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Abstract

We study online optimization of smoothed
piecewise constant functions over the domain
[0,1). This is motivated by the problem of
adaptively picking parameters of learning al-
gorithms as in the recently introduced frame-
work by /Gupta and Roughgarden| (2016]).
Majority of the machine learning literature
has focused on Lipschitz-continuous func-
tions or functions with bounded gradients]T]
This is with good reason—any learning al-
gorithm suffers linear regret even against
piecewise constant functions that are cho-
sen adversarially, arguably the simplest of
non-Lipschitz continuous functions.  The
smoothed setting we consider is inspired by
the seminal work of |Spielman and Teng
(2004) and the recent work of |Gupta and
Roughgarden| (2016))—in this setting, the se-
quence of functions may be chosen by an ad-
versary, however, with some uncertainty in
the location of discontinuities. We give al-
gorithms that achieve sublinear regret in the
full information and bandit settings.

1 Introduction

In this paper, we study the problem of online optimiza-
tion of piecewise constant functions. This is motivated
by the question of selecting optimal parameters for
learning algorithms. Recently, Gupta and Roughgar-
den| (2016) introduced a probably approximately cor-

!These functions are typically called smooth in the ma-
chine learning literature. We avoid this usage here, since
we use smoothed and smoothness in the sense of |Spielman
and Teng (2004).
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rect (PAC) framework for choosing parameters of al-
gorithms. Imagine a situation, when a website wishes
to provide personalized results to a user. To respond
to a user’s query, the service provider may need to
implement a learning (or some other type of) algo-
rithm which involves choosing parameters. The choice
of parameters affects the quality of solution and ide-
ally we would like to design a mechanism where the
service provider learns from past instances, or at least
employs a strategy that has low regret with respect
to the single optimal solution in hindsight. In many
learning problems, the goal is to find parameters by
optimizing a continuous function (of the parameters);
however, ever so often one encounters problems with
discrete solutions, such as k-means or independent set,
which result in objective functions that have disconti-
nuities.

Concretely, we consider the problem of online opti-
mization of piecewise constant functions over the do-
main [0,1). At each round the learning algorithm plays
a point x; € [0,1), receives payoff fi(x;), where f; is
a piecewise constant function. The aim of the learn-
ing algorithm is to achieve mo-regret with respect to
the best single point z* € [0,1) in hindsightE] As is
standard, by no regret we mean, regret that grows sub-
linearly with 7', the number of rounds played. If we
make no assumptions about how the piecewise linear
functions f; are chosen then, it is easy to construct
instances where the algorithm would suffer regret that
is linear in T'.

We take the view that real-world problems, while not
entirely stochastic are rarely truly adversarialﬁ In this
work, we consider a smoothed adversary; rather than
defining a piecewise constant function f over [0,1) by
defining the intervals [0,a1),...[ag—1,1) exactly, the
adversary may only define distributions to pick the

2Unfortunately, the confusing terminology no-regret is

common in the literature and is used to denote that the
regret grows sublinearly in 7', the number of rounds for
which the online algorithm is run.

3There may be settings where assumption of a mali-
cious adversary is justified, e.g., when spammers, google
bombers, etc. are actively seeking to compromise systems.
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points a;, with the added constraint that the density
of these distributions is upper bounded by some pa-
rameter o. It is very natural to assume that there
is uncertainty in defining real-world problems, either
due to noise or imperfect information; indeed this was
also the motivation of the original work by |Spielman
and Teng| (2004)) where they showed that the smoothed
time complexity of (a variant of) the simplex algorithm
is polynomial. This uncertainty in defining the inter-
vals (or the points of discontinuity) is precisely what
we exploit in designing no-regret algorithms.

Machine learning research has primarily focused on
optimizing functions with bounded (first few) deriva-
tives. For example, there exists substantial literature
on online optimization of Lipschitz continuous func-
tions, both in the full information and the bandit set-
ting (see e.g., (Kleinberg) [2004} Kleinberg et al.,|2008}
Bubeck et al.l[2009)). However, any sort of combinato-
rial structure typically introduces discontinuities in the
objective function. Thus, most of the existing methods
for online optimization are no longer applicable.

