
Data Driven Resource Allocation for Distributed Learning

Travis Dick Mu Li Venkata Krishna Pillutla
Carnegie Mellon University Carnegie Mellon University University of Washington

Colin White Maria Florina Balcan Alex Smola
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

and AWS Deep Learning

Abstract

In distributed machine learning, data is dispatched
to multiple machines for processing. Motivated
by the fact that similar data points often belong
to the same or similar classes, and more gener-
ally, classification rules of high accuracy tend to
be “locally simple but globally complex” (Vapnik
and Bottou, 1993), we propose data dependent
dispatching that takes advantage of such structure.
We present an in-depth analysis of this model,
providing new algorithms with provable worst-
case guarantees, analysis proving existing scal-
able heuristics perform well in natural non worst-
case conditions, and techniques for extending a
dispatching rule from a small sample to the entire
distribution. We overcome novel technical chal-
lenges to satisfy important conditions for accurate
distributed learning, including fault tolerance and
balancedness. We empirically compare our ap-
proach with baselines based on random partition-
ing, balanced partition trees, and locality sensitive
hashing, showing that we achieve significantly
higher accuracy on both synthetic and real world
image and advertising datasets. We also demon-
strate that our technique strongly scales with the
available computing power.

1 INTRODUCTION
Motivation and Overview: Distributed computation is
playing a major role in modern large-scale machine learning
practice with a lot of work in this direction in the last few
years (Balcan et al., 2012b, 2013b, 2014; Li et al., 2014;
Zhang et al., 2013, 2012). This tends to take two high-level
forms. The first is when the data itself is collected in a dis-
tributed manner, whether from geographically-distributed

Proceedings of the 20th International Conference on Artificial In-
telligence and Statistics (AISTATS) 2017, Fort Lauderdale, Florida,
USA. JMLR: W&CP volume 54. Copyright 2017 by the author(s).

data
dispatch

train

worker 1 worker 2 worker n

Figure 1: Data is partitioned and dispatched into multiple
workers. Each worker then trains a local model using its
local data. There is no communication between workers
during training.

experiments, distributed sensors, distributed click data, etc.,
and the goal is to take advantage of all this data without
incurring the substantial overhead of first communicating it
all to some central location. The second high-level form is
where massive amounts of data are collected centrally, and
for space and efficiency reasons this data must be dispatched
to distributed machines in order to perform the processing
needed (Li et al., 2014; Zhang et al., 2012). It is this latter
form that we address here.

When data is dispatched to distributed machines, the sim-
plest approach and what past work (both theoretical and
empirical) has focused on is to perform the dispatching ran-
domly (Zhang et al., 2012, 2013). Random dispatching has
the advantage that dispatching is easy, and because each
machine receives data from the same distribution, it is rather
clean to analyze theoretically. However, since the distribu-
tions of the data on each machine are identical statistically,
such techniques could lead to sub-optimal results in practice
in terms of the accuracy of the resulting learning rule. Mo-
tivated by the fact that in practice, similar data points tend
to have the same or similar classification, and more gener-
ally, classification rules of high accuracy tend to be “locally
simple but globally complex” (Vapnik and Bottou, 1993),
we propose a new paradigm for performing data-dependent
dispatching that takes advantage of such structure by send-
ing similar datapoints to similar machines. For example, a

Data Driven Resource Allocation for Distributed Learning

globally accurate classification rule may be complicated,
but each machine can accurately classify its local region
with a simple classifier.

We introduce and analyze dispatching techniques that par-
tition a set of points such that similar examples end up on
the same machine/worker, while satisfying key constraints
present in a real world distributed system including bal-
ancedness and fault-tolerance. Such techniques can then be
used within a simple, but highly efficient distributed system
that first partitions a small initial segment of data into a
number of sets equal to the number of machines. Then each
machine locally and independently applies a learning algo-
rithm, with no communication between workers at training.
In other words, the learning is embarrassingly parallel. See
Figure 1 for a schematic representation. At the prediction
time, we use a super-fast sublinear algorithm for directing
new data points to the most appropriate machine.

Our Contributions: We propose a novel scheme for parti-
tioning data which leads to better accuracy in distributed
machine learning tasks, and we give a theoretical and experi-
mental analysis of this approach. We present new algorithms
with provable worst-case guarantees, analysis proving ex-
isting scalable heuristics perform well in natural non worst-
case conditions, techniques for extending a dispatching rule
from a small sample to the entire distribution, and an exper-
imental evaluation of our proposed algorithms and several
baselines on both synthetic and real-world image and adver-
tising data. We empirically show that our method strongly
scales and that we achieve significantly higher accuracy over
baselines based on random partitioning, balanced partition
trees, and locality-sensitive hashing.

In our framework, a central machine starts by clustering
a small sample of data into roughly equal-sized clusters,
where the number of clusters is equal to the number of
available machines. Next, we extend this clustering into an
efficient dispatch rule that can be applied to new points. This
dispatch rule is used to send the remaining training data to
the appropriate machines and to direct new points at pre-
diction time. In this way, similar datapoints wind up on the
same machine. Finally, each machine independently learns
a classifier using its own data (in an embarrassingly parallel
manner). To perform the initial clustering used for dispatch,
we use classic clustering objectives (k-means, k-median,
and k-center). However, we need to add novel constraints to
ensure that the clusters give a data partition that respects the
constraints of real distributed learning systems:

Balancedness: We need to ensure our dispatching procedure
balances the data across the different machines. If a machine
receives much more data than other machines, then it will
be the bottleneck of the algorithm. If any machine receives
very little data, then its processing power is wasted. Thus,
enforcing upper and lower bound constraints on the cluster
sizes leads to a faster, more efficient setup.

Fault-Tolerance: In order to ensure that our system is robust
to machine failures, we assign each point to multiple distinct
clusters. This way, even if a machine fails, the data on that
machine is still present on other machines. Moreover, this
has the added benefit that our algorithms behave well on
points near the boundaries of the clusters. We say a cluster-
ing algorithm satisfies p-replication if each point is assigned
to p distinct clusters.

Efficiency: To improve efficiency, we apply our clustering
algorithms to a small sample of data. Therefore, we need to
be able to extend the clustering to new examples from the
same distribution while maintaining a good objective value
and satisfying all constraints. It is important that the exten-
sion technique be efficient for both the initial partitioning
and when we dispatch examples at prediction time.

When designing clustering algorithms, adding balanced-
ness and fault tolerance makes the task significantly harder.
Prior work has considered upper bounds on the cluster sizes
(Li, 2014b; Byrka et al., 2015b; Li, 2014a; An et al., 2014;
Khuller and Sussmann, 1996; Cygan et al., 2012) 1 and
lower bounds (Aggarwal et al., 2006; Ahmadian and Swamy,
2016), but no prior work has shown provable guarantees
with upper and lower bounds on the cluster sizes simulta-
neously. While capacitated clustering objective functions
are nondecreasing as the number of clusters k increases,
with lower bounds on the cluster sizes, we show the objec-
tive function can oscillate arbitrarily with respect to k. This
makes the problem especially challenging from a combinato-
rial optimization perspective. Existing capacitated clustering
algorithms work by rounding a fractional linear program so-
lution, but the erratic nature of the objective function makes
this task more difficult for us.

The balance constraints also introduce challenges when ex-
tending a clustering-based partitioning from a small sample
to unseen data. The simple rule that assigns a new point to
the cluster with the nearest center provides the best objective
value on new data, but it can severely violate the balance
constraints. Therefore, any balanced extension rule must
take into account the distribution of data.

We overcome these challenges, presenting a variety of com-
plementary results, which together provide strong justifica-
tion for our distributed learning framework. We summarize
each of our main results below.

• Balanced fault-tolerant clustering: We provide the first
algorithmic results with provable guarantees that simultane-
ously handle upper and lower bounds on the cluster sizes,
as well as fault tolerance. Clustering is NP-hard and adding
more constraints makes it significantly harder, as we will see
in Section 2. For this reason, we first devise approximation

1 Note that enforcing only upper (resp. lower) bounds implies a
weak lower (resp. upper) bound on the cluster sizes, but this is only
nontrivial if the upper (resp. lower) bounds are extremely tight or
the number of clusters is a small constant.

Dick, Li, Pillutla, White, Balcan, Smola

algorithms with strong worst-case guarantees, demonstrat-
ing this problem is tractable. Specifically, in Section 2 we
provide an algorithm that produces a fault-tolerant cluster-
ing that approximately optimizes k-means, k-median, and
k-center objectives while also roughly satisfying the given
upper and lower bound constraints. At a high level, our
algorithm proceeds by first solving a linear program, fol-
lowed by a careful balance and replication aware rounding
scheme. We use a novel min-cost flow technique to finish
off rounding the LP solution into a valid clustering solution.

• k-means++ under stability: In addition to these algo-
rithms which give provably strong guarantees in the worst-
case, we give complementary results which show that for
‘typical’ problem instances, it is possible to achieve better
guarantees with simpler, more scalable algorithms. Specif-
ically, in Section 3 we show the popular k-means++ algo-
rithm outputs a balanced clustering with stronger theoretical
guarantees, provided the data satisfies a natural notion of
stability. We make nontrivial extensions of previous work to
ensure the upper and lower size constraints on the clusters
are satisfied. No previous work gives provable guarantees
while satisfying both upper and lower bounds on the cluster
sizes, and Sections 2 and 3 may be of independent interest
beyond distributed learning.

• Efficient clustering by subsampling: For datasets large
enough to require distributed processing, clustering the en-
tire dataset is prohibitively expensive. A natural way to avoid
this cost is to only cluster a small subset of the data and
then efficiently extend this clustering to the entire dataset.
The simple extension that assigns each new point to the p
clusters with the closest centers does not satisfy the balance
constraints. Instead, in Section 4 we show that assigning a
new example to the same p clusters as its nearest neighbor
in the clustered subsample approximately preserves both
the objective value and all constraints. We also use this tech-
nique at prediction time to send new examples to the most
appropriate machines.

•Experimental results: We conduct experiments with both
our LP rounding algorithms and k-means++ together with
our nearest neighbor extension technique. We include em-
pirical (and theoretical) comparisons which show the ef-
fectiveness of both algorithms in different situations. The
k-means++ algorithm is competitive on real world image
and advertising datasets, complementing the results of Sec-
tion 3 by showing empirically that k-means++ produces
high-quality balanced clusterings for ‘typical’ datasets. We
then compare the performance of our framework (using
k-means++ with nearest neighbor extension) against three
baseline methods (random partitioning, balanced partition
trees, and locality sensitive hashing) in large scale learning
experiments where each machine trains an SVM classifier.
We find that for all datasets and across a wide range of k
values, our algorithm achieves higher accuracy than any of
the baselines. Finally, we show that our technique strongly

scales, meaning that doubling the available computational
power while keeping the workload fixed reduces the running
time by a constant factor, demonstrating that our method
can scale to very large datasets.

Related Work: Currently, the most popular method of dis-
patch in distributed learning is random dispatch (Zhang
et al., 2013, 2012). This may not produce optimal results
because each machine must learn a global model. Previous
work has studied partitioning for distributed machine learn-
ing (Wei et al., 2015; You et al., 2015; Delling et al., 2011;
Bourse et al., 2014; Aydin et al., 2016), but none simultane-
ously achieve load-balancing guarantees and approximation
guarantees for k-median, k-means, or k-center.

Previous work in theoretical computer science has consid-
ered capacitated clustering, or clustering with upper bounds
(Li, 2014b; Byrka et al., 2015b; Li, 2014a; Cygan et al.,
2012), and lower bounds (Aggarwal et al., 2006; Ahmadian
and Swamy, 2016), but our algorithm is the first to solve a
more general and challenging question of simultaneously
handling upper and lower bounds on the cluster sizes, and
p-replication. See Section 7 in the supplementary material
for a more detailed discussion about related work.

2 FAULT TOLERANT BALANCED
CLUSTERING

In this section, we give an algorithm to cluster a small initial
sample of data to create a dispatch rule that sends similar
points to the same machine. There are many ways to mea-
sure the similarity of points in the same cluster. We consider
three classic clustering objectives, k-means, k-median, and
k-center clustering while imposing upper and lower bounds
on the cluster sizes and replication constraints. This is the
first algorithm with provable guarantees to simultaneously
handle both upper and lower bounds on the cluster sizes.

A clustering instance consists of a set V of n points, and
a distance metric d. Given two points i and j in V , denote
the distance between i and j by d(i, j). The task is to find
a set of k centers C = {c1, . . . , ck} ⊂ V and assignments
of each point to p of the centers f : V →

(
C
p

)
, where

(
C
p

)
represents the subset of Cp with no duplicates. In this paper,
we study three popular clustering objectives:

(1) k-median: minC,f
∑
i∈V

∑
j∈f(i) d(i, j)

(2) k-means: minC,f
∑
i∈V

∑
j∈f(i) d(i, j)2

(3) k-center: minC,f maxi∈V maxj∈f(i) d(i, j)

We add size constraints 0 < ` ≤ L < 1, also known
as capacity constraints, so each cluster must have a size
between n` and nL. For simplicity, we assume these values
are integral (or replace them by dn`e and bnLc respectively).
Before we present our approximation algorithm, we discuss
the challenges introduced by these size constraints.

