
Appendix

A Interchangeability Principle and Dual Continuity

Lemma 1 Let ξ be a random variable on Ξ and assume for any ξ ∈ Ξ, function g(·, ξ) : R→ (−∞,+∞) is a proper and
upper semicontinuous concave function. Then

Eξ[max
u∈R

g(u, ξ)] = max
u(·)∈G(Ξ)

Eξ[g(u(ξ), ξ)].

where G(Ξ) = {u(·) : Ξ→ R} is the entire space of functions defined on support Ξ.

Proof First of all, by assumption of concavity and upper-semicontinuity, we know that for any ξ ∈ Ξ, there exists a
maximizer for maxu g(u, ξ); let us denote as u∗ξ . We can therefore define a function u∗(·) : X → R such that u∗(ξ) = u∗ξ ,
and thus, u∗(·) ∈ G(Ξ). Hence,

Eξ[max
u∈R

g(u, ξ)] = Eξ[g(u∗(ξ), ξ)] 6 max
u(·)∈G(X)

Eξ[g(u(ξ), ξ)].

On the other hand, clearly, for any u(·) ∈ G(Ξ) and ξ ∈ Ξ, gξ(u(ξ), ξ) 6 maxu∈R g(u, ξ). Hence, Eξ[g(u(ξ), ξ)] 6
Eξ[maxu∈R g(u, ξ)], for any u(·) ∈ G(Ξ). This further implies that

max
u(·)∈G(Ξ)

Eξ[g(u(ξ), ξ)] 6 Eξ[max
u∈R

g(u, ξ)].

Combining these two facts leads to the statement in the lemma.

Proposition 1 Suppose both f(z, x) and p(z|x) are continuous in x for any z,

(1) (Discrete case) If the loss function `y(v) is continuously differentiable in v for any y ∈ Y , then u∗(x, y) is unique and
continuous in x for any y ∈ Y;

(2) (Continuous case) If the loss function `y(v) is continuously differentiable in (v, y), then u∗(x, y) is unique and con-
tinuous in (x, y) on X × Y .

Proof The continuity properties of optimal dual function follows directly from the fact that u∗(x, y) ∈ ∂`y(Ez|x[f(z, x)]).
In both cases, for any y ∈ Y , `y(·) is differentiable. Hence u∗(x, y) = `′y(

∫
f(z, x)p(z|x)dz) is unique. Since f(z, x)

and p(z|x) is continuous in x for any z, then Ez|x[f(z, x)] is continuous in x. Since for any y ∈ Y , `′y(·) is continuous,
the composition u∗(x, y) is therefore continuous in x as well. Moreover, if `′y(·) is also continuous in y ∈ Y , then the
composition u∗(x, y) is continuous in (x, y).

Indeed, suppose `y(·) is uniformly L-Lipschitz differentiable for any y ∈ Y , f(z, x) is uniformlyMf -Lipschitz continuous
in x for any z, p(z|x) is Mp-Lipschitz continuous in x. Then

|u∗(x1, y)− u∗(x2, y)| =
∣∣∣∣`′y (∫ f(z, x1)p(z|x1)dz

)
− `′y

(∫
f(z, x2)p(z|x2)dz

) ∣∣∣∣
6 L

∫
|f(z, x1)p(z|x1)− f(z, x2)p(z|x2)|dz

6 L

∫
|f(z, x1)− f(z, x2)|p(z|x1)dz + L

∫
|f(z, x2)| · |p(z|x1)− p(z|x2)|dz

6 LMf |x1 − x2|+ LMp|x1 − x2| sup
x

∫
|f(z, x)|dz

If for any f(z, x) is Lebesgue integrable and
∫
|f(z, x)|dz is uniformly bounded, then u∗(x, y) is also Lipschitz-continuous

for any y ∈ Y . Moreover, if in addition, `y(v) is also Lipschitz differentiable in (v, y), then u∗(x, y) is also Lipschitz
continuous on X × Y .

B Preliminaries: Stochastic Approximation for Saddle Point Problems

Consider the stochastic saddle point (min-max) problem

min
x∈X

max
y∈Y

Φ(x, y) = E[F (x, y, ξ)]
11

Learning from Conditional Distributions via Dual Embeddings

where the expected value function f(x, y) is convex in x and concave in y, and domains X,Y are convex closed. Let
z = [x, y] and G(z, ξ) = [∇Fx(x, y, ξ);−∇Fy(x, y, ξ)] be the stochastic gradient for any input point z and sample ξ. Let
‖ · ‖ be a norm defined on the embedding Hilbert space of Z = X × Y , and D(z, z′) := w(z)−w(z′)−∇w(z′)′(z − z′)
be a Bregman distance on Z defined by a 1-strongly convex (w.r.t. the norm ‖ · ‖) and continuously differentiable function
w(z). For instance, when w(z) = 1

2‖z‖
2, the Bregman distance becomes D(z, z′) = 1

2‖z − z
′‖2.

Mirror descent SA. The mirror descent stochastic approximation (Nemirovski et al., 2009) works as follows:

zi = argmin
z∈Z

{D(z, zi) + γiG(zi, ξi)}, i = 1, . . . , t.

The quality of an approximate solution z̄ = (x̄, ȳ) is defined by the error

εgap(x̄, ȳ) := max
y∈Y

Φ(x̄, y)− Φ∗ + Φ∗ −min
x∈X

Φ(x, ȳ) = max
y∈Y

Φ(x̄, y)−min
x∈X

Φ(x, ȳ),

where Φ∗ denotes the optimal value. Let z̄t :=
∑t
i=1 γizi∑t
i=1 γi

, the convergence properties of this weighted averaging solution
is as follows.

Lemma 2 (Nemirovski et al., 2009) Suppose E[‖G(zi, ξi)‖2∗] 6M2,∀i, we have

E[εgap(x̄t, ȳt)] 6
2 maxz∈Z D(z, z1) + 5

2M
2
∑t
i=1 γ

2
i∑t

i=1 γi
.

In particular, when γi = γ√
t
,∀i = 1, . . . , t, we have

E[εgap(x̄t, ȳt)] 6 (2 max
z∈Z

D(z, z1)/γ +
5

2
M2γ)

1√
t
.

Moreover, suppose D2 = maxz∈Z D(z, z1) and M2 are known, by setting γ = 2D√
5M

, we further have

E[εgap(x̄t, ȳt)] 6
2
√

5DM√
t

.

To summarize, the mirror descent stochastic approximation achieves an O(1/
√
t) convergence rate (also known to be

unimprovable (Nemirovski et al., 2009)). Our Embedding-SGD algorithm 1 builds upon on this framework to solve the
saddle point approximation problem (10).

C Convergence Analysis for Embedding-SGD

C.1 Decomposition of generalization error

We first observe that

Proposition 2 If f ∈ F is uniformly bounded by C and `∗y(v) is uniformly K-Lipschitz continuous in v for any y, then
Φ(f, u) is (C +K)-Lipschitz continuous on G(Ξ) with respect to ‖ · ‖∞, i.e.

|Φ(f, u1)− Φ(f, u2)| 6 (C +K)‖u1 − u2‖∞,∀u1, u2 ∈ G(Ξ).

Let f∗ be the optimal solution to our objective. Denote L̂(f) = maxu∈Hδ φ(f, u). Invoking the Lipschitz continuity of Φ,
L(f)− L̂(f) 6 (K + C)E(δ),∀f . Therefore, we can decompose the error as

L(f̄t)− L(f∗) =L(f̄t)− L̂(f̄t) + L̂(f̄t)− L̂(f∗) + L̂(f∗)− L(f∗)

6 εgap(f̄t, ūt) + 2(K + C)E(δ). (17)

C.2 Optimization error

Proof of Theorem 1 Our proof builds on results of stochastic approximation discussed in the previous section. Let M1

and M2 be such that for any f ∈ {fi}ti=1 and u ∈ {ui}ti=1,

Ex,y,z[‖∇f Φ̂x,y,z(f, u)‖2F] 6M2
1 ,

Ex,y,z[‖∇uΦ̂x,y,z(f, u)‖2H] 6M2
2 .

Bo Dai, Niao He, Yunpeng Pan, Byron Boots, Le Song

Then from Lemma 2, we have

E[εgap(f̄t, ȳt)] 6
2(D2

F +D2
H) + 5

2 (M2
1 +M2

2)
∑t
i=1 γ

2
i∑t

i=1 γi
(18)

where D2
F = supf∈F

1
2‖f1 − f‖22 and D2

H = supu∈Hδ
1
2‖u1 − u‖2H 6 2δ. It remains to find upper bounds for M1 and

M2. Note that since ‖k(w,w′)‖∞ 6 κ for any w and w′,

E[‖∇uΦ̂x,y,z(f, u)‖2H] 6 κE[‖f(z, x)−∇`∗y(u(x))‖2] 6 2κ(MF + c`).

Since u(x) = 〈u(·), k(x, ·)〉H, from Young’s inequality, we have |u(x)| 6 1
2‖u‖

2
H + 1

2‖k(x, ·)‖2H 6 1
2 (δ + κ), for any

w ∈ X .
Ex,y,z[‖∇f Φ̂x,y,z(f, u)‖2F] = E[‖ψ(z, x)‖2Fu(x)2] 6 1

4 (δ + κ)2CF .

Plugging in M2
1 = 2κ(MF + c`) and M2

2 = 1
4 (δ + κ)2CF to (18) and setting γt = γ/

√
t, we arrive at (12).

C.3 Generalization Error

Proof of Corollary 1 Combining with the approximation error and optimization error into (17), we arrive at

E[L(f̄t)− L(f∗)] 6 [(2D2
F + 4δ)/γ + γC(δ, κ)]

1√
t

+ 2(K + C)E(δ)

Minimizing over γ > 0, we get the “theoretical” optimal choice for the γ as γ∗ =
√

2D2
F+4δ

C(δ,κ) . Ignoring the dependence on

the other parameters except δ, γ∗ = O(1/
√
δ) and this further leads to

E[L(f̄t)− L(f∗)] 6 O
(
δ3/2

√
t

+ E(δ)

)
. (19)

D Gradient-TD2 As Special Case of Embedding-SGD

Follow the notation in section 4, with the parameterization that V π(s) = θTψ(s) and u(s) = ηTψ(s), where ψ(s) =
[ψi(z)]

d
i=1 ∈ Rd, θ, η ∈ Rd, the optimization becomes

min
θ

max
η

Φ̂(θ, η) := EsEs′,a|s
[
∆θ(s, a, s

′)ψ(s)>η
]
− 1

2
Es[η>ψ(s)ψ>(s)η], (20)

where ∆θ(s, a, s
′) =

(
R(s) + γθ>ψ(s′)− θ>ψ(s)

)
. For arbitrary θ, we have the closed form of η(θ)∗ which achieves

the maximum of Φ̂(θ, η). Specifically, we first take derivative of Φ̂(θ, η) w.r.t. η,

∇ηΦ̂(θ, η) = Es,a,s′ [∆θ(s, a, s
′)ψ(s)]− Es

[
ψ(s)ψ(s)>η

]
, (21)

and make the derivative equal to zero,

η(θ)∗ = Es
[
ψ(s)ψ(s)>

]−1 Es,a,s′ [∆θ(s, a, s
′)ψ(s)] . (22)

Plug the η(θ)∗ into Φ̂(θ, η), we achieve the optimization

min
θ

Es,a,s′
[
∆θ(s, a, s

′)ψ(s)>
]
Es
[
ψ(s)ψ(s)>

]−1 Es,a,s′ [∆θ(s, a, s
′)ψ(s)] , (23)

which is exactly the objective of gradient-TD2 (Sutton et al., 2009; Liu et al., 2015). Plug the parametrization into the
proposed embedding-SGD, we will achieve the update rules in i-th iteration proposed in gradient-TD2 for θ and η as

ηi+1 = ηi + γi[∆θ(s, a, s
′)− ui(s)]ψ(s),

θi+1 = θi − γiui(s)(γψ(s′)− ψ(s)).

Therefore, from this perspective, gradient-TD2 is simply a special case of the proposed Embedding-SGD applied to policy
evalution with particular parametrization.

E Dual Embedding with Arbitrary Funtion Approximator

In the main text, we only focus on using different RKHSs as the primal and dual function spaces. As we introduce in
section 1, the proposed algorithm is versatile and can be conducted with arbitrary function space for the primal or dual

Learning from Conditional Distributions via Dual Embeddings

functions. In this section, we demonstrate applying the algorithm to random feature represented functions (Rahimi and
Recht, 2008) and neural networks. For simplicity, we specify the algorithms with either kernel, random feature representa-
tion or neural networks for both primal and dual functions. It should be emphasized that in fact the parametrization choice
of the dual function is independent to the form of the primal function. Therefore, the algorithm can also be conducted in
hybrid setting where the primal function uses one form of function approximator, while the dual function use another form
of function approximator.

Instead of solving (10), in this section, we consider the alternative reformulation by penalizing the norm of the dual
function, which has been widely used as an alternative to the constrained problem in machine learning literatures, and is
proven to be more robust often times in practice,

min
f∈F

max
u∈H

Φ(f, u) +
λ1

2
‖f‖2F −

λ2

2
‖u‖2H (24)

It is well-known that there is a one-to-one relation between δF , δ and λ1, λ2, respectively, such that the optimal solutions
to (10) and (24) are the same. The objective can also be regarded as a smoothed approximation to the original problem
of our interest, see (Nesterov, 2005). Problem (24) can be solved efficiently via our Algorithm 1 by simply revoking the
projection operators.

E.1 Dual Random Feature Embeddings

In this section, we specify the proposed algorithm leveraging random feature to approximate kernel function. For arbitrary
positive definite kernel, k(x, x), there exists a measure P on X , such that k(x, x′) =

∫
φ̂w(x)φ̂w(x′)dP(w) (Devinatz,

1953; Hein and Bousquet, 2004), where random feature φ̂w(x) : X → R from L2(X ,P). Therefore, we can approximate
the function f ∈ H with Monte-Carlo approximation f̂ ∈ Ĥm = {

∑m
i=1 βiφ̂ωi(·)|‖β‖2 6 C} where {wi}mi=1 sam-

pled from P(ω) (Rahimi and Recht, 2009). With such approximation, we obtain the corresponding dual random feature
embeddings variants.

Denote the random feature for k̃(·, ·) and k(·, ·) as ψ̂w(·) and φ̂w(·) with respect to distribution P̃(ω) and P(ω), respec-
tively, we approximate the f(·) and u(·) by f̂(·) = θ>ψ̂(·) and û(·) = η>φ̂(·), where θ ∈ Rm×1, η ∈ Rp×1, ψ̂(·) =

[ψ̂w̃1
(·), ψ̂w̃2

(·), . . . , ψ̂w̃m(·)]> with {w̃i}mi=1 ∼ P̃(ω) and φ̂(·) = [φ̂w1
(·), φ̂w2

(·), . . . , φ̂wm(·)]> with {wi}pi=1 ∼ P(ω).
Then, we have the saddle point reformulation of (1),

min
θ

max
η

Φ̂(θ, η) := Ex,yEz|x
[
θ>ψ̂(z, x)φ̂(x, y)>η − l∗y(η>φ̂(x, y))

]
+
λ1

2
‖θ‖2 − λ2

2
‖η‖2. (25)

Apply the proposed algorithm to (25), we obtain the update rule in i-th iteration,

θi+1 = (1− γiλ1)θi − γiû(xi, yi)ψ̂(zi, xi),

ηi+1 = (1− γiλ1)ηi + γi
[
f̂i(zi, xi)−∇`∗yi(û(xi, yi))]φ̂(xi, yi).

We emphasize that with the random feature representation will introduce an extra approximation error term in the order of
O(1/

√
m). To balance the approximate error and the statistical generalization error, we must use m sufficiently large.

E.2 Extension to Embedding Doubly-SGD

To alleviate the approximation error introduced by random feature representation, we can further generalize the algorithmic
technique about doubly stochastic gradient (Dai et al., 2014) to the saddle point problem (24), which can be viewed as
setting m to be infinite conceptually, therefore, eliminate the approximation error due to random feature representation.
The embedding doubly-SGD is illustrated in Algorithm 2,

E.3 Dual Neural Networks Embeddings

To achieve better performance with fewer basis functions, we can also learn the basis functions ψ̂(·) and φ̂(·) jointly
with θ and η by back-propagation. Specifically, denote the parameters in ψ̂(·) = [ψ̂w̃1

(·), ψ̂w̃2
(·), . . . , ψ̂w̃m(·)]> and

φ̂(·) = [φ̂w1(·), φ̂w2(·), . . . , φ̂wm(·)]> explicitly as W̃ = [w̃i]
m
i=1 and W = [wi]

m
i=1, we also include W̃ and W into

optimization (25), which results

min
θ,W̃

max
η,W

Φ̂(θ, W̃ , η,W) := Ex,yEz|x
[
θ>ψ̂

W̃
(z, x)φ̂W (x, y)>η − l∗y

(
η>φ̂W (x, y)

)]
+
λ1

2
‖θ‖2 − λ2

2
‖η‖2. (26)

Bo Dai, Niao He, Yunpeng Pan, Byron Boots, Le Song

Algorithm 2 Embedding-Doubly SGD for (24)
Input: P(x, y), P(z|x), P(ω), {γi > 0}ti=1

1: for i = 1, . . . , t do
2: Sample xi, yi ∼ P(x, y).
3: Sample zi ∼ P(z|xi).
4: Sample ωi ∼ P(ω) with seed i
5: Sample ω̃i ∼ P̃(ω) with seed ĩ
6: Compute fi = Predict(zi, xi, {αj}ij=1)

7: Compute ui = Predict(xi, yi, {βj}ij=1)

8: αi+1 = γiui(xi, yi)ψ̂ω̃i(zi, xi).
9: βi+1 = γi[fi(zi, xi)−∇`∗yi(ui(xi, yi))]φ̂ωi(xi, yi).

10: for j = 1, . . . , i
αj = (1− γiλ1)αj , βj = (1− γiλ2)βj

11: end for

Algorithm 3 u = Predict(x, y, {βi}ti=1)

Require: P(ω), φ̂ω(x, y).

1: Set u = 0.
2: for i = 1, . . . , t do
3: Sample ωi ∼ P(ω) with seed i.
4: u = u+ βiφ̂ωi(x, y).
5: end for

Algorithm 4 f = Predict(z, x, {αi}ti=1)

Require: P̃(ω), ψ̂ω(z, x).

1: Set f = 0.
2: for i = 1, . . . , t do
3: Sample ω̃i ∼ P̃(ω) with seed ĩ.
4: f = f + αiψ̂ω̃i(z, , x).
5: end for

Apply the proposed algorithm to (26), we obtain the update rule for all the parameters, {θ, η, W̃ ,W}, in i-th iteration,

θi+1 = (1− γiλ1)θi − γiη>i φ̂Wi
(xi, yi)ψ̂W̃i

(zi, xi),

ηi+1 = (1− γiλ1)ηi + γi

[
θ>i ψ̂W̃i

(zi, xi)−∇`∗yi
(
η>i φ̂Wi

(xi, yi)
)]
φ̂Wi

(xi, yi),

W̃i+1 = W̃i − γiη>i φ̂Wi
(xi, yi)θ

>
i ∇W̃ ψ̂W̃ (zi, xi),

Wi+1 = Wi + γi

[
θ>i ψ̂W̃i

(zi, xi)−∇`∗yi
(
η>i φ̂Wi

(xi, yi)
)]
η>i ∇W φ̂W (xi, yi).

Here we only demonstrate the back-propagation algorithm applies to one-layer basis functions, in fact, it can be extended
to the deep basis functions, i.e., hierarchical composition functions, straight-forwardly if necessary. With such deep neural
networks as function approximator in our algorithm, we achieve the dual neural networks embeddings.

F Experimental Details

In all experiemnts, we conduct comparison on algorithms to optimize the objective with regularization on both primal and
dual functions. Since the target is evaluating the performance of algorithms on the same problem, we fix the weights of
the regularization term for the proposed algorithm and the competitors for fairness. The other paramters of models and
algorithms, e.g., step size, mini-batch size, kernel parameters and so on, are set according to different tasks.

F.1 Learning with Invariance

Noisy in measurements. We select the best η ∈ {0.1, 1, 10} and n0 ∈ {1, 10, 100}. We use Gaussian kernel for both
primal and dual function, whose bandwidth σ are selected from {0.05, 0.1, 0.15, 0.2}. We set the batch size to be 50. In
testing phase, the observation is noisyless.

QuantumMachine. We selected the stepsize parameters η ∈ {0.1, 0.5, 1} and n0 ∈ {100, 1000}. We adopted Gaussian
kernel whose bandwidth is selected by median trick with coeffcient in {0.1, 0.25, 0.5, 1}. The batch size is set to be 1000.
To illustrate the benefits of sample efficiency, we generated 10 virtual samples in training phase and 20 in testing phase.

F.2 Policy Evaluation

We evaluated all the algorithms in terms of mean square Bellman error on the testing states. On each state s, the mean
square Bellman error is estimated with 100 next states s′ samples. We set the number of the basis functions in GTD2 and
RG to be 28. To achieve the convergence property based the theorem (Nemirovski et al., 2009), we set stepsize to be be

η

n0+
√
t

in the proposed algorithm and GTD2, η
n0+t in Kernel MDP and RG.

Navigation. The batch size is set to be 20. {η, n0} ∈ {0.1, 1, 10}. We adopted Gaussian kernel and select the best primal
and dual kernel bandwidth in range {0.01, 0.05, 0.1, 0.15, 0.2}. The γ in MDP is set to be 0.9.

Learning from Conditional Distributions via Dual Embeddings

Cart-pole swing up. The batch size is set to be 20. The stepsize parameters are chosen in range {η, n0} ∈
{0.05, 0.2, 1, 10, 50, 100}. We adopted Gaussian kernel and the primal and dual kernel bandwidth are se lected by me-
dian trick with coeffcient in {0.5, 1, 5, 10}. The γ is set to be 0.96. The reward is R(s) = 1

2 (s2
1 + s2

2 + s2
3 + 5(s4 − π)2)

where the states s1, s2, s3, s4 are the cart position, cart velocity, pendulum velocity and pendulum angular position.

PUMA-560 manipulation. The batch size is set to be 20. Step-size parameters are chosen in range {η, n0} ∈
{0.05, 0.1, 5, 10, 100, 500}. We adopted Gaussian kernel and the primal and dual kernel bandwidth are selected by median
trick with coeffcient in {0.5, 1, 5, 10}. The γ is set to be 0.9. The reward is R(s) = 1

2 (
∑4
i=1(si− π

4)2 +
∑6
i=5(si+ π

4)2 +∑12
i=7 s

2
i) where s1, . . . , s6 and s7, . . . , s12 are joint angles and velocities, respectively.