The smoothness formulation we use in the paper re-
stricts an adversary from being able to define too nar-
row an interval in which optimal solutions may lie. In
particular, if we consider the refinement of all the in-
tervals we get over T rounds of the (smoothed) adver-
sary choosing piecewise constant functions, the small-
est interval is still polynomially small in T (and the
bound o on the density and the number of pieces k).
This ensures that the problem is not that of finding
a needle in a haystack, but a rather hefty iron rod.
Under these conditions, in principle, one could sim-
ply draw a large enough (but still polynomial in T)
number of points uniformly in the interval [0, 1), and
consider the problem as the standard experts setting.
The bandit setting is a bit more delicate, but still
could be handled using ideas similar to the Exp4 al-
gorithm (Auer et al., 2002)). The difficulty is compu-
tational—we would rather design algorithms that at
time step ¢, run in time polynomial in log(¢) and other
problem-dependent factors, than in time polynomial
in t. With carefully designed algorithms and data-
structures, we can indeed achieve this goal. We sum-
marize our contributions below, describe related work,
and then discuss how our work fits in a broader con-
text. (All missing details and complete proofs are pro-
vided in the long version (Cohen-Addad and Kanade,
2016).)

1.1 Our Results

We show that against a smoothed adversary, one
can design algorithms that achieve the almost opti-
mal regret of O(v/T) (the O(-) notation hides poly-
logarithmic factors) in the expert setting, i.e., when

we observe the entire function f; at the end of the
round. Our algorithm is based on a continuous ver-
sion of the exponentially-weighted forecaster. A naive
implementation of the algorithm we propose would re-
sult in a running time that grows polynomially in ¢.
We design a data structure based on interval trees or
red-black trees (see Section for the full descrip-
tion) that allows us to implement our algorithm ex-
tremely efficiently—the running time of our algorithm
is O(klog(kt)) at any given timestep, where k is the
number of pieces of the piecewise constant function at
each round. We remark that at least logarithmic de-
pendence in t is required in the sense that even keeping
track of time requires time at least log(t).

We also consider the bandit setting: here the algorithm
does not observe the entire function f;, but only the
value fi(x;) for the point chosen. In order to estimate
the function f; elsewhere, we optimistically assume
that it is constant in some (suitably chosen) small in-
terval around x;. Of course, sometimes the point x
chosen by the algorithm may lie very close to a point
of discontinuity of the function f;. However, this can-
not happen very often because of the smoothness con-
straint on the adversary. With a somewhat delicate
analysis we obtain a regret bound of O(poly(k, o)T?/3)
in the bandit setting. As in the full information (or ex-
pert) setting, our algorithm is very efficient, i.e., poly-
nomial in log(¢) and other parameters such as k and
.

In Section [5] we consider a few different problems
in this setting—knapsack, weighted independent set,
and weighted k-means. The first two of these prob-
lems were already considered by |Gupta and Rough-
garden| (2016), however they do not provide true re-
gret bounds in their paper, i.e., bounds where the
average regret approaches 0 as T — ooE| The com-
binatorial nature of these problems means that as we
vary the algorithm parameters, there may be discon-
tinuities in the objective function. Owur preliminary
experiments indicate that the behavior does indeed
correspond to that predicted by theoretical bounds,
albeit with slightly better rates of convergence (possi-
bly since we generate instances randomly).

1.2 Related Work

The work most closely related to ours is that of |Gupta
and Roughgarden| (2016). In the context of online
learning, our work improves upon theirs in provid-
ing bounds for online learning of algorithm parame-
ters that are true regret bounds; in their paper they

“We remark that their algorithm will be a “true” no-
regret algorithm with suitably chosen parameters, but in
that regime the running time is polynomial in 7.
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only provide e-regret bounds, in that one can guar-
antee that for any given e the algorithm will achieve
average regret of e. The algorithms we present in this
paper are more natural and achieve a significant im-
provement in running time. We also give results in
the bandit setting, which is in many ways more appro-
priate for the applications under consideration. The
approach considered in their paper does not yield a
bandit algorithm. With some effort, one may be able
to adapt ideas from the Exp.4 algorithm of[Auer et al.
(2002) to achieve a non-trivial regret bound in the ban-
dit case; however, the resulting algorithm would be
computationally expensive.