Structure of Balanced Clustering: It is well-known that

Data Driven Resource Allocation for Distributed Learning

5 15 5 15 5 15

y1 y2

x1 x2 x3 x4

5 15

Figure 2: Each edge signifies distance 1, and all other dis-
tances are 2. The middle points are replicated as many times
as their label suggests (but each pair of replicated points are
still distance 2 away). Finally, add length 1 edges between
all pairs in {x1, x2, x3, x4}, {y1, y2}.

solving the objectives optimally are NP-hard (even without
the capacity and fault tolerance generalizations) (Jain et al.,
2003). In fact, with the addition of lower bounds, the value
of the optimal clustering objective OPT as a function of k
behaves erratically. In uncapacitated clustering and cluster-
ing with upper bounds only, given a problem instance, the
cost of the optimal solution always decreases as k increases.
This is easy to see: given a set of optimal centers, if we add
another center v, at the very least v is now distance 0 from
a center, which decreases the cost.

However, when there are lower bounds on the cluster sizes,
there are simple examples in which the value of the optimal
solution as a function of k contains a local minimum. For
instance, the star graph has this property (see Section 11 in
the supplementary material). A much more subtle question
is whether there exists a clustering instance with a local
maximum. We confirm such clusterings do exist; see Fig-
ure 2. We give the idea here and defer the formal proof to
Section 8 in the supplementary material.

Lemma 1. There exists a balanced clustering instance with
p = 1 for which the k-center, k-median, and k-means ob-
jectives contain a local maximum with respect to k.

Proof sketch. Consider Figure 2, where n = 86, and set
n` = 21. Since the distances are all 1 or 2, this construction
is trivially a valid distance metric. From Figure 2, we see
that k = 2 and k = 4 have valid clusterings using only
length 1 edges, using centers {y1, y2} and {x1, x2, x3, x4},
respectively. But now consider k = 3. The crucial property
is that by construction, y1 and any xi cannot simultaneously
be centers and each satisfy the capacity to distance 1 points,
because the union of their distance 1 neighborhoods is less
than 2n`. In the supplementary material, we carefully check
all other sets of 3 centers do not achieve a clustering with
distance 1 edges, which completes the proof.

In fact, with a more intricate clustering instance, we are able
to show (in Theorem 8 in the supplementary material) that
any number of local maxima may exist!

Approximation Algorithm: In light of these difficulties,
one might ask whether any approximation algorithm ex-

ists for this problem. We answer affirmatively, by extend-
ing previous work (Li, 2014a) to fit our more challenging
constrained optimization problem. Our algorithm returns a
clustering whose cost is at most a constant factor multiple
of the optimal solution, while violating the capacity and
replication constraints by a small constant factor.

Theorem 2. Algorithm 1 returns a constant factor ap-
proximate solution for the balanced k-clustering with p-
replication problem for p > 1, where the upper capacity
constraints are violated by at most a factor of p+2

p , and each
point can be assigned to each center at most twice.

At a high level, our algorithm proceeds by first solving a lin-
ear program, followed by careful rounding. The key insight
is that p-replication helps to mitigate the capacity violation
in the rounding phase. Together with a novel min-cost flow
technique, this allows us to simultaneously handle upper and
lower bounds on the cluster sizes. The procedure is summa-
rized in Algorithm 1, and below we provide details, together
with the key ideas behind its correctness (see Section 9 in
the supplementary material for the full details).

Step 1: Linear Program The first step is to solve an linear
program (LP) relaxation of the integer program (IP) formu-
lation of our constrained clustering problem. The variables
are as follows: for each i ∈ V , let yi be an indicator for
whether i is opened as a center. For i, j ∈ V , let xij be an
indicator for whether point j is assigned to center i. In the
LP, the variables may be fractional, so yi represents the frac-
tion to which a center is opened (we will refer to this as the
“opening” of i), and xij represents the fractional assignment
of j to i. One can use an LP solver to get a fractional solu-
tion which must then be rounded (i.e., the LP may open up
2k ‘half’ centers). Let (x, y) denote an optimal solution to
the LP. For any points i and j, let cij be the cost of assigning
point j to center i. That is, for k-median, cij = d(i, j), and
for k-means cij = d(i, j)2 (we discuss k-center in the sup-
plementary material). Define Cj =

∑
i cijxij , the average

cost from point j to its centers in the LP solution (x, y).

It is well-known that the LP in Algorithm 1 has an un-
bounded integrality gap (the ratio of the optimal LP solution
over the optimal integral LP solution), even when the capac-
ities are violated by a factor of 2− ε (Li, 2014a). However,
with fault tolerance, the integrality is only unbounded when
the capacities are violated by a factor of p

p−1 (see the sup-
plementary material for the integrality gap). Intuitively, this
is because the p centers can ‘share’ this violation.

Step 2: Monarch Procedure Next, partition the points into
“empires” such that every point is ≤ 4Cj from the center
of its empire (the “monarch”) by using a greedy procedure
from Charikar et al. (1999) (for an informal description,
see step 2 of Algorithm 1). By Markov’s inequality, every
empire has total opening ≥ p/2, which is crucially ≥ 1 for
p ≥ 2 under our model of fault tolerance.

Dick, Li, Pillutla, White, Balcan, Smola

1. Find a solution to the following linear program:

min
x,y

∑
i,j∈V

cijxij s.t.

(a) ∀j ∈ V :
∑
i∈V

xij = p; (b)
∑
i∈V

yi ≤ k;

(c)∀i ∈ V : `yi ≤
∑
j∈V

xij
n
≤ Lyi;

(d) ∀i, j ∈ V : 0 ≤ xij ≤ yi ≤ 1.

2. Greedily place points into a setM from lowest Cj
to highest (called “monarchs”), adding point j to
M if it is not within distance 4Cj of any monarch.
For each monarch u, let Eu be the points closest to
u, called u’s empire.

3. For empire Eu with total fractional opening Yu ,∑
i∈Eu yi, give opening Yu/bYuc to the bYuc closest

points to u and all other points opening 0.
4. Round the xij’s by constructing a minimum cost

flow problem on a bipartite graph of centers and
points, setting up demands and capacities to handle
the bounds on cluster sizes.

Algorithm 1: Balanced clustering with fault tolerance

Step 3: Aggregation The point of this step is to end up
with ≤ k centers total. Since each empire has total opening
at least 1, we can aggregate openings within each empire.
For each empire Eu, we move the openings to the bYuc
innermost points of Eu, where Yu =

∑
i∈Eu yi. We accom-

plish this using an iterative greedy procedure, similar to (Li,
2014a) (we give details in the supplementary material). We
preserve all LP constraints, except we may incur a factor
p+2
p increase to the capacity constraints. At the end of the

procedure, there are ≤ k points with nonzero opening, so
we can set them all to 1 to round the y’s. The cost incurred
in this step can be bounded using the triangle inequality.

Step 4: Min cost flow Now we must round the x’s. We
set up a min cost flow problem, where an integral solution
corresponds to an assignment of points to centers. We cre-
ate a bipartite graph with V on the left (each with supply
p) and the k centers on the right (each with demand n`),
and a sink vertex with demand np− kn`. We carefully set
the edge weights so that the minimum cost flow that sat-
isfies the capacities corresponds to an optimal clustering
assignment. Then using the Integral Flow Theorem, we are
guaranteed there is an integral assignment that achieves
the same optimal cost (and finding the min cost flow is a
well-studied polynomial time problem (Papadimitriou and
Steiglitz, 1998)). Thus, we can round the x’s without incur-
ring any additional cost to the approximation factor. This is
the first time this technique has been used in the setting of
clustering.

In Section 10 of the supplementary material, we show a
more involved algorithm specifically for k-center which
achieves a 6-approximation with no violation to the capacity
or replication constraints.

3 BALANCED CLUSTERING UNDER
STABILITY

In the previous section, we showed an LP-based algorithm
which provides theoretical guarantees even on adversarially
chosen data. Often real-world data has inherent structure that
allows us to use more scalable algorithms and achieve even
better clusters (Balcan et al., 2013a; Ostrovsky et al., 2006).
In our distributed ML framework, this translates to being
able to use a larger initial sample for the same computational
power (Section 4 analyzes the effect of sample size). In this
section, we prove the popular k-means++ algorithm as well
as a greedy thresholding algorithm output clusters very close
to the optimal solution, provided the data satisfies a natural
notion of stability called approximation stability (Balcan
et al., 2013a; Agarwal et al., 2015; Balcan and Braverman,
2010; Balcan et al., 2016; Gupta et al., 2014).

Specifically, we show that given a balanced clustering in-
stance in which clusterings close in value to OPT are
also close in terms of the clusters themselves, assuming
L ∈ O(`), then k-means++ with a simple pruning step (Os-
trovsky et al., 2006) outputs a solution close to optimal. We
overcome key challenges that arise when we add upper and
lower bounds to the cluster sizes. We include the details in
Section 11 of the supplementary material.

Approximation Stability: Given a clustering instance
(S, d) and inputs ` andL, and letOPT denote the cost of the
optimal balanced clustering. Two clusterings C and C′ are
ε-close, if only an ε-fraction of the input points are clustered
differently in the two clusterings, i.e., minσ

∑k
i=1 |Ci \

C ′σ(i)| ≤ εn, where σ is a permutation of [k].

Definition 1 (Balcan et al. (2013a)). A clustering in-
stance (S, d) satisfies (1 + α, ε)-approximation stability
with respect to balanced clustering if all clusterings C with
cost(C) ≤ (1 + α) · OPT are ε-close to C.

k-means: We show that sampling k log k centers using k-
means++, followed by a greedy center-pruning step, (in-
troduced by Ostrovsky et al. (2006)) is sufficient to cluster
well with high probability, assuming (α, ε)-approximation
stability for balanced clustering. Our results improve over
Agarwal et al. (2015), who showed this algorithm outputs a
good clustering with probability Ω(1

k) for standard (unbal-
anced) clustering under approximation stability. Formally,
our result is the following.

Theorem 3. Given ε·k
α < ρ < 1, k-means++ seeding with

a greedy pruning step outputs a solution that is 1
1−ρ close to

the optimal solution with probability > 1−O(ρ), for clus-
tering instances satisfying (1+α, ε)-approximation stability
for the balanced k-means objective, with L

` ∈ O(1).

Data Driven Resource Allocation for Distributed Learning

Intuitively, (α, ε)-approximation stability forces the clusters
to become “spread out”, i.e., the radius of any cluster is
much smaller than the inter-cluster distances. This allows
us to show for 2-means clustering, the k-means++ seeding
procedure will pick one point from each cluster with high
probability. However, if we induct on the number of clusters,
the probability of success becomes exponentially small in k.
We circumvent this issue in a manner similar to Ostrovsky
et al. (2006), by sampling k log k centers, and carefully
deleting centers greedily, until we are left with one center
per cluster with high probability.

k-median and k-center: We show that the greedy thresh-
olding algorithm of Balcan et al. (2013a) is sufficient to
give a good clustering even for the balanced k-median or
k-means objective, under approximation stability. At a high
level, their algorithm works by first creating a threshold
graph for a specific distance, and then iteratively picking
the node with the highest degree in the threshold graph and
removing its neighborhood. We show balanced clustering
instances where the analysis in Balcan et al. (2013a) is not
sufficient to guarantee good clusterings are outputted. We
provide a new technique which overcomes the difficulties in
adding upper and lower balance constraints. The technique
involves showing there cannot be too many distinct pairs
of points from different clusters which are close together,
otherwise swapping these points between clusters would
conserve the balance constraints and contradict approxima-
tion stability. We obtain the following theorem.
Theorem 4. (1) There is an efficient algorithm which re-
turns a valid clustering that is O(εα)-close to the opti-
mal, for balanced k-median or k-means clustering under
(1 + α, ε)-approximation stability, provided all clusters are
size≥ 3εn(1+ 3

α). (2) There is an efficient algorithm which
returns the optimal clustering for balanced k-center under
(2, 0)-approximation stability. (3) For ε > 0, there does not
exist an efficient algorithm which returns the optimal clus-
tering for balanced k-center under (2−ε, 0)-approximation
stability, unless NP = RP .

4 EFFICIENT CLUSTERING BY
SUBSAMPLING

For datasets large enough to require a distributed learning
system, it is expensive to apply a clustering algorithm to
the entire dataset. In this section, we show that we can first
cluster a small subsample of data and then efficiently extend
this clustering to the remaining data. In our technique, each
point in the dataset is assigned to the same p clusters as its
nearest neighbor in the clustered subsample. In fact, this
dispatch rule extends the clustering to the entire space X
(not just to the unused portion of the training set), so at
prediction time it can be used to send query points to the
appropriate machines. We show that the clustering induced
over X approximately inherits all of the desirable properties
of the clustered subsample: good objective value, balanced
clusters, and replication.

We measure the quality of a clustering ofX as follows: given
a data distribution µ over X , our goal is to find a clustering
with centers C = {c1, . . . , ck} and an assignment function
f : X →

(
C
p

)
for the entire space that minimizesQ(f, C) =

Ex∼µ[
∑
cj∈f(x) d(x, cj)] subject to the balance constraints

Px∼µ(cj ∈ f(x)) ∈ [`, L] for all j. In this section we focus
on the k-median objective, but similar results for k-means
are given in Section 12 of the supplementary material.

The simplest approach to extend a clustering of small sub-
sample of data is to assign a new example x to the p clusters
with the closest centers. This strategy incurs the lowest cost
for new examples, but it may severely violate the balance
constraints if the distribution is concentrated near one center.

Instead, given a clustering of the subsample S, our technique
assigns a new example x to the same p clusters as its nearest
neighbor in the set S, denoted by NNS(x). We use the fact
that the clustering of S is balanced to show that the extended
clustering is also balanced. Some points in S will represent
more probability mass of µ than others, so we use a second
independent sample S′ to estimate weights for each point in
S, which are used in a weighted version of the objective and
balance constraints. Pseudocode is given in Algorithm 2.
We obtain the following guarantees for k-median.
Theorem 5. For any ε, δ > 0, let (ḡS , CS) be the output of
Algorithm 2 with parameters k, p, `, L and second sample
size n′ = O

(
1
ε2 (n+log 1

δ)
)
. Let (f∗, C∗) be any clustering

of X and (g∗S , C
∗
S) be an optimal clustering of S under QS

satisfying the weighted balance constraints (`, L). Suppose
that QS(gS , CS) ≤ r ·QS(g∗S , C

∗
S) + s. Then w.p. ≥ 1− δ

over the second sample, the output (ḡS , CS) satisfies the
balance constraints with `′ = `− ε and L′ = L+ ε and

Q(ḡS , CS) ≤ r ·Q(f∗, C∗) + s+ 2(r + 1)pDε

+ p(r + 1)α(S) + rβ(S, `+ ε, L− ε),
where D is the diameter of X , the quantity α(S) =
Ex∼µ[d(x,NNS(x))] measures how well µ is approximated
by S, and β(S, `, L) = minh,C

{
Q(h̄, C) − Q(f∗, c∗)}

measures the loss incurred by restricting to clusterings that
are constant over the Voronoi tiles of S.

The terms α(S), β(S) can be bounded in terms of the size
of S under natural conditions on the distribution µ. For ex-
ample, when the distribution has doubling dimension d0 and
the optimal clustering of X is φ-probabilistically Lipschitz
(Urner et al., 2011, 2013) (intuitively requiring that the prob-
ability mass close to the cluster boundaries is small) then
for n = Õ((1

εφ−1(ε))d0d0) we will have α(S) < Dε and
β(S) < pDε with high probability. See Section 12 in the
supplementary material for details.

5 EXPERIMENTS
In this section, we present an empirical study of the accuracy
and scalability of our technique using both the LP rounding
algorithms and k-means++ together with the nearest neigh-
bor extension. We compare against three baselines: random

Dick, Li, Pillutla, White, Balcan, Smola

Input: Dataset S = {x1, . . . , xn}, cluster parameters
(k, p, `, L), second sample size n′.
1. Draw second sample S′ of size n′ iid from µ.
2. For each point xi, set ŵi = |S′i|/n′, where S′i =
{x′ ∈ S′ : NNS(x′) = xi}

3. Let CS = (c1, . . . , ck) and gS : S →
(
C
p

)
be a

clustering of S obtained by minimizing

QS(g, C) =

n∑
i=1

ŵi
∑

cj∈g(x)

d(xi, cj)

subject to
∑

i:cj∈gn(xi)

ŵi ∈ [`, L] for all j = 1, . . . , k.

4. Return ḡS(x) = gS(NNS(x)) and centers CS .

Algorithm 2: Nearest neighbor clustering extension.

partitioning, balanced partition trees, and locality sensitive
hashing (LSH) on both synthetic and real world image and
advertising datasets. Our findings are summarized below:

• Using small samples of the given datasets, we compare the
clusterings produced by our LP rounding algorithms2 and
k-means++ (with balancing heuristics described shortly).
We find that clusterings produced by k-means++ and the
LP rounding algorithms have similar objective values and
correlate well with the underlying class labels. These re-
sults complement the results of Section 3, showing that
k-means++ produces high quality balanced clusterings for
‘typical’ data. This comparison is detailed in Sections 13 and
14 of the supplementary material. Based on this observation,
our further empirical studies use k-means++.

• We compare the accuracy of our technique (using k-
means++ and the nearest neighbor extension) to the three
baselines for a wide range of values of k in large-scale learn-
ing tasks where each machine learns a local SVM classifier.
For all values of k and all datasets, our algorithm achieves
higher accuracy than all our baselines.

•We show that our framework exhibits strong scaling, mean-
ing that if we double the available computing power, the
total running time reduces by a constant fraction.

Experimental Setup: In each run of our experiment, one
of the partitioning algorithms produces a dispatch rule from
10, 000 randomly sampled training points. This dispatch
rule is then used to distribute the training data among the
available worker machines. If the parameter k exceeds the
number of machines, we allow each machine to process
multiple partitions independently. Next we train a one-vs-all
linear separator for each partition in parallel by minimizing
the L2-regularized L2-loss SVM objective. This objective
is minimized using Liblinear (Fan et al., 2008) when the
data is small enough to fit in the each worker’s memory, and
L-BFGS otherwise (note that both solvers will converge to

2 We can run the LP rounding algorithm for small n, even
though there are O(n2) variables.

the same model). The regularization parameter is chosen
via 5-fold cross validation. To predict the label of a new
example, we use the dispatch rule to send it to the machine
with the most appropriate model. All experimental results
are averaged over 10 independent runs.

Details for our technique: Our method builds a dispatch
rule by clustering a small sample of data using k-means++
and uses the nearest neighbor dispatch rule in order to dis-
patch both the training and testing data. To ensure a bal-
anced partitioning, we apply the following simple balancing
heuristics: while there is any cluster smaller than `n points,
pick any such cluster and merge it with the cluster whose
center is nearest. Then each cluster that is larger than Ln
points is randomly partitioned into evenly sized clusters that
satisfy the upper capacity constraint. This guarantees every
cluster satisfies the capacity constraints, but the number of
output clusters may differ from k. For the nearest neigh-
bor dispatch, we use the random partition tree algorithm of
Dasgupta and Sinha (2015) for efficient approximate near-
est neighbor search. We set ` = 1/(2k) and L = 2/k and
p = 1, since our baselines do not support replication.

Baselines: We compare against the following baselines.3

Random Partitioning: Points are dispatched uniformly at
random. This baseline produces balanced partitions but does
not send similar examples to the same machine.

Balanced Partition Trees: Similarly to a kd-tree, this parti-
tioning rule recursively divides the dataset by splitting it at
the median point along a randomly chosen dimension. This
is repeated until the tree has k leaves (where we assume k
is a power of 2). This baseline produces balanced partitions
and improves over random partitioning because each ma-
chine learns a local model for a different subset of the space.
The drawback is that the partitioning may result in subsets
that do not contain similar data points.

LSH Partitioning: This baseline uses locality sensitive hash
functions (Andoni and Indyk, 2006) to dispatch similar
points to the same machine. Given an LSH family H , we
pick a random hash h : Rd → Z. Then a point x is assigned
to cluster h(x) mod k. In our experiments, we use the con-
catenation of 10 random projections followed by binning
(Datar et al., 2004). See Section 13 for details of the con-
struction. This baseline sends similar examples to the same
machine, but does not balance the cluster sizes (which is
essential for practical data distribution).

Datasets: We use the following datasets:

Synthetic: We use a 128 GB synthetic dataset with 30 classes
and 20 features. The data distribution is a mixture of 200
Gaussians with uniformly random centers in [0, 1]20 with
covariance 0.09I . Labels are assigned so that nearby Gaus-

3Since our framework does not communicate during training,
we do not compare against algorithms that do, e.g. boosting (Bal-
can et al., 2012a).

Data Driven Resource Allocation for Distributed Learning

0.65

0.7

0.75

0.8

0.85

0.9

A
c
c
u

ra
c
y

 2
8

 2
9

2
10

2
11

2
12

2
13

of clusters (k)

ours
random
bpt

(a) Accuracy on Synthetic Dataset

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u
ra

c
y

 2
2

 2
3

 2
4

 2
5

 2
6

 2
7

 2
8

 2
9

2
10

of clusters (k)

ours
random
bpt

(b) Accuracy on MNIST-8M

0.67

0.68

0.69

0.7

0.71

0.72

0.73

A
c
c
u
ra

c
y

 2
1

 2
2

 2
3

 2
4

 2
5

 2
6

 2
7

 2
8

 2
9

2
10

of clusters (k)

ours
random
bpt
lsh

(c) Accuracy on CTR Dataset

0.58

0.59

0.6

0.61

0.62

0.63

0.64

A
c
c
u
ra

c
y

2
2

2
3

2
4

2
5

2
6

2
7

2
8

of clusters (k)

ours
random
bpt
lsh

(d) Accuracy on CIFAR-10 (in3c)

0.77

0.775

0.78

0.785

0.79

0.795

0.8

A
c
c
u
ra

c
y

2
2

2
3

2
4

2
5

2
6

2
7

2
8

of clusters (k)

ours
random
bpt
lsh

(e) Accuracy on CIFAR-10 (in4d)

8 16 32 64
1

2

4

8

S
p
e
e
d
u
p
 o

v
e
r

8
 w

o
rk

e
rs

of workers

MNIST-8m
CIFAR10-early
CIFAR10-late
CTRS
Synthetic

(f) Strong Scaling

Figure 3: Figures (a) through (e) show the effect of k on the classification accuracy. Figure (f) shows the speedup factor as we increase
the number of workers from 8 to 64 for each dataset.

sians have the same label.

MNIST-8M: We use the raw pixels of the MNIST-8M dataset
(Loosli et al., 2007). It has 8M examples and 784 features.

CIFAR-10: The CIFAR-10 dataset (Krizhevsky, 2009) is
an image classification task with 10 classes. Following
Krizhevsky et al. (2012) we include 50 randomly rotated and
cropped copies of each training example to get a training set
of 2.5 million examples. We extract the features from the
Google Inception network (Szegedy et al., 2015) by using
the output of an early layer (in3c) and a later layer (in4d).

CTR: The CTR dataset contains ad impressions from a com-
mercial search engine where the label indicates whether the
ad was clicked. It has 860K examples with 232 features.

Results: Our empirical results are shown in Figure 3. We do
not report accuracies when the partitioning is imbalanced,
specifically when the largest k/2 clusters contain more than
98% of the data. For all values of k and all datasets, our
method has higher accuracy than all three baselines. The
balanced partition tree is the most competitive baseline, but
in Section 13 we present an additional synthetic distribu-
tion for which our algorithm drastically outperforms the
balanced partition tree. For all datasets except CTR, the
accuracy of our method increases as a function of k, until
k is so large that each cluster becomes data starved. Our
method combines the good aspects of both the balanced
partition tree and LSH baselines by simultaneously sending
similar examples to the same machines and ensuring that
every machine gets roughly the same amount of data.

Figure 3(f) shows the speedup obtained when running our
system using 16, 32, or 64 workers compared to using 8.

We clock the time taken for the entire experiment: the time
for clustering a subsample, dispatch, training and testing.
In all cases, doubling the number of workers reduces the
total time by a constant factor, showing that our framework
strongly scales and can be applied to very large datasets.
6 CONCLUSION
In this work, we propose and analyze a new framework
for distributed learning. Given that similar points tend to
have similar classes, we partition the data so that similar
examples go to the same machine. We cast the dispatch-
ing step as a clustering problem combined with novel fault
tolerance and balance constraints necessary for distributed
systems. We show the added constraints make the objective
highly nontrivial, yet we provide LP rounding algorithms
with provable guarantees. This is complemented by our re-
sults showing that the k-means++ algorithm is competitive
on ‘typical’ datasets. These are the first algorithms with
provable guarantees under both upper and lower capacity
constraints, and may be of interest beyond distributed learn-
ing. We show that it is sufficient to cluster a small subsample
of data and use a nearest neighbor extension technique to
efficiently dispatch the remaining data. Finally, we conduct
experiments for all our algorithms that support our theoret-
ical claims, show that our framework outperforms several
baselines and strongly scales.

Acknowledgements

This work was supported in part by NSF grants CCF-
1451177, CCF-1422910, CCF-1535967, IIS-1618714, IIS-
1409802, a Sloan Research Fellowship, a Microsoft Re-
search Faculty Fellowship, a Google Research Award, Intel
Research, Microsoft Research, and a National Defense Sci-
ence & Engineering Graduate (NDSEG) fellowship.

Dick, Li, Pillutla, White, Balcan, Smola

References

Karen Aardal, Pieter L van den Berg, Dion Gijswijt, and Shanfei
Li. Approximation algorithms for hard capacitated k-facility
location problems. European Journal of Operational Research,
(2):358–368, 2015.

Manu Agarwal, Ragesh Jaiswal, and Arindam Pal. k-means++
under approximation stability. Theoretical Computer Science,
588:37–51, 2015.

Gagan Aggarwal, Tomás Feder, Krishnaram Kenthapadi, Samir
Khuller, Rina Panigrahy, Dilys Thomas, and An Zhu. Achieving
anonymity via clustering. In Proceedings of the twenty-fifth
ACM symposium on Principles of database systems, pages 153–
162, 2006.

Sara Ahmadian and Chaitanya Swamy. Approximation algorithms
for clustering problems with lower bounds and outliers. In
Proceedings of the 43rd annual International Colloquium on
Automata, Languages, and Programming, 2016.

Hyung-Chan An, Aditya Bhaskara, Chandra Chekuri, Shalmoli
Gupta, Vivek Madan, and Ola Svensson. Centrality of trees for
capacitated k-center. In Integer Programming and Combinato-
rial Optimization, pages 52–63. Springer, 2014.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimensions. In
2006 47th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’06), pages 459–468. IEEE, 2006.

Kevin Aydin, MohammadHossein Bateni, and Vahab Mirrokni.
Distributed balanced partitioning via linear embedding. In
Proceedings of the Ninth ACM International Conference on
Web Search and Data Mining, pages 387–396. ACM, 2016.

Maria-Florina Balcan and Mark Braverman. Approximate nash
equilibria under stability conditions. Technical report, 2010.

Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay Man-
sour. Distributed learning, communication complexity and pri-
vacy. arXiv preprint arXiv:1204.3514, 2012a.

Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay Man-
sour. Distributed learning, communication complexity, and
privacy. In Conference on Learning Theory, 2012b.

Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Clus-
tering under approximation stability. J. ACM, 60(2):8:1–
8:34, May 2013a. ISSN 0004-5411. doi: 10.1145/
2450142.2450144. URL http://doi.acm.org/10.
1145/2450142.2450144.

Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang. Dis-
tributed k-means and k-median clustering on general communi-
cation topologies. In Advances in Neural Information Process-
ing Systems, 2013b.

Maria-Florina Balcan, Vandana Kanchanapally, Yingyu Liang, and
David Woodruff. Improved distributed principal component
analysis. In Advances in Neural Information Processing Sys-
tems, 2014.

Maria-Florina Balcan, Nika Haghtalab, and Colin White. k-center
clustering under perturbation resilience. In Proceedings of the
43rd annual International Colloquium on Automata, Languages,
and Programming, 2016.

J. Barilan, G. Kortsarz, and D. Peleg. How to allocate net-
work centers. Journal of Algorithms, 15(3):385 – 415,
1993. ISSN 0196-6774. doi: http://dx.doi.org/10.1006/jagm.
1993.1047. URL http://www.sciencedirect.com/
science/article/pii/S0196677483710473.

Florian Bourse, Marc Lelarge, and Milan Vojnovic. Balanced
graph edge partition. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 1456–1465. ACM, 2014.

Jarosław Byrka, Krzysztof Fleszar, Bartosz Rybicki, and Joachim
Spoerhase. Bi-factor approximation algorithms for hard capaci-
tated k-median problems. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages
722–736. SIAM, 2015a.

Jarosław Byrka, Krzysztof Fleszar, Bartosz Rybicki, and Joachim
Spoerhase. Bi-factor approximation algorithms for hard capaci-
tated k-median problems. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages
722–736. SIAM, 2015b.

Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys.
A constant-factor approximation algorithm for the k-median
problem. In Proceedings of the thirty-first annual ACM sympo-
sium on Theory of computing, pages 1–10. ACM, 1999.

Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam
Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz,
Daniel Weaver, and Ramana Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proceedings of the VLDB Endowment, 1
(2):1277–1288, 2008.

Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller.
Lp rounding for k-centers with non-uniform hard capacities.
In Foundations of Computer Science (FOCS), 2012 IEEE 53rd
Annual Symposium on, pages 273–282. IEEE, 2012.

Sanjoy Dasgupta and Kaushik Sinha. Randomized partition trees
for exact nearest neighbor search. Algorithmica, 72(1):237–263,
2015.

M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In
Proceedings of the twentieth annual symposium on Computa-
tional geometry, pages 253–262, 2004.

Daniel Delling, Andrew V Goldberg, Ilya Razenshteyn, and Re-
nato F Werneck. Graph partitioning with natural cuts. In Paral-
lel & Distributed Processing Symposium (IPDPS), 2011 IEEE
International, pages 1135–1146. IEEE, 2011.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang,
and Chih-Jen Lin. Liblinear: A library for large linear classifica-
tion. The Journal of Machine Learning Research, 9:1871–1874,
2008.

Sudipto Guha, Adam Meyerson, and Kamesh Munagala. Hierar-
chical placement and network design problems. In FOCS, pages
603–612. IEEE Computer Society, 2000. ISBN 0-7695-0850-2.
URL http://dblp.uni-trier.de/db/conf/focs/
focs2000.html#GuhaMM00.

Rishi Gupta, Tim Roughgarden, and C Seshadhri. Decompositions
of triangle-dense graphs. In Proceedings of the 5th conference
on Innovations in theoretical computer science, pages 471–482.
ACM, 2014.

Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin
Saberi, and Vijay V Vazirani. Greedy facility location algo-
rithms analyzed using dual fitting with factor-revealing lp. Jour-
nal of the ACM (JACM), 50(6):795–824, 2003.

David R. Karger and Maria Minkoff. Building steiner trees
with incomplete global knowledge. In FOCS, pages 613–
623. IEEE Computer Society, 2000. ISBN 0-7695-0850-2.
URL http://dblp.uni-trier.de/db/conf/focs/
focs2000.html#KargerM00.

http://doi.acm.org/10.1145/2450142.2450144
http://doi.acm.org/10.1145/2450142.2450144
http://www.sciencedirect.com/science/article/pii/S0196677483710473
http://www.sciencedirect.com/science/article/pii/S0196677483710473
http://dblp.uni-trier.de/db/conf/focs/focs2000.html#GuhaMM00
http://dblp.uni-trier.de/db/conf/focs/focs2000.html#GuhaMM00
http://dblp.uni-trier.de/db/conf/focs/focs2000.html#KargerM00
http://dblp.uni-trier.de/db/conf/focs/focs2000.html#KargerM00

Data Driven Resource Allocation for Distributed Learning

Samir Khuller and Yoram J. Sussmann. The capacitated k-center
problem. In In Proceedings of the 4th Annual European Sympo-
sium on Algorithms, Lecture Notes in Computer Science 1136,
pages 152–166. Springer, 1996.

Samory Kpotufe. The curse of dimension in nonparametric regres-
sion. 2010.

Robert Krauthgamer and James R Lee. Navigating nets: simple
algorithms for proximity search. In Proceedings of the fifteenth
annual ACM-SIAM symposium on Discrete algorithms, pages
798–807. Society for Industrial and Applied Mathematics, 2004.

Alex Krizhevsky. Learning multiple layers of features from tiny
images. Technical report, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
genet classification with deep convolutional neural networks.
In Advances in neural information processing systems, pages
1097–1105, 2012.

Mu Li, David G Andersen, Alex J Smola, and Kai Yu. Communi-
cation efficient distributed machine learning with the parameter
server. In Advances in Neural Information Processing Systems,
pages 19–27, 2014.

Shanfei Li. An improved approximation algorithm for the hard
uniform capacitated k-median problem. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2014, September 4-6, 2014,
Barcelona, Spain, pages 325–338, 2014a. doi: 10.4230/LIPIcs.
APPROX-RANDOM.2014.325. URL http://dx.doi.
org/10.4230/LIPIcs.APPROX-RANDOM.2014.325.

Shi Li. Approximating capacitated k-median with (1 + ε)k open
facilities. arXiv preprint arXiv:1411.5630, 2014b.

Gaëlle Loosli, Stéphane Canu, and Léon Bottou. Training invariant
support vector machines using selective sampling. Large scale
kernel machines, pages 301–320, 2007.

Mohammad Mahdian and Martin Pál. Universal facility location.
In Algorithms-ESA 2003, pages 409–421. Springer, 2003.

Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chai-
tanya Swamy. The effectiveness of lloyd-type methods for the
k-means problem. In Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on, pages 165–176.
IEEE, 2006.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial
optimization: algorithms and complexity. Courier Corporation,
1998.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,
and Andrew Rabinovich. Going deeper with convolutions. The
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015.

Ruth Urner, Shai Shalev-Shwartz, and Shai Ben-David. Access to
unlabeled data can speed up prediction time. In Proceedings of
the 28th International Conference on Machine Learning (ICML-
11), pages 641–648, 2011.

Ruth Urner, Sharon Wulff, and Shai Ben-David. Plal: Cluster-
based active learning. In Conference on Learning Theory, pages
376–397, 2013.

Vladimir N. Vapnik and Leon Bottou. Local algorithms for pattern
recognition and dependencies estimation. Neural Computation,
1993.

Kai Wei, Rishabh K Iyer, Shengjie Wang, Wenruo Bai, and Jeff A
Bilmes. Mixed robust/average submodular partitioning: Fast
algorithms, guarantees, and applications. In Advances in Neural
Information Processing Systems, pages 2233–2241, 2015.

Y. You, J. Demmel, K. Czechowski, L. Song, and R. Vuduc. CA-
SVM: Communication-avoiding support vector machines on
clusters. In IEEE International Parallel and Distributed Pro-
cessing Symposium, 2015.

Yuchen Zhang, John C. Duchi, and Martin Wainwright.
Communication-efficient algorithms for statistical optimization.
In Neural Information Processing Systems, 2012.

Yuchen Zhang, John Duchi, Michael Jordan, and Martin Wain-
wright. Information-theoretic lower bounds for distributed sta-
tistical estimation with communication constraints. In Neural
Information Processing Systems, 2013.

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.325
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.325

Dick, Li, Pillutla, White, Balcan, Smola

Appendix

7 RELATED WORK CONTINUED

7.0.1 Distributed Machine Learning

Currently, the most popular method of dispatch in dis-
tributed learning is random dispatch (Zhang et al., 2013,
2012). This may not produce optimal results because each
machine must learn a global model. Another notion is to
dispatch the data to pre-determined locations e.g., Yahoo!’s
geographically distributed database, PNUTS (Cooper et al.,
2008). However, it does not look at any properties of the
data other than physical location.

In a recent paper, Wei et al. (2015) study partitioning for
distributed machine learning, however, they give no formal
guarantees on balancing the data each machine receives.
You et al. (2015) use k-means clustering to distribute data
for parallel training of support vector machines, but their
clustering algorithms do not have approximation guarantees
and are applied to the entire dataset, so their clustering step
is much slower than ours. There is also work on distributed
graph partitioning (Delling et al., 2011; Bourse et al., 2014;
Aydin et al., 2016), in which the data points are set up
in a graph structure, and must be distributed to different
machines, minimizing the number of edges across machines.
These techniques do not apply more generally for non graph-
based objectives, e.g. k-means, k-median, or k-center.

7.0.2 Capacitated Clustering

Previous work in theoretical computer science has consid-
ered capacitated clustering, or clustering with upper bounds
(Li, 2014b; Byrka et al., 2015b; Li, 2014a; An et al., 2014;
Khuller and Sussmann, 1996; Cygan et al., 2012), and lower
bounds (Aggarwal et al., 2006; Ahmadian and Swamy,
2016), but our algorithm is the first to solve a more general
and challenging question of simultaneously handling upper
and lower bounds on the cluster sizes, and p-replication.

• k-center The (uniform) capacitated k-center problem is
to minimize the maximum distance between a cluster center
and any point in its cluster subject to the constraint that the
maximum size of a cluster is L. It is NP-Hard, so research
has focused on finding approximation algorithms. Bar-Ilan
et al. (Barilan et al., 1993) introduced the problem and pre-
sented the first constant factor polynomial time algorithm
achieving a factor of 10, using a combinatorial algorithm
which moves around clients until the capacities are satisfied,
and the objective is approximately satisfied. The approxi-
mation factor was improved by Khuller et al. (Khuller and
Sussmann, 1996). Cygan et al. (Cygan et al., 2012) give the
first algorithm for capacitated k-center with non-uniform
capacities by using an LP rounding algorithm. The appox-
imation factor is not explicitly computed, although it is
mentioned to be in the order of hundreds. (An et al., 2014)

follows a similar procedure but with a dynamic rounding
procedure, and they improve to an approximation factor of
8. Further, for the special case of uniform capacities, they
show a 6-approximation.

• k-median k-median with capacities is a notoriously diffi-
cult problem in clustering. It is much less understood than
k-center with capacities, and uncapacitated k-median, both
of which have constant factor approximations. Despite nu-
merous attempts by various researchers, still there is no
known constant factor approximation for capacitated k-
median (even though there is no better lower bound for
the problem than the one for uncapacitated k-median). As
stated earlier, there is a well-known unbounded integrality
gap for the standard LP even when violating the capacity or
center constraints by a factor of 2− ε (Aardal et al., 2015).

Charikar et al. gave a 16-approximation when constraints are
violated by a factor of 3 (Charikar et al., 1999). Byrka et al.
improved this violation to 2+ε, while maintaining anO(1

ε2)
approximation (Byrka et al., 2015a). Recently, Li improved
the latter toO(1

ε), specifically, when constraints are violated
by 2 + 2

α for α ≥ 4, they give a 6 + 10α approximation
(Li, 2014a). These results are all for the hard capacitated k-
median problem. In the soft capacities variant, we can open
a point more than once to achieve more capacity, although
each extra opening counts toward the budget of k centers. In
hard capacities, each center can only be opened once. The
hard capacitated version is more general, as each center can
be replicated enough times so that the soft capacitated case
reduces to the hard capacitated case. Therefore, we will only
discuss the hard capacitated case.

All of the algorithms for capacitated k-median mentioned
above share the same high-level LP rounding and aggrega-
tion idea but with different refinements in the algorithm and
analysis.

Universal and load balanced facility location

In the facility location problem, we are given a set of de-
mands and a set of possible locations for facilities. We
should open facilities at some of these locations, and connect
each demand point to an open facility so as to minimize the
total cost of opening facilities and connecting demands to fa-
cilities. Capacitated facility location is a variant where each
facility can supply only a limited amount of the commodity.
This and other special cases are captured by the Universal
Facility Location problem where the facility costs are gen-
eral concave functions. Local search techniques (Mahdian
and Pál, 2003) have been proposed and applied successfully.
Also, LP rounding techniques suffer from unbounded inte-
grality gap for capacitated facility location (Mahdian and
Pál, 2003).

Load-balanced facility location (Karger and Minkoff, 2000),
(Guha et al., 2000), is yet another variant where every open
facility must cater to a minimum amount of demand. An

Data Driven Resource Allocation for Distributed Learning

c

Figure 4: A graph in which the objective function strictly
increases with k.

unconstrained facility location problem with modified costs
is constructed and solved. Every open facility that does not
satisfy the capacity constraint is closed and the demand is
rerouted to nearby centers. The modified problem is con-
structed so as to keep this increase in cost bounded.

8 STRUCTURE OF BALANCED
CLUSTERING

In this section, we show that adding lower bounds to clus-
tering makes the problem highly nontrivial. Specifically,
our main result is that the k-means, k-median, and k-center
objective values may oscillate arbitrarily with respect to
k (Theorem 8). in light of this structure, our results from
Sections 2 and 3 are more surprising, since it is not obvious
that algorithms with constant-factor guarantees exist.

We give a variety of clustering instances which do not have
monotone cost functions with respect to k. For readability
and intuition, these examples start out simple, and grow in
complexity until we eventually prove Theorem 8.

First, consider a star graph with n points and lower bound `,
such that n` ≥ 3 (see Figure 4).

The center c is at distance 1 to the 10n` leaves, and the
leaves are at distance 2 from each other. When k = 1, each
point is distance 1 to the center c. However as we increase
k, the new centers must be leaves, distance 2 from all the
other points, so n` − 1 points must pay 2 instead of 1 for
each extra center. It is also easy to achieve an objective that
strictly decreases up to a local minimum k′, and then strictly
increases onward, by adding k′ copies of the center of the
star.

Lemma 6. Given a star graph with parameters n and ` such
that n` ≥ 3, then the cost of the k-means and k-median
objectives strictly increase in k.

Proof. Let the size of the star graph be n. Clearly, the opti-
mal center for k = 1 is c. Then OPT 1 = n− 1. Then for
k = 2, we must choose another center p that is not c. p is
distance 2 to all points other than c, so the optimal clustering

is for p’s cluster to have the minimum of n` points, and c’s
cluster has the rest. Therefore, OPT 2 = n+ n`− 2.

This process continues; every time a new center is added, the
new center pays 0 instead of 1, but n`− 1 new points must
pay 2 instead of 1. This increases the objective by n`− 2.
As long as n` ≥ 3, this ensures the objective function is
strictly increasing in k.

Note for this example, the problem goes away if we are
allowed to place multiple centers on a single point (in the
literature, this is called “soft capacities”, as opposed to en-
forcing one center per point, called “hard capacities”). The
next lemma shows there can be a local minimum for hard
capacities.

Lemma 7. For all k′, there exists a balanced clustering
instance in which the k-means or k-median objective as a
function of k has a local minimum at k′.

Proof. Given l ≥ 3, we create a clustering instance as
follows. Define k′ sets of points G1, . . . , Gk′ , each of size
2n`− 1. For any two points in some Gi, set their distance
to 0. For any two points in different sets, set their distance
to 1. Then for 1 ≤ k ≤ k′, the objective value is equal
to (k′ − k)(2n` − 1), since we can put k centers into k
distinct groups, but (k′ − k) groups will not have centers,
incurring cost 2n`− 1. When k > k′, we cannot put each
center in a distinct group, so there is some group Gi with
two centers. Since |Gi| = 2n`− 1, the two centers cannot
satisfy the capacity constraint with points only from Gi, so
the objective value increases.

Local maxima: So far, we have seen examples in which the
objective decreases with k, until it hits a minimum (where
capacities start to become violated), and then the objec-
tive strictly increases. The next natural question to ask, is
whether the objective can also have a local maximum. As
we saw in Section 2, this is possible. Here we present the
formal proof. For convenience, we restate the statement of
the lemma.

Lemma 1 (restated). There exists a balanced clustering
instance in which the k-center, k-median, and k-means ob-
jectives contain a local maximum with respect to k.

Proof. Consider the graph in Figure 2, and let n` = 21. We
claim that there exist valid clusterings using only length 1
edges for k = 2 and k = 4, but not k = 3. For k = 2, let
the centers be y1 and y2. Then y1 grabs the 20 red points
(and itself) to hit the capacity of 21. y2 grabs all the rest of
the points. For k = 4, let the centers be x1, x2, x3, x4. Then
each have edges to 20 middle points, non-overlapping, and
WLOG x1 grabs y1 and y2.

Now consider k = 3. The crucial property is that by con-
struction, y1 and any xi cannot simultaneously be centers

Dick, Li, Pillutla, White, Balcan, Smola

and each satisfy the capacity to distance 1 points. This is
because all xi and y1 are at minimum capacity, but y1’s
neighbors overlap with neighbors from each xi. So we can-
not just take the centers from k = 2 and add a center from
k = 4. The rest of the proof is checking that no other case
works.

Case 1: the set of centers includes a point p not in
{x1, x2, x3, x4, y1, y2}. The rest of the points are only dis-
tance 1 from exactly two points, so p cannot hit the lower
bound of 21 using only distance 1 assignments.

Case 2: the set of centers is a subset of {x1, x2, x3, x4}.
Then there are clearly 20 points which are not distance 1
from the three centers.

Case 3: the set of centers includes both y1 and y2. Then
we need to pick one more center, xi. xi is distance 1
from 20 middle points, plus {x1, x2, x3, x4, y1, y2}, so 26
total. y1 is also distance 1 from 20 middle points and
{x1, x2, x3, x4, y1, y2}. y1 and xi share exactly 5 neigh-
bors from the middle points, plus {x1, x2, x3, x4, y1, y2}
as neighbors. Then the union of points that xi and y1 are
distance 1 from, is 26 + 26− 11 = 41, which implies that
xi and y1 cannot simultaneously reach the lower bound of
21 with only distance 1 points.

Case 4: the set of centers does not include xi nor yj . By
construction, for each pair xi and yj , there exists some
middle points which are only distance 1 from xi and yj .

These cases are exhaustive, so we conclude OPT 3 must
be strictly larger than OPT 2 and OPT 4 (no matter what
objective we use).

The previous example does not work for the case of soft
capacities, since the set of centers {x1, y2, y2} allows every
point to have an edge to its center.

Now we prove our main theorem. Note, this theorem holds
even for soft capacities.
Theorem 8. For all m ∈ N, there exists a balanced cluster-
ing instance in which the k-center, k-median, and k-means
objectives contain m local maxima, even for soft capacities.

Proof. We start with a proof sketch, and then we present the
formal details. As in the previous lemma, we will construct a
set of points in which each pair of points are either distance
1 or 2. It is convenient to define a graph on the set of points,
in which an edge signifies a distance of 1, and all non-edges
denote distance 2. We will construct a clustering instance
where the objective value for all even values of k between
10m and 12m is low and the objective value for all odd
values of k between 10m and 12m is high. The m odd
values will be the local maxima. We will set the lower bound
n` to be the product of all the even integers between 10m
and 12m.

We start by creating a distinct set of “good” centers, Xk,

for each even value of k between 10m and 12m. Let X
be the union of these sets. The set Xk contains k points
which will be the optimal centers for a k-clustering in our
instance. Then we will add an additional set of points, Y ,
and add edges from Y to the centers inX with the following
properties.

1. For each even value of k between 10m and 12m, there
is an assignment of the points in Y to the centers in
Xk so that points in Y are only assigned to adjacent
centers and the capacity constraints are satisfied.

2. Each of the good centers in X is adjacent to no more
than 6

5 · n` points in Y .

3. For each good center x in Xk, there is at least one
point x′ in every other set X ′k (for k′ 6= k) so that the
number of points in Y adjacent to both x and x′ is at
least 2

5 · n`.

4. Any subset of the centers in X that does not contain
any complete set of good centers Xk for some even k
is non-adjacent to at least one point in Y .

Whenever we add a point to Y , we give it an edge to exactly
one point from each Xk. This ensures that each Xk parti-
tions Y . We first create connected components as in Figure
5 that each share 2

5 · n` points from Y , to satisfy Property 3.

For property 4, we add one additional point to Y for every
combination of picking one point from each Xk. This en-
sures that any set which does not contain at least one point
from each Xk will not be a valid partition for Y . Note that
in the previous two steps, we did not give a single center
more than 6

5 · n` edges, satisfying property 2. Then we add
“filler” points to bring every center’s capacity up to at least
n`, which satisfies property 1.

Now we explain why properties 1-4 are sufficient to finish
off the proof. Property 1 guarantees that the for each even
value of k there is a clustering where the cost of each point
in Y is one, which results in a good clustering objective.

Properties 2 and 3 guarantee that any set including a full
Xk and a point from a different Xk′ cannot achieve cost
1 for each point without violating the capacities. Property
4 guarantees that any set without a full Xk cannot achieve
cost 1 for each point. This completes the proof sketch.

Now we present the details in their entirety.

Setup. Set kmin = 10 · m, and kmax = 12m. Define
Kgood = {k | kmin ≤ k ≤ kmax and 2 | k}. Similarly,
let Kbad = {k | kmin ≤ k ≤ kmax and 2 - k}. Note
|Kbad| = m and |Kgood| = m + 1. For all k ∈ Kgood,
define Xk = {x(k)

1 , . . . , x
(k)
k′ }. Let X =

⋃
kXk.

Define G = (V,E), V = X ∪ Y , X ∩ Y = ∅. Just like in
the last proof, the edges later correspond to a distance of

Data Driven Resource Allocation for Distributed Learning

. . .

X36 = Xkmax

X34

Y

X32

X30 = Xkmin

CC1 CC3 CC4 CC29 CC30CC2

2n`

5

2n`

5

2n`

5

2n`

5

2n`

5

2n`

5

2n`

5

2n`

5

2n`

5

2n`

5
2n`

5

2n`

5

Figure 5: An example when m = 3. Each Xk is a different color. The white circles represent 2n`/5 points from Y each.

1, and all other distances are 2. We will construct Y and E
such that for all k ∈ Kgood, all the neighbors of Xk form
a partition of Y , i.e. ∀k ∈ Kgood,

⋃
iN(x

(k)
i) = Y and

N(x
(k)
i) ∩N(x

(k)
j) = ∅ for all i 6= j. So taking Xk as the

centers corresponds to a k-clustering in which all points are
distance 1 from their center. We will also show that for all
k ∈ Kbad, it is not possible to find a valid set of centers
for which every point has an edge to its center, unless the
capacities are violated. This implies that all m points in
Kbad are local maxima.

For all k ∈ Kgood, Xk′ will have exactly kmax
k′ l edges in Y

Thus, set n` =
∏
k∈Kgood k to make all of these values inte-

gral. Note that some points (those in Xkmax) have exactly
n` edges, and all points have ≤ 6

5n` edges (which is tight
for the points in Xkmin).

Now we define the main property which drives the proof. We
say x(j1)

i1
overlaps with x(j2)

i2
ifN(x

(j1)
i1

)∪N(x
(j2)
i2

) > 2
5n`.

Note this immediately implies it is not possible to include
them in the same set of centers such that each point has an
edge to its center, since N(x

(j1)
i1

)∪N(x
(j2)
i2

) ≤ N(x
(j1)
i1

) +

N(x
(j2)
i2

)−N(x
(j1)
i1

) ∩N(x
(j2)
i2

) < 2 · 6
5n`− 2

5n` = 2n`.

Outline. We will construct Y in three phases. First, we add
edges to ensure that for all x(j1)

i1
, for all j2 6= j1, there

exists an i2 such that x(j1)
i1

overlaps with x(j2)
i2

. It follows
that if we are trying to construct a set of centers from X for
k′ ∈ Kbad, we will not be able to use any complete Xk′ as
a subset. These are called the backbone edges.

The next phase is to add enough edges among points in
different Xk’s so that no subset of X (other than the Xk′ ’s)
is a complete partition of Y . We will accomplish this by
adding a bunch of points to Y shared by various x ∈ X , so
that each x has edges to kmax points in Y . These are called
the dispersion edges.

The final phase is merely to add edges so that all points
reach their assigned capacity. We do this arbitrarily. These
are called the filler edges.

Note whenever we add a point to Y , for all k ∈ Kgood, we

need to add an edge to exactly one x ∈ Xk, which will
ensure that all Xk’s form a partition of Y .

Phase 1: Backbone edges. Recall that for k, k′ ∈ Kgood,
we want ∀i, ∃j such that x(k)

i overlaps with x(k′)
j . Since

kmax = 6
5kmin, some x’s will be forced to overlap with

two points from the same Xk. However, we can ensure no
point overlaps with three points from the same Xk.

We satisfy all overlappings naturally by creating kmin com-
ponents, CC1 to CCkmin . Each component CCi contains
point x(kmin)

i . The rest of the sets Xk are divided so that
one or two points are in each component, as shown in Figure
5. Formally, in component CCi, sets Xkmin to Xkmin+d i2 e
have one point in the component, and all other sets have two
points in the component.

For each component CCi, we add 4
5n` points to Y , split

into two groups of 2
5n`. The points from sets Xkmin+d i2 e

have edges to all 4
5n` points, and the points from the rest of

the sets (since there are two from each set) have edges to
one group of 2

5n` points. Therefore, for all k, k′ ∈ Kgood,
each point x ∈ Xk belongs to some component CCi, and
overlaps with some x′ ∈ Xk′ , so all of the overlapping
requirements are satisfied (only using points within the same
component).

This completes phase 1. Each point in X had at most 4
5n`

edges added, so every point can still take at least n`5 more
edges in subsequent phases.

Phase 2: Dispersion edges. Now we want to add points
to Y to ensure that no set of at most kmax points from X
create a partition of Y , except sets that completely contain
some Xk.

We have a simple way of achieving this. For every
(x1, x2, . . . , xm+1) ∈ Xkmin × Xkmin+2 × · · · × Xkmax ,
add one point to Y with edges to x1, x2, . . . , xm+1. Then
we have added

∏
k∈Kgood k total points to Y in this phase.

This completes phase 2.

Phase 3: Filler edges. The final step is just to fill in the

Dick, Li, Pillutla, White, Balcan, Smola

leftover points, since we want every point x(k)
i to have kmin

k l
points total. All of the mechanisms for the proof have been
set up in phases 1 and 2, so these final points can be arbitrary.

We greedily assign points. Give each point x(k)
i ∈ X a

number t
x
(k)
i

= kmin
k n`−N(x

(k)
i), i.e., the number of extra

points it needs. Take the point x ∈ Xk with the minimum t,
and create t points in Y with x. For each layer other thanXk,
add edges to the point with the smallest number. Continue
this process until t = 0 for all points.

Final Proof. Now we are ready to prove that G has m local
maxima. By construction, for all k ∈ Kgood, Xk is a set
of centers which satisfy the capacity constraints, and every
point has an edge to its center. Now, consider a set C of
centers of size k′ ∈ Kbad. We show in every case, C cannot
satisfy the capacity constraints with all points having edges
to their centers.

Case 1: C contains a point y ∈ Y . y only has m edges,
which is much smaller than n`.

Case 2: There exists k ∈ Kgood such that Xk ⊆ C. Then
since |C| /∈ Kgood, ∃x ∈ C \Xk. By construction, there ex-
ists x(k)

i ∈ Xk such that x and x(k)
i are overlapping. There-

fore, both centers cannot satisfy the capacity constraints
with points they have an edge to.

Case 3: For all k ∈ Kgood, there exists x ∈ Xk such that
x /∈ C. Take the set of all of these points, x1, x2, . . . , xm+1.
By construction, there is a point y ∈ Y with edges to only
these points. Therefore, y will not have an edge to its center
in this case.

This completes the proof.

9 DETAILS FROM SECTION 2

In this section, we provide the formal details for the bicrite-
ria algorithm presented in Section 2.

For convenience, we restate theorem 2 here.

Theorem 2 (restated). Algorithm 1 returns a constant fac-
tor approximate solution for the balanced k-clustering with
p-replication problem for p > 1, where the upper capacity
constraints are violated by at most a factor of p+2

p , and each
point can be assigned to each cluster at most twice.

Step 1 details:

We restate the LP for k-means and k-median for complete-
ness, labeling each constraint for the proofs later.

min
∑
i,j∈V

cijxij (LP.1)

subject to:
∑
i∈V

xij = p, ∀j ∈ V (LP.2)

`yi ≤
∑
j∈V

xij
n
≤ Lyi, ∀i ∈ V (LP.3)

∑
i∈V

yi ≤ k; (LP.4)

0 ≤ xij ≤ yi ≤ 1, ∀i, j ∈ V. (LP.5)

As mentioned in Section 2, it is well-known that the standard
capacitated k-median LP (this LP, without the lower bound
constraint and with p = 1) has an unbounded integrality gap,
even when the capacities are violated by a factor of 2 − ε
(Aardal et al., 2015). The integrality gap is as follows. k =
2nL−1, and there are nL groups of size 2nL−1. Points in
the same group are distance 0, and points in different groups
are distance 1. Fractionally, we can open 2− 1

nL facilities
in each group to achieve cost 0. But integrally, some group
contains at most 1 facility, and thus the capacity violation
must be 2− 1

nL .

However, with p replication, there must be p centers per
group, so the balance violation can be split among the p
centers. Therefore, the integrality is only unbounded when
the capacities are violated by a factor of p

p−1

The k-center LP is a little different from the k-
median/means LP. As in prior work (An et al., 2014; Cygan
et al., 2012; Khuller and Sussmann, 1996), we guess the
optimal radius, t. Since there are a polynomial number of
choices for t, we can try all of them to find the minimum
possible t for which the following program is feasible. Here
is the LP for k-center.

∑
i∈V

xij = p, ∀j ∈ V (2a)

n`yi ≤
∑
j∈V

xij ≤ nLyi, ∀i ∈ V (2b)

∑
i∈V

yi ≤ k; (2c)

0 ≤ xij ≤ yi, ∀i, j ∈ V (2d)
xij = 0 if d(i, j) > t. (2e)

For k-median and k-means, let CLP denote the objective
value. For k-center,CLP would be the smallest threshold t at
which the LP is feasible, however we scale it as CLP = tnp
for consistency with the other objectives. For all j ∈ V ,
define the connection cost Cj as the average contribution
of a point to the objective. For k-median and k-means, it
is Cj = 1

p

∑
i∈V cijxij . That is, for k-median, it is the

Data Driven Resource Allocation for Distributed Learning

average distance of a point to its fractional centers while for
k-means, it is the average squared distance of a point to its
fractional centers. For k-center, Cj is simply the threshold
Cj = t. Therefore, CLP =

∑
j∈V pCj in all cases.

The notation is summarized in table 1.

Step 2 details: LetM be the set of monarchs, and for each
u ∈ M, denote Eu as the empire of monarch u. Recall
that the contribution of an assignment to the objective cij
is d(i, j) for k-median, d(i, j)2 for k-means, and t for k-
center. We also define a parameter ρ = 1 for k-center, ρ = 2
for k-median, and ρ = 4 for k-means, for convenience.

Initially setM = ∅. Order all points in nondecreasing order
of Ci. For each point i, if ∃j ∈ M such that cij ≤ 2tCi,
continue. Else, setM = M∪ {i}. At the end of the for
loop, assign each point i to cluster Eu such that u is the
closest point inM to i. See Algorithm 3.

Input: V and fractional (x, y)
Output: Set of monarchs,M, and empire Ej for each

monarch j ∈M
1 M← ∅
2 Order all points in non-decreasing order of Ci
3 // Identify Monarchs
4 foreach i ∈ V do
5 if @j ∈M such that cij ≤ 2ρCi then
6 M←M∪ {i}

7 // Assign Empires as Voronoi partitions around monarchs
8 foreach j ∈ V do
9 Let u ∈M be the closest monarch to j

10 Eu ← Eu ∪ {j}
Algorithm 3: Monarch procedure for coarse clustering:
Greedy algorithm to create monarchs and assign empires
We obtain the following guarantees.

Lemma 9. Let ρ be a parameter such that ρ = 1 for k-
center, ρ = 2 for k-median, and ρ = 4 for k-means. The
output of the monarch procedure satisfies the following prop-
erties:

(1a) The clusters partition the point set;

(1b) Each point is close to its monarch: ∀j ∈ Eu, u ∈
M, cuj ≤ 2ρCj;

(1c) Any two monarchs are far apart: ∀u, u′ ∈M s.t. u 6=
u′, cuu′ > 4 max{Cu, Cu′};

(1d) Each empire has a minimum total opening: ∀u ∈
M,

∑
j∈Eu yj ≥

p
2 (or for k-center,

∑
j∈Eu yj ≥ p).

Proof of Lemma 9. The first three properties follow easily
from construction (for the third property, recall we ordered
the points at the start of the monarch procedure). Here is
the proof of the final property, depending on the objective
function.

For k-center and k-median, it is clear that for some u ∈M,
if d(i, u) ≤ ρCu, then i ∈ Eu (from the triangle inequality
and Property (1c)). For k-means, however: if d(i, u)2 ≤
2Cu, then i ∈ Eu. Note that the factor is ρ/2 for k-means.
This is because of the triangle inequality is a little different
for squared distances.

To see why this is true for k-means, assume towards con-
tradiction that ∃i ∈ V , u, u′ ∈ M, u 6= u′ such that
u ∈ Eu′ and d(i, u)2 ≤ 2Cu. Then d(i, u′) ≤ d(i, u) by
construction. Therefore, d(u, u′)2 ≤ (d(u, i)+d(i, u′))2 ≤
4d(i, u)2 ≤ 8Cu, and we have reached a contradiction by
Property (1c).

Now, to prove property (1d):

k-center: From the LP constraints, for every u,∑
j∈V xju = p. But xju is non-zero only they are sepa-

rated by at most t, the threshold. Combining this with the
fact that if d(j, u) ≤ Cu = t, then j ∈ Eu, we get, for each
u ∈M: ∑

j∈Eu

yj ≥
∑
j∈Eu

xju = p

k-median and k-means: Note that Cu is a weighted aver-
age of costs ciu with weights xiu/p, i.e., Cu =

∑
i ciu

xiu/p.
By Markov’s inequality,∑

j:cju>2Cu

xju
p

<
Cu
2Cu

=
1

2

Combining this with the fact that if cju ≤ 2Cu, then j ∈ Eu
for both k-median and k-means , we get, for each u ∈M:∑

j∈Eu

yj ≥
∑

j:cju≤2Cu

yj ≥
∑

j:cju≤2Cu

xju ≥
p

2
.

Step 3 Details: First we define a suboperation called Move,
which is the standard way to transfer openings between
points to maintain all LP constraints (Li, 2014a):

Definition 2 (Operation “Move”). The operation “Move”
moves a certain opening δ from a to b. Let (x′, y′) be the
updated (x, y) after a movement of δ ≤ ya from a to b.
Define

y′a = ya − δ
y′b = yb + δ

∀u ∈ V, x′au = xau(1− δ/ya)

∀u ∈ V, x′bu = xbu + xau · δ/ya

It has been proven in previous work that the move operation
does not violate any of the LP constraints except the con-
straint that yi ≤ 1 (Li, 2014a). We provide a proof below
for completeness. Should we require δ ≤ min(ya, 1− yb),

Dick, Li, Pillutla, White, Balcan, Smola

Table 1: Notation table

Symbol Description k-median k-means k-center
yi Fractional opening at center i -
xij Fractional assignment of point j to center i -
cij Cost of assigning j to center i d(i, j) d(i, j)2 t
Cj Avg cost of assignment of point j to all its centers

∑
i cijxij/p t

CLP Cost of LP
∑
j pCj

ρ parameter for monarch procedure 2 4 1

the constraint yi ≤ 1 would not be violated. But to get a bi-
criteria approximation, we allow this violation. The amount
by which the objective gets worse can then be bounded by
the triangle inequality.

Lemma 10. The operation Move does not violate any of
the LP constraints except possibly the constraint yi ≤ 1 and
the threshold constraint 2e of k-center.

Proof. To show that the Move operation satisfies all the LP
constraints, first note that the only quantities that change
are ya, yb, xau, xbu, ∀u ∈ V . Further, x, y satisfy all the
constraints of the LP. Using this,

• Constraint LP.1: For every u,
∑
i x
′
iu =

∑
i xiu = p.

• Constraint LP.2 (1):∑
u

x′au =
∑
u

xau(1− δ/ya) ≤ nLya(1− δ/ya) = nLy′a∑
u

x′bu =
∑
u

xbu +
∑
u

xau · δ/ya

≤ nLyb + nLya · δ/ya = nLy′b

• Constraint LP.2 (2):∑
u

x′au =
∑
u

xau(1− δ/ya) ≥ n`ya(1− δ/ya) = n`y′a∑
u

x′bu =
∑
u

xbu +
∑
u

xau · δ/ya

≥ n`yb + n`ya · δ/ya = n`y′b

• Constraint LP.3:
∑
i y
′
i =

∑
i yi ≤ k

• Constraint LP.4 (1):

x′au = xau(1− δ/ya) ≤ ya(1− δ/ya) = y′a

x′bu = xbu + xau · δ/ya ≤ yb + ya · δ/ya = y′b.

• Non-negative constraint: this is true since δ ≤ ya.

Input: V , fractional (x, y), empires {Ej}
Output: updated (x, y)

1 foreach Eu do
2 Define Yu =

∑
i∈Eu yi, zu = Yu

bYuc .
3 while ∃v s.t. yv 6= zu do
4 Let v be the point farthest from u with nonzero yv .
5 Let v′ be the point closest to j with yv′ 6= zu.
6 Move min{yv, zu − yv′} units of opening from yv

to yv′ .

Algorithm 4: Aggregation procedure

See Algorithm 4 for the aggregation procedure.

Note that by Property (1d), we have Yu ≥ 1 (whenever
p ≥ 2). Then by construction, zu ≥ 1. In each empire Eu,
start with the point i with nonzero yi that is farthest away
from the monarch u. Move its opening to the monarch u.
Continue this process until u has opening exactly zu, and
then start moving the farthest openings to the point j closest
to the monarch u. Continue this until the bYuc closest points
to u all have opening zu. Call the new variables (x′, y′).
They have the following properties.
Lemma 11. The aggregated solution (x′, y′) satisfies the
following constraints:

(2a) The opening of each point is either zero or in [1, p+2
2]:

∀i ∈ V, 1 ≤ y′i < p+2
p or y′i = 0;

(2b) Each cluster satisfies the capacity constraints: i ∈
V, `y′i ≤

∑
j∈V

x′ij
n ≤ Ly′i;

(2c) The total fractional opening is k:
∑
i∈V y

′
i = k;

(2d) Points are only assigned to open centers: ∀i, j ∈
V, x′ij ≤ y′i;

(2e) Each point is assigned to p centers: ∀i ∈ V, ∑j x
′
ji =

p;

(2f) The number of points with non-zero opening is at most
k: |{i | y′i > 0}| ≤ k.

Proof. For the first property, recall that each cluster Eu has
total opening ≥ p

2 , so by construction, all i with nonzero

Data Driven Resource Allocation for Distributed Learning

y′i has y′i ≥ 1. We also have Yu
bYuc ≤

bYuc+1
bYuc ≤

p+2
p , which

gives the desired bound.

The next four properties are checking that the LP constraints
are still satisfied (except for y′i ≤ 1). These follow from the
fact that Move does not violate the constraints. The last
property is a direct result of Properties (2a) and (2c).

We obtain the following guarantee on the moving costs.
Lemma 12. ∀j ∈ V whose opening moved from i′ to i,

• k-center: d(i, j) ≤ 5t,

• k-median: d(i, j) ≤ 3d(i′, j) + 8Cj ,

• k-means: d(i, j)2 ≤ 15d(i′, j)2 + 80Cj .

Proof of Lemma 12. k-center. Use the fact that all Cj = t,
and xij > 0 =⇒ d(i, j) ≤ t with property (1b) to get:

d(i, j) ≤ d(i, u) + d(u, i′) + d(i′, j)

≤ 2Ci + 2Ci′ + d(i′, j) ≤ 5t.

k-median. By construction, if the demand of point j moved
from i′ to i, then ∃u ∈ M s.t. i, i′ ∈ Eu and d(u, i) ≤
d(u, i′). Denote j′ as the closest point in M to j. Then
d(u, i′) ≤ d(j′, i′) because i′ ∈ Eu. Then,

d(i, j) ≤ d(i, u) + d(u, i′) + d(i′, j)

≤ 2d(u, i′) + d(i′, j)

≤ 2d(j′, i′) + d(i′, j)

≤ 2(d(j′, j) + d(j, i′)) + d(i′, j)

≤ 8Cj + 3d(i′, j).

k-means: The argument is similar to k-median, but with
a bigger constant factor because of the squared triangle
inequality.

d(i, j)2 ≤ (d(i, u) + d(u, i′) + d(i′, j))2

≤ (2d(u, i′) + d(i′, j))2

≤ 4d(u, i′)2 + d(i′, j)2 + 4d(u, i′)d(i′, j)

≤ 4d(u, i′)2 + d(i′, j)2 + 4d(u, i′)d(i′, j)

+ (2d(i′, j)− d(u, i))2

≤ 5d(u, i′)2 + 5d(i′, j)2

≤ 5d(j′, i′)2 + 5d(i′, j)2

≤ 5(d(j′, j) + d(j, i′))2 + 5d(i′, j)2

≤ 5d(j′, j)2 + 10d(i′, j)2 + 10d(j′, j)d(i′, j)

≤ 5d(j′, j)2 + 10d(i′, j)2 + 10d(j′, j)d(i′, j)

+ 5(d(j′, j)− d(i′, j))2

≤ 10d(j′, j)2 + 15d(i′, j)2

≤ 80Cj + 15d(i′, j)2.

Step 4 details: Set {i | yi 6= 0} = Y . We show details of
the min cost flow network in Algorithm 5.

Input: V , (x, y), y are integral
Output: updated (x, y) with integral x’s and y’s

1 Create a flow graph G = (V ′, E) as follows.
2 Add each i ∈ V to V ′, and give i supply p.
3 Add each i ∈ Y to V ′, and give i demand n`.
4 Add a directed edge (i, j) for each i ∈ V , j ∈ Y , with

capacity 2 and cost cij (for k-center, make the edge
weight 5t if d(i, j) ≤ 5t and +∞ otherwise.

5 Add a sink vertex v to V ′, with demand np− kn`.
6 Add a directed edge (i, v) for each i ∈ Y , with capacity
dp+2

p nLe − n` and cost 0.
7 Run an min cost integral flow solver on G.
8 Update x by setting xij to 0, 1, or 2 based on the amount of

flow going from i to j.
Algorithm 5: Min cost flow procedure: Set up flow prob-
lem to round x’s
Lemma 13. There exists an integral assignment of the x′ij’s
such that ∀i, j ∈ V , x′ij ≤ 2 and it can be found in polyno-
mial time.

Proof. See Algorithm 5 and Figure 6 for the details of the
flow construction.

In this graph, there exists a feasible flow: ∀i, j ∈ V , send x′ij
units of flow along the edge from i to j, and send

∑
j∈V xij

units of flow along the edge from i to v. Therefore, by the
integral flow theorem, there exists a maximal integral flow
which we can find in polynomial time. Also, by construction,
this flow corresponds to an integral assignment of the x′ij’s
such that x′ij ≤ 2.

Now we are ready to prove Theorem 2. The approximation
ratios are 5, 11, and 95 for k-center, k-median, and k-means,
respectively.

Proof of Theorem 2.
k-center: Recall that we defined CLP = tnp, where t is the
threshold for the k-center LP. From Lemma 12, when we
reassign the demand of point j from i′ to i, d(i, j) ≤ 5t. In
other words, the y-rounded solution is feasible at threshold
5t. Then the k-center cost of the new y’s is np(5t) = 5CLP .
From Lemma 13, we can also round the x’s at no additional
cost.

k-median: From Property 12, when we reassign the demand
of point j from i′ to i, d(i, j) ≤ 3d(i′, j) + 8Cj . Then we
can bound the cost of the new assignments with respect to

Dick, Li, Pillutla, White, Balcan, Smola

1

2

3

4

5

1

3

4

v

cost = cij

cost = 0

V

Ycapacity = 2

supply = p

supply = � n`

supply = kn`� np

capacity = dnL(p + 2)/pe

Figure 6: Flow network for rounding the x’s: The nodes in each group all have the same supply, which is indicated below
each group. The edge costs and capacities are shown above each group. The y-rounded solution gives a feasible flow in this
network. By the Integral Flow Theorem, there exists a minimum cost flow which is integral and we can find it in polynomial
time.

the original LP solution as follows.∑
i∈V

∑
j∈V

d(i, j)x′ij ≤
∑
i∈V

∑
j∈V

(8Cj + 3d(i, j))xij

≤
∑
i∈V

∑
j∈V

8Cjxij

+
∑
i∈V

∑
j∈V

3d(i, j)xij

≤
∑
j∈V

8Cj
∑
i∈V

xij + 3CLP

≤
∑
j∈V

8pCj + 3CLP ≤ 11CLP .

Then from Lemma 13, we get a solution of cost at most
11CLP , which also has integral x’s.

k-means: The proof is similar to the k-median proof. From
lemma 12, when we reassign the demand of point j from i′

to i, d(i, j)2 ≤ 15d(i′, j)2 + 80Cj . Then we can bound the
cost of the new assignments with respect to the original LP
solution as follows.∑
i∈V

∑
j∈V

d(i, j)2x′ij ≤
∑
i∈V

∑
j∈V

(80Cj + 15d(i′, j)2)xij

≤
∑
i∈V

∑
j∈V

80Cjxij +
∑
i∈V

∑
j∈V

15d(i, j)2xij

≤
∑
j∈V

80Cj
∑
i∈V

xij + 15CLP

≤
∑
j∈V

80pCj + 15CLP ≤ 95CLP .

Then from Lemma 13, we get a solution of cost at most
95CLP , which also has integral x’s.

See Algorithm 6 for the final algorithm.

Input: V
Output: Integral (x, y) corresponding to bicriteria

clustering solution
1 Run a solver for the LP relaxation for k-median, k-means,

or k-center, output (x, y).
2 Run Algorithm 3 with V , (x, y), output set of empires
{Ej}.

3 Run Algorithm 4 with V , {Ej}, (x, y), output updated
(x, y).

4 Run Algorithm 5 with V , (x, y), output updated (x, y).
Algorithm 6: Bicriteria approximation Algorithm for k-
median, k-means, and k-center

10 k-CENTER

In this section, we present a more complicated algorithm that
is specific to k-center, which achieves a true approximation
algorithm - the capacity and replication constraints are no
longer violated.

Approach

As in the previous section and in prior work (An et al.,
2014; Cygan et al., 2012; Khuller and Sussmann, 1996),
we start off by guessing the optimal distance t. Since there
are a polynomial number of possibilities, it is still only
polynomially expensive. We then construct the threshold
graph Gt = (V,Et), with j being the set of all points, and
(x, y) ∈ Et iff d(x, y) ≤ t.
A high-level overview of the rounding algorithm that follows
is given in Algorithm 7.

Connection to the previous section: The algorithm here
is similar to the bicriteria algorithm presented previously.
There are, however, two differences. Firstly, we work only

Data Driven Resource Allocation for Distributed Learning

with connected components of the threshold graph. This is
necessary to circumvent the unbounded integrality gap of
the LP (Cygan et al., 2012). Secondly, the rounding pro-
cedure of the y’s can now move opening across different
empires. Since the threshold graph is connected, the dis-
tance between any two adjacent monarchs is bounded and
turns out to exactly be thrice the threshold. This enables us
to get a constant factor approximation without violating any
constraints.
Input: V : the set of points, k: the number of clusters,

(`, L): min and max allowed cluster size
Output: A k-clustering of V respecting cluster size

constraints, p: replication factor
Procedure balanced-k-center(V, k, p, `, L)

foreach threshold t do
Construct the threshold graph Gt
foreach connected component G(c) of Gt do

foreach k′ in 1, ...k do
// Solve balanced k′-clustering on G(c)

Solve LPRound(G(c), k′, p, `, L)

Find a solution for each G(c) with kc centers such
that

∑
c kc = k by linear search; call is s

if no such a solution exists then return “No
Solution Found”

else return solution s

Procedure LPRound(G, k, p, `, L)
(x, y)← relaxed solution of LP in equation 3
(x′, y′)← yRound(G, x, y)
Round x′ to get x′′ from theorem 20
return (x′′, y′)

Procedure yRound(G, x, y)
Construct coarse clustering to get a tree of clusters
from algorithm 8

Round clusters in a bottom up manner in the tree,
moving mass around to nodes within a distance of 5
away (algorithm 9)

return rounded solution with integral y

Algorithm 7: Algorithm overview

The Algorithm

Intuition

The approach is to guess the optimal threshold, construct
the threshold graph at this threshold, write and round several
LPs for each connected component of this graph for different
values of k. The intuition behind why this works is that at the
optimal threshold, each cluster is fully contained within a
connected component (by definition of the threshold graph).

We the round the opening variables, but this time, open
exactly k centers. Most of the work goes into rounding the
openings, and showing that it is correct. Then, we simply

round the assignments using a minimum cost flow again.

Linear Program

As earlier, let yi be an indicator variable to denote whether
vertex i is a center, and xij be indicators for whether j
belongs to the cluster centered at i. By convention, i is
called a facility and j is called a client.

Consider the following LP relaxation for the IP for each
connected component of G. Note that it is exactly the
same as the one from the previous section, except it is de-
scribed in terms of the threshold graph G. Let us call it
LP-k-center(G):

∑
i∈V

yi = k (3a)

xij ≤ yi ∀i, j ∈ V (3b)∑
j:ij∈E

xij ≤ nLyi ∀i ∈ V (3c)

∑
j:ij∈E

xij ≥ n`yi ∀i ∈ V (3d)

∑
i:ij∈E

xij = p ∀j ∈ V (3e)

xij = 0 ∀ij /∈ E (3f)
0 ≤ x, y ≤ 1 (3g)

Once we have the threshold graph, for the purpose of k-
center, all distances can now be measured in terms of
the length of the shortest path in the threshold graph. Let
dG(i, j) represent the distance between i and j measured
by the length of the shortest path between i and j in G.

Connected Components

It is well known (Cygan et al., 2012) that even without lower
bounds and replication, the LP has unbounded integrality
gap for general graphs. However, for connected components
of the threshold graph, this is not the case.

To begin with, we show that it suffices to be able to do the
LP rounding procedure for only connected threshold graphs,
even in our generalization.

Theorem 14. If there exists an algorithm that takes as input
a connected graph G, capacities `, L, replication p, and k
for which LP-k-center(Gt) is feasible, and computes a
set of k centers to open and an assignment of every vertex j
to p centers i such that dG(i, j) ≤ r satisfying the capacity
constraints, then we can obtain a r-approximation algo-
rithm to the balanced k-centers problem with p-replication.

Proof. Let connected component i have ki clusters. For
each connected component, do a linear search on the range

Dick, Li, Pillutla, White, Balcan, Smola

[1, . . . , k] to find values of ki for which the problem is
feasible. These feasible values will form a range, if size
constraints are to be satisfied. To see why this is the case,
note that if (x1, y1) and (x2, y2) are fractional solutions for
k = k1 and k = k2 respectively, then ((x1 + x2)/2, (y1 +
y2)/2) is a valid fractional soluion for k = (k1 + k2)/2.

Suppose the feasible values of ki are mi ≤ ki ≤ Mi. If∑
imi > k or

∑
iMi < k, return NO (at this threshold t).

Otherwise, start with each ki equal to mi. Increase them
one by one up to Mi until

∑
i ki = k. This process takes

polynomial time.

From now on, the focus is entirely on a single connected
component.

Rounding y

Given an integer feasible point to the IP for each connected
component, we can obtain the desired clustering. Hence, we
must find a way to obtain an integer feasible point from any
feasible point of LP-k-center.

To round the y, we follow the approach of An et al.(An
et al., 2014). The basic idea is to create a coarse clustering
of vertices, and have the cluster centers form a tree. The
radius of each cluster will be at most 2, and the length of
any edge in the tree will exactly be three, by construction.

Now, to round the y, we first start from the leaves of the tree,
moving opening around in each coarse cluster such that at
most one node (which we pick to be the center, also called
the monarch). In subsequent steps, this fractional opening is
passed to the parent cluster, where the same process happens.
The key to getting a constant factor approximation is to
ensure that fractional openings that transferred from a child
cluster to a parent cluster are not propagated further. Note
that the bicriteria algorithm did not move opening from one
coarse cluster (empire) to another because we didn’t have
an upper bound of the cost incurred by making this shift.

Preliminaries.: We start with some definitions.
Definition 3 (δ-feasible solution (Cygan et al., 2012)). A
solution (x, y) feasible on Gδ, the graph obtained by con-
necting all nodes within δ hops away from each other.

Next, we introduce the notion of a distance-r shift. Intu-
itively, a distance-r shift is a series of movements of open-
ings, none of which traverses a distance more than r in the
threshold graph. Note that the definition is similar to what
is used in An et al.(An et al., 2014).
Definition 4 (Distance-r shift). Given a graph G = (V,E)

and y, y′ ∈ R|V |≥0 , y′ is a distance-r shift of y if y′ can be
obtained from y via a series of disjoint movements of the
form “Move δ from i to i′” where δ ≤ min(yi, 1− yi′) and
every i and i′ are at most a distance r apart in the threshold
graph G. Further, if all y′ are zero or one, it is called an
integral distance-r shift.

Note that, by the definition of a distance-r shift, each unit
of y moves only once and if it moves more than once, all
the movements are put together as a single, big movement,
and this distance still does not exceed r.
Lemma 15 (Realizing distance-r shift). For every distance-
r shift y′ of y such that 0 ≤ y′i ≤ 1 ∀i ∈ V , we can find x′

in polynomial time such that (x′, y′) is (r + 1)-feasible.

Proof. We can use the Move operation described earlier
and in Cygan et al. (Cygan et al., 2012) to change the cor-
responding x for each such a movement to ensure that the
resulting (x′, y′) are (r+ 1)-feasible. The additional restric-
tion δ ≤ 1 − yb ensures that y ≤ 1. Since each unit of y
moves only once, all the movements put together will also
lead a solution feasible inGr+1, i.e. we get a (r+1)-feasible
solution.

From here on, we assume that xij , xi′j are adjusted as
described above for every movement between i and i′.

The algorithm to round y (An et al., 2014) proceeds in two
phases. In the first phase, we cluster points into a tree of
coarse clusters (monarchs) such that nearby clusters are
connected using the monarch procedure of Khuller et al
(Khuller and Sussmann, 1996). In the second phase, frac-
tional opening are aggregated to get an integral distance-5
shift.

Monarch Procedure.: The monarch procedure presented a
little differently but is very similar to the monarch procedure
presented earlier. Since the threshold graph is connected,
we can get guarantees on how big the distance between two
monarchs is.

Algorithm 8 describes the first phase where we construct a
tree of monarchs and assign empires to each monarch. Let
M be the set of all monarchs. For some monarch, u ∈M,
let Eu denote its empire. For each vertex i, let m(i) denote
the the monarch u to whose empire Eu, i belongs.

The guarantees now translate to the following (Lemma 16):

• Empires partition the point set.

• The empire includes all immediate neighbors of a
monarch and additionally, some other nodes of dis-
tance two (called dependents).

• Adjacent monarchs are exactly distance 3 from each
other.

Lemma 16. Algorithm 8, the monarch procedure is well-
defined and its output satisfies the following:

• Eu ∩ Eu′ = ∅.
• ∀u ∈ M : Eu = N+(u) ∪

(
⋃
j∈N+(u) Dependents(j)).

Data Driven Resource Allocation for Distributed Learning

Input: G = (V,E)
Output: Tree of monarchs, T = (M, E′), and empires for

each monarch
1 Marked← ∅
2 foreach j ∈ V do
3 initialize ChildMonarchs(j) and Dependents(j)

to ∅
4 Pick any vertex u and make it a monarch
5 Eu ← N+(u); Initialize T to be a singleton node u
6 Marked← Marked ∪ Eu
7 while
∃w ∈ (V \ Marked) such that dG(w,Marked) ≥ 2 do

8 Let u ∈ (V \ Marked) and v ∈ Marked such that
dG(u, v) = 2

9 Make u a monarch and assign its empire to be
Eu ← N+(u)

10 Marked← Marked ∪ Eu
11 Make u a child of m(v) in T
12 ChildMonarchs(v)←

ChildMonarchs(v) ∪ {u}
13 foreach v ∈ (V \ Marked) do
14 Let u ∈ Marked be such that dG(u, v) = 1
15 Dependents(u)← Dependents(u) ∪ {v}
16 Em(u) ← Em(u) ∪ {v}

Algorithm 8: Monarch Procedure: Algorithm to construct
tree of monarchs and assign empires

• The distance between a monarch and any node in its
empire is at most 2.

• Distance between any two monarchs adjacent in T is
exactly 3.

• If ChildMonarchs(j) 6= ∅ or Dependents(j) 6=
∅, then j is at distance one from some monarch.

Proof. Note that the whole graph is connected and
V 6= ∅. For the while loop, if there exists w such
that dG(w,Marked) ≥ 2, there exists u such that
dG(u,Marked) = 2 because the graph is connected. By
the end of the while loop, there are no vertices at a distance
2 or more from Marked. Hence, vertices not in Marked,
if any, should be at a distance 1 from Marked. Thus, the
algorithm is well defined.

Each time a new monarch u is created, N+(u) is added to
its empire. This shows the first statement. The only other
vertices added to any empire are the dependents in the fore-
ach loop. Each dependent j is directly connected to i, a
marked vertex. Hence, i has to be a neighbor of a monarch.
If i were a monarch, j would have been marked in the while
loop. Thus, dG(j,m(i)) = 2.

If the first statement of the while loop, v is a marked vertex,
and has to be a neighbor of some monarch m(v). New

monarch u is chosen such that dG(u, v) = 2. The par-
ent monarch of u is m(v) and dG(u,m(v)) = dG(u, v) +
dG(v,m(v)) = 3.

Initial Aggregation.: Now, we shall turn to the rounding
algorithm of An et al (An et al., 2014). The algorithm begins
with changing yu of every monarch u ∈ M to 1. Call
this the initial aggregation. It requires transfer of at most
distance one because the neighbors of the monarchs has
enough opening.

Lemma 17. The initial aggregation can be implemented by
a distance-1 shift.

Proof. For every vertex u ∈ V , we have
∑
j∈N(u) yj ≥∑

j∈N(u) xuj = p ≥ 1. Hence, there is enough y-mass
within a distance of one from u. The actual transfer can
happen by letting δ = min(1− yu, yj) for some neighbor j
of u and then transferring δ from j to u. That is, yj = yj−δ
and yu = yu + δ.

Rounding.: The rounding procedure now proceeds in a
bottom-up manner on the tree of monarchs, rounding all
y using movements of distance 5 or smaller. After round-
ing the leaf empires, all fractional opening, if any is at
the monarch. For internal empires, the centers of child
monarch (remnants of previous rounding steps) and depen-
dents are first rounded. Then the neighbors of the monarch
are rounded to leave the entire cluster integral except the
monarch. The two step procedure is adopted so that the open-
ing propagated from this monarch to its parent originates
entirely from the 1-neighborhood of the monarch.

Formally, at the end of each run of round on u ∈M, all the
vertices of the set Iu are integral, where Iu := (Eu \ u) ∪
(
⋃
j∈N(u) ChildMonarchs(j)).

The rounding procedure is described in detail in Algorithm
9. The following lemma states and proves that algorithm 9
rounds all points and doesn’t move opening very far.

Lemma 18 (Adaptation of Lemma 19 of An et
al (An et al., 2014)). Let Iu := (Eu \ u) ∪
(
⋃
j∈N(u) ChildMonarchs(j)).

• Round(u) makes the vertices of Iu integral with a set
of opening movements within Iu ∪ {u}.

• This happens with no incoming movements to the
monarch u after the initial aggregation.

• The maximum distance of these movements is five, tak-
ing the initial aggregation into account.

Dick, Li, Pillutla, White, Balcan, Smola

Input: Tree of monarchs, T , and empires for each monarch
after the initial aggregation

Output: y′, an integral distance-5 shift of y
1 Procedure Round(Monarch u)
2 //Recursive call
3 foreach child w of u in T do Round(w)
4 //Phase 1
5 foreach j ∈ N(u) do
6 Xj ←

{j} ∪ ChildMonarchs(j) ∪ Dependents(j)

7 Wj ← {by(Xj)c nodes from Xj}; (Avoid picking
j if possible)

8 LocalRound(Wj , Xj , ∅)
9 LocalRound({j}, Xj \Wj , ∅)

10 //Phase 2
11 F = {j|j ∈ N(u) and 0 < yj < 1}
12 WF ← { any by(F)c nodes from F}
13 LocalRound(WF , F, ∅)
14 //Residual
15 if y(F \WF) > 0 then
16 Choose w∗ ∈ F \WF

17 LocalRound({w∗}, F \WF , u)

18 Procedure LocalRound(V1, V2, V3)
19 while ∃i ∈ V1 such that yi < 1 do
20 Choose a vertex w with non-zero opening from

V2 \ V1

21 if there exists none, choose j from V3 \ V1

22 δ ← min(1− yi, yj)
23 Move δ from j to i

Algorithm 9: Algorithm to round y

Proof. Integrality. From lemma 16, it can be seen that
Xj , j ∈ N(u) above form a partition of Iu. Hence, it suf-
fices to verify that each node of every Xj is integral.

At the end of line 8, the total non-integral opening in Xj

is y(Xj) − by(Xj)c, and is hence smaller than one. Line
9 moves all these fractional openings to j. By now, all
openings of Xj \ {j} are integral.

Now, F is the set of all non-integral j ∈ N(u). So, by the
end of line 13, the total non-integral opening in N(u) (and
hence in all of Iu) is y(F \WF) = y(F)− by(F)c, and is
again smaller than one. If this is zero, we are done.

Otherwise, we choose a node w∗, shift this amount to w∗ in
line 17. To make this integral, this operations also transfers
the remaining amount, i.e. 1−y(F \WF) from the monarch
u. If this happens, the monarch u’s opening is no longer
integral, but Iu’s is.

This shows the first bullet. For the second one, notice that
after the initial aggregation, this last operation is the only
one involving the monarch u and hence, there are no other
incoming movements into u.

Distance. In the first set of transfers in line 8 the distance
of the transfer is at most 4. This is because dependents
are a distance one away from j and child monarchs are at
a distance two away. The maximum distance is when the
transfer happens from one child monarch to another, and this
distance is 4 (recall that there are no incoming movements
into monarchs).

The transfers in line 9 moves openings from a child monarch
or a dependent to j. The distances are 2 and 1 respectively.
Accounting for the initial aggregation, this is at most 3.

The rounding on line 13 moves openings between neighbors
of the monarch, i.e. from some j to j′ where j, j′ ∈ N(u).
So, the distance between j and j′ is at most 2. From the
preceding transfers, the openings at j moved a distance of at
most three to get there, and thus, we conclude that openings
have moved at most a distance of 5 so far.

The first step of rounding on line 17 moves openings from
some j tow∗, where j, w∗ ∈ N(u). As above, the maximum
distance in this case is 5. The second step of rounding on
line 17 moves opening from the monarch u to its neighbor
w∗. This distance is one, and after accounting for the initial
aggregation, is 2.

From this, we see that the maximum distance any opening
has to move is 5.

The algorithms, their properties in conjunction with lemma
15 leads to the following theorem, which also summarizes
this subsection.

Theorem 19. There exists a polynomial time algorithm to
find a 6-feasible solution with all y integral.

Data Driven Resource Allocation for Distributed Learning

Rounding x

Once we have integral y, rounding the x is fairly straight-
forward, without making the approximation factor any
worse. Exactly the same procedure used in bicriteria al-
gorithms works here too. But, we can have an easier con-
struction since for k-center since we can use distances in
the threshold graph instead.

Theorem 20. There exists a polynomial time algorithm that
given a δ-feasible solution (x, y) with all y integral, finds a
δ-feasible solution (x′, y) with all x′ integral.

Proof. We shall use a minimum cost flow network to this.
Consider a directed bipartite graph (S, T,E′), where S = V
and T = {i : yi = 1} and j → i ∈ E′ iff xij > 0. Add
a dummy vertex s, with edges to every vertex in S, and t
with edges from every vertex in T . In this network, let every
edge of the bipartite graph have capacity 1. Further, all the
s→ S edges have capacity p. s supplies a flow of np units,
while each u ∈ T has a demand of l units. To ensure no
excess demand or supply, t has a demand of np − kl. All
the t→ T edges have a capacity of (L− `).

All the s→ S edges have a cost of −1 and every other edge
has a cost of zero. See figure 7.

Clearly, a feasible assignment (x, y) to
LP-k-center(Gδ) with integral y is a feasible
flow in this network. In fact, it is a minimum-cost flow in
this network. This can be verified by the absence of negative
cost cycles in the residual graph (because all negative cost
edges are at full capacities).

Since, the edge capacities are all integers, there exists a
minimum cost integral flow by the Integral Flow Theorem.
This flow can be used to fix the cluster assignments.

Piecing together theorems 19 and 20, we have the following
theorem:

Theorem 21. Given an instance of the k-centers problem
with p-replication and for a connected graph G, and a
fractional feasible solution to LP-k-center(G), there
exists a polynomial time algorithm to obtain a 6-feasible
integral solution. That is, for every i, j such that xij 6= 0,
we have dG(i, j) ≤ 6.

11 PROOