(2,small)
r , where

H(1)
r =

⇣
|Glarge

�r |+ |Gsmall

�r |
⌘
"�2
r (ln ��1

+ ln r),

H(2,large)
r = "�2

r |Glarge

�r | ln |Gsmall

�r |,

H(2,small)
r = "�2

r |Gsmall

�r | ln |Glarge

�r |.

In fact, since

ln ��1
r = ln ��1

+ ln(20r2) = O
�
ln ��1

+ ln r
�
,

the |Sr|"�2
r ln ��1

r term in (7) is bounded by H(1)
r .

Moreover, the |Sr|"�2
r lnmin(klarge

r , ksmall

r ) term is
smaller than or equal to

"�2
r

�
klarge

r ln ksmall

r + ksmall

r ln klarge

r

�
,

and is thus upper bounded by H(2,large)
r +H(2,small)

r .

In Appendix D, we show with a straightforward calcu-
lation that

1X

r=1

H(1)
r = O

⇣
H ln ��1

+

eH
⌘

,

1X

r=1

H(2,large)
r = O

⇣
eH large

⌘
, and

1X

r=1

H(2,small)
r = O

⇣
eHsmall

⌘
.

Then the lemma directly follows.

Finally, we prove our main result on the upper bound
side.

Proof of Theorem 1.2. Let

T = H ln ��1
+

eH +

eH large

+

eHsmall.

Lemma 4.5 and Lemma 4.6 together imply that con-
ditioning on an event that happens with probability
1� �, Bilateral-Elimination returns the correct answer
and takes O(T ) samples. Using the parallel simula-
tion trick in [CL15, Theorem H.5], we can obtain an
algorithm which uses O(T ) samples in expectation (un-
conditionally), thus proving Theorem 1.2.
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