There is a substantial body of work that seeks to
use learning mechanisms to choose the parameters
or hyperparameters of algorithms. [Snoek et al.| (2014,
2012) suggest using Bayesian optimization techniques
to choose hyperparameters effectively. Yet other pa-
pers (see e.g., (Finkl |1998; [Huang et al., |2010; Kot-
thoff et al.|2012; Hutter et al.,|2015;|Jamieson and Tal-
walkar, [2016])) suggest various techniques to choose pa-
rameters for algorithms (not necessarily in the context
of learning). However, except for the work of |Gupta
and Roughgarden| (2016) and |Jamieson and Talwalkar
(2016)), most work is not theoretical in nature.

1.3 Discussion

The notion of smoothness considered in this paper is
inspired by the seminal work of [Spielman and Teng
(2004). In theoretical computer science, this notion
allows us to look beyond worst-case analysis with-
out making extremely strong assumptions required for
average-case analyses. This approach seems partic-
ularly relevant to machine learning, a field in which
worst-case results or those using strong distributional
assumptions typically have little bearing in practice.
The smoothness considered here is on the instances
themselves rather than on the functions being op-
timized as is common in machine learning. Com-
binatorial problems arise naturally in several online
and offline learning settings; in these cases the no-
tion of smoothness a la Spielman and Teng may be
more appropriate than the traditional notion of Lips-
chitz continuity. It would be interesting to explore if
this notion of smoothness is applicable in other set-
tings, e.g., sleeping combinatorial experts and bandit
settings—where it is known that stochastic instances
are often tractable, while adversarial ones are compu-
tationally hard (see e.g., (Kanade and Steinke) 2014;
Neu and Valko, 2014} Kale et al., [2016])).

A natural open question is whether our work could
be extended to more general functions with disconti-
nuities, such as piecewise linear or piecewise Lipschitz
functions. If computational cost were not a concern,

we believe this could be achieved (at least in the full-
information setting) by choosing a fine enough grid
of [0,1) as experts. However, whether efficient algo-
rithms such as ours for the case of piecewise constant
functions can be designed is an open question.

2 Setting

We consider the online optimization setting where the
decision space is [0,1). At each time step ¢, the
learning algorithm must pick a point z; € [0,1) to
play. A smoothed oblivious adversary picks a function
ft :]0,1) — [0,1] that is piecewise constant as follows:

1. Adversary defines distributions Dy 1,..., D¢ p—1
where the support of each D;; is contained in
(0,1) and the density functions are bounded by
.

2. Adversary defines values vy 1, ..., v % € [0,1]

3. Nature draws a,; ~ D, ; independently for i =
1, ‘e ,k‘ — 1. Let 0 = At 0,0t 15+, 0t k—1,0t,k = 1
be in non-decreasing order, where a¢1,...,a¢ k-1
are just aj 1,...,a} 4 sortedﬂ

4. The piecewise constant function f; is defined as
fi(z) = vy, for @ € [ayi—1,a4,).

For a known time horizon T, let z1,...,2x7 be the
choices made by the learning algorithmﬁ Then the
regret is defined as:

T

Regret(Alg) = max
gret(Alg) RUEpS

T
felw) =Y filw)
t=1

We consider the full information (or experts) setting,
where at the end of each round the full function f; is
revealed to the learning algorithm. We also look at the
bandit setting, where the learning algorithm only sees
the value fi(x). All results in this paper are stated
in terms of expected regret; we believe that bounds
that hold with high probability can be obtained using
standard techniques.

All the results in this paper can easily be generalized
to the setting where the decision space is [0, 1]¢ and the
adversary chooses functions that are constant on sub-
hypercubes. In the full-information setting, the regret
guarantees will be worse by a factor that is polynomial
in d and the running time worse by a factor exponential
in d. In the bandit setting, both the regret and the

SUnder the smoothness assumptions, the ai; will be
distinct with probability 1.

5We assume that the time horizon T is known, other-
wise, the standard doubling trick may be applied.



Online Optimization of Smoothed Piecewise Constant Functions

running time will be worse by a factor exponential in
d. For simplicity we only discuss the one dimensional
setting and defer the general case to the full version of
the paper.

We first state some useful observation that we will
use repeatedly in this paper. These are by no means
original and already appear in some form in the work
of |Gupta and Roughgarden| (2016)) for example.

Observation 2.1. Let x1,...,%, be independently
drawn from any distributions (possibly different) whose
density functions are bounded by o. Then the proba-
bility that there exist x; < x; such that x; — x; < € is
at most m?ce.

Proof. The proof is just an application of the union
bound over all (') pairs. O

Observation 2.2. Let0=zg < z1 < - - < Z,, = 1 be
any points in [0, 1] such that x;—x;—1 > € for alli. Let
Y1y .-, YN be drawn uniformly at random from [0,1).
Then if N > L(In(e™') +In(671)), the probability that
there exists © such that there is no y; in the interval
(zi—1,x;) is al most 4.

Proof. This is basically a balls into bins argument with
at most ¢! bins and the probability of throwing a ball
into each bin is at least e. O

3 Full Information Setting

First in Section we explain why it is necessary to
look at smoothed adversaries; without this, one can
easily construct a relatively benign instance that suf-
fers a regret of (T"). Then, we give an exponentially-
weighted forecaster that achieves expected regret that
is O(y/log(T)T'). We show that in fact this can be im-
plemented very efficiently; at time ¢ the running time
of our algorithm is polynomial in & and log(t¢), where
k is the number of pieces of the functions.

3.1 Lower Bound for Worst-Case Adversaries

Here, we show that unless one adds a smoothness
assumption the worst-case regret bound is linear in
T. This is unsurprising and in a way already follows
from Theorem 4.2 in the extended version of the paper
by |Gupta and Roughgarden| (2016). However, in the
more general setting considered in this paper, the bad
instance is simpler to describe and we provide it for
completeness.

We describe a simple adversary that chooses functions
that are piecewise constant with at most 3 pieces and
each piece being of length at least 1/5; but for allow-
ing the adversary to choose the points of discontinuity

arbitrarily, the freedom given to the adversary is lim-
ited. For round 1 the adversary chooses f; such that
fi(x) =1forzx € [2/5,3/5) and 0 otherwise. On round
2 the adversary chooses fo to be 1 on either the in-
terval [3/10,1/2) or [1/2,7/10) uniformly at random.
Thus, any learning algorithm can get expected payoff
at most 1/2, but either the entire interval [2/5,1/2) or
[1/2,3/5) would have got payoff of 1 on both rounds.
In general if after ¢ rounds, if there is an interval [l;, u;)
such that fs(z) = 1for all x € [l¢, u) for all s < ¢, then
if my = (I + ut)/2, the adversary picks fiy1 to take
value on either [m; — 1/5,my) or [my,my +1/5). Tt is
clear that after T' rounds the expected payoff of any
learning algorithm is at most 7'/2, however there ex-
ists a point z* € [0,1) that would receive a payoff of
T.

3.2 No-Regret Algorithm for Smoothed
Adversaries

Algorithm is a fairly standard exponentially-
weighted forecaster that is used to make predictions
in the non-stochastic setting. We describe the effi-
cient implementation using modified interval trees in
Section [3:3] If one were merely concerned with achiev-
ing a running time that was polynomial in 7" at each
round, there is a rather easy solution. Using the fact
that the distributions used to define points of disconti-
nuity have a bound on the density, we can argue that
even after a full refinement of intervals that appear
in the functions f1,..., fr, with high probability the
smallest interval is of length at least 1/(kT)3. Then
by picking (kT)3 log(kT) points uniformly at random,
we get a set of points that would hit every interval
in the refinement. Thus, we could pick these points
to begin with and apply a standard expert algorithm,
such as Hedge (Freund and Schapire, [1995). Since
the regret depends only logarithmically on the num-
ber of experts, we would still achieve a regret bound
of O(y/log(kT)T). In a way, this is what |Gupta and
Roughgarden| (2016) do to obtain their “low-regret”
bound. However, this solution is inelegant and suf-
fers significantly in terms of computational cost. Our
algorithm runs in time polynomial in k and log(t) at
time ¢; note that dependence on log(¢) is required even
just to keep track of time! The proof of the following
theorem is fairly standard and appears in the long ver-
sion (Cohen-Addad and Kanadel 2016).

Theorem 3.1. The expected regret of Algorithm[1] is
bounded by 2+/(e — 2)log(k2T30)T + 1. The expecta-
tion is with respect to the random choices of the algo-
rithm as well as nature.

Remark 3.2. Rather than considering a smoothed ad-
versary, one may consider a slightly different notion of
regret. For example, one can consider the best “small”
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Algorithm 1 No-regret algorithm

input: g
set I (xz) = 0 to be the constant 0 function over [0, 1)

for t=1,2,...,7 do

exp(nFi(x))

1. Define p;(x) = JL exp(nF.(z))dz

2. Pick x; ~ p;
3. Observe function f; and receive payoff f;(x;)

4. Set Fyy1 = Fr + f:

node N

Leaf

L
[ e e e— a— O@E@ME@;@aaE@a@memaEma@E
Interval associated
Interval associated with leaf L

with node N

Interval associated to the root : [0,1]
Figure 1: Example of an interval tree over the interval
0, 1].

enough interval, but the comparison point is chosen to
be the worst point in that interval (in other words some
kind of a minimaz criterion). Obviously, choosing the
best point is impossible as discussed in the example in
Section [3.4. Our algorithm and proof technique work
essentially unchanged in this setting. The only change
is that in Step we will use this interval instead.
The regret bound depends on the inverse of the length
of the interval, but only logarithmically.

Running Time. A naive implementation of Algo-
rithm [1| would result in running time that is polyno-
mial in ¢ at time ¢ (apart from also being polynomial
in k and o). This is because the number of intervals in
the refinement increase linearly in T. However, by us-
ing an augmented interval tree data structure to store
the past functions and using messages to perform up-
dates lazily, we can guarantee that the running time
of the algorithm is polynomial in log(¢). The sampling
required in Step [2] of the algorithm can also be im-
plemented efficiently by storing auxiliary information
about the weights of intervals. The next subsection
explains this data structure at a high level (full details
appear in the long version (Cohen-Addad and Kanade,
2016))).

3.3 An Efficient Data-Structure

In this section, we describe a data structure that en-
sures that the selection and update steps (steps

Lazy messages

oo om@mEaE™D
G

Interval |

Figure 2: Example of a call to the update proce-
dure. The interval to update is the interval I. Mes-
sages are left along the path connecting the two ex-
tremities (smallest and highest intervals) of I. In
green are the nodes that get their messages updated
(m(N) = 1 for those nodes). In blue are the nodes
that get a new message corresponding to exp(nf;(I))
(m(N) < m(N) - exp(nfi(I)) for those nodes). This
update should be propagated to all the descendants
of the green nodes (the red nodes), but will only be
done lazily when required. The lazy approach and the
structure of the tree allows to bound the number of
green and blue vertices by O(logT). Indeed, observe
that not all the nodes of the subtrees corresponding to
interval I are updated at this step.

of Algorithm [I| have a running time of O(klog(tk)) at
time t.

Here, we describe the high level idea. In order to have
an efficient implementation, we exploit the fact that
the function is piecewise constant with k pieces. We
build upon a data structure called interval trees (see
(Cormen et all [2009) for more details), that for any
partition P of the interval [0, 1) into n parts, maintains
a binary tree with n leaves that has the following prop-
erties:

(i) The leaves are the parts of P.

(ii) Any level of the tree corresponds to a coarsening
of the partition. More precisely, for any internal node
N, there is an interval associated with N which corre-
sponds to the interval that is the union of the intervals
associated with the children of N (see Figure [1f).

With such a data-structure, it is possible to refine the
partition (split existing intervals), and establish mem-
bership in time O(logn), where n is the number of
leaves in the tree. In our setting, n will be O(tk) after
t steps.

Here, we extend this data structure to support ad-
ditional operations. Note that F; is piecewise con-
stant, in particular F; is constant over I(£), the inter-
val defined at leaf ¢; by abuse of notation let F;(I(¢))
denote this constant value. For each leaf ¢ of the
tree we will maintain a variable w(¢) whose value is
|[1(¢)| exp(nF:(I(£))), where I(¢) is the length of the
interval corresponding to leaf £. Then, for each inter-
nal node N of the tree, whose associated interval is
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I = [a,b), we will maintain

w(N) = Z

£ leaf of the subtree
rooted at N

b
= / exp(nFy(z))dx.

[1(6)] exp(nFy(1(£)))

This allows us to encode the cumulative distribu-
tion function of p; defined at Step [I] of Algorithm
Thus, starting from the root and moving toward the
leaves, it is possible to draw from this distribution in
time O(log(kt)) (see Fig|3|and the description of the
Draw procedure in the long version (Cohen-Addad and
Kanadel, [2016])).

Then, at Step[d]of Algorithm[I] we know that the func-
tion f; is piecewise constant with k pieces. For each
such piece I, we need to set Fy1(I') = Fy(I') + fi(I)
for each interval I’ C I on which F} is constant. We
proceed in two steps. First, we ensure that I is the
disjoint union of intervals corresponding to subtrees
by splitting at most two existing intervals, those that
contain the endpoints of I. This operation can be im-
plemented in interval trees of size n in time O(log(n)).
Then, we need to update w(N) for each node N of
the subtrees. Since f; is constant on the interval I, we
want to set w(N) < w(N) - exp(nfi(I)) for each such
node N. However the number of such intervals may
be Q(tk) at time ¢ and doing so naively would result
in a time complexity of Q(tk). Here we are aiming
at time complexity O(klog(kT')). To achieve this, we
make the updates in a lazy fashion. For any interval
I on which f; is constant, we consider the leaves [ and
h of the tree that contain the extremities of I (recall
that membership can be computed in time O(logn)
for a tree of size n). We then update the values of the
variables w for all the nodes along the path joining [ to
h. For each child of these nodes, we leave a message,
that contains the value of the update for the subtree
rooted at this child. The message at a node will be ap-
plied to the node and propagated to its children only
when it is needed in the future (see Figure . Thanks
to the structure of the tree and since f; is piecewise
constant, we show that no information is lost through
this process.

4 Bandit Setting

In the bandit setting, we only observe the value f(x:).
Thus, we need to estimate f; elsewhere. This is made
difficult by the fact that f; may have discontinuities.
We construct an estimator ft which takes an appro-
priately re-scaled value on a small interval around a
and is 0 elsewhere. If this chosen interval is too large,
then it is quite likely that a point of discontinuity of
ft lies in this interval. If it is small and no point of

Draw procedure with x = 0.35 w =10
and % =3.5

oo ess T HCHOCOC@ME@@aEa@EmOoaE
w=1

Figure 3: Example of call to the draw procedure. As-
suming the value of x is 0.35, the procedure moves
along the tree based on the values of the w(N) to find
the interval corresponding to p:(z). The vertices in
green are the vertices whose pending messages are up-
dated by the procedure (i.e.: the value of m(N) for
each node N is 1 after the call).

discontinuity of f; lies in the interval, then ft is an
unbiased estimator of f;; however, choosing too small
an interval may make ft(xt) very large. Tuning the
length of the interval and a careful analysis gives us a
regret bound of O(T%/3).

Algorithm 2 Bandit Algorithm

input: 7, p, v all positive and satisfying 1/p € N,
y< 5, <

set Z = ([(i — 1), ip))1/" be a family of intervals.

set wy (z) = 1 to be the constant 1 function over [0, 1)

for t=1,2,...,T do

wy ()
fol wy(z)dx +7

—_

. Define pi(z) = (1 —7)
2. Pick xy ~ p;

3. Let I; be the interval of Z that contains x;.

4. Observe function fi(z). Receive payoff fi(z:).

5. Set fy(z) = 1) for all z € I, and fi(z) =0 for

T ope(le)

all 2 € [0,1)\ I,
Here for interval I, p;(I) = Pryp, (z € I).

6. Set wey 1 (x) = wy(x)-exp(nfi(z)) for all z € [0,1).

Theorem 4.1. The expected regret of Algorithm [ is
bounded by

1
29T + 2%T + " In (u_l) + kouT

The expectation is taken with respect to the random
choices made by the algorithm as well as those by the
adversary/nature. For suitable choices of i1, v, and, 1,
this gives a regret bound of O(poly(k, o, log(T))T?/3).

Proof Idea: The complete proof is a bit delicate. We
give a very high level sketch here. Note that at any



Vincent Cohen-Addad, Varun Kanade

time ¢, ft is going to be non-zero on at most an interval
of length p, elsewhere it will be 0.

This interval is determined by the choice of z,. If
the interval [(i — 1)u, iu) containing x; is entirely con-
tained in one of the pieces on which f; is constant,
then E,,[fi(z)] = fi(x), giving us an unbiased esti-
mator. However, in order to guarantee this with very
high probability would require a very small value of
1, which could make ft(:z:t) very large. We show that
it is possible to tune the value of p so that these two
competing requirements can be traded off to get a rea-
sonable bound on the regret.

Running Time. As in the full-information setting,
the running time of our algorithm can be made poly-
nomial in log(¢) by using the augmented interval trees
defined in Section [3.3

5 Applications and Experiments

This section illustrates our framework with concrete
examples. We describe three problems for which
greedy approaches (also called priority algorithms
by [Borodin et al.| (2003])) are often used in practice.
We provide experimental results that highlight the ef-
ficiency of our approach.

We focus on three well-know optimization problems
for which standard greedy methods works well in prac-
tice: the weighted k-means, knapsack and maximum
independent set problems. |Gupta and Roughgarden
(2016) show that the objective as a function of the
parameters of the greedy heuristics on an instance of
size n is a piecewise constant function with a number
of pieces that is polynomial in the size of the input.
Therefore we propose to apply our approach to the
following problems.

The Knapsack problem: The input is a set of n pairs
value and size, (v;, s;), and a capacity C. The objective
is to output a subset S C [n] such that > . _os; < C

. . JeSs
and ZjeS v; is maximum.

A family of greedy heuristics for Knapsack: Given a
parameter p the greedy heuristic performs the follow-
ing computations. It first orders the elements by non-
decreasing values of v; /(s;)?. Then the heuristic greed-
ily (subject to feasibility) adds objects to the solution
in this order. Note that the cases p =0 and p =1 are
classical heuristics for knapsack.

The Maximum Weighted Independent Set problem
(MWIS): The input is a graph G = (V, E), and weights
w; for each of the n vertices. The objective is to output
a subset S C [n] such that for any ¢,5 € S, (i,j) ¢ E
and ). g wj; is maximum.

A family of greedy heuristics for MWIS: Denote by
N (%) the set of neighbors of ¢ in G. Given a parameter
p, we consider the adaptive greedy heuristic. It adds
all the degree 0 vertices to the solution and adds the
vertex maximizing w;/|N(4)|°, then removes vertex i
and all the vertices of N (i) from the graph, updates
N(j) for the remaining vertices j, and repeats until
there are no more vertices in the graph.

The Knapsack and MWIS problems were studied
by |Gupta and Roughgarden! (2016)). Here, we also con-
sider the weighted k-means problem.

The weighted k-means problem : The input is a set
of n points, a metric d : [n] x [n] — R4, and a set
of weights {w1,...,w,}. The objective is to output a
subset S C [n] of size k such that >, minjesw; -
d(i,7)? is minimized.

A family of greedy heuristics for k-means: Given a
parameter p and a metric d, we consider the adaptive
greedy heuristic, which can be seen as a generaliza-
tion of Gonzalez’ algorithm (Gonzalezl, [1985)) for the
k-center problem (when p = o).

Algorithm 3 Adaptive Greedy for weighted k-means.

input: k, p,d:nxn— Ry
set S« 0
for t=1,2,...,k do

1. Add to S the point p that maximizes

max;es wy,/d(p,i)'/*.

Return S

Figures [dalldb] and [I| show that the per-round regret of
Algorithm [T] decreases quickly and that the algorithm
has significantly better performances on random in-
stances than in the worst-case scenario. In all the
cases, the variance introduced by the internal random-
ness of the No-Regret Algorithm is very small.
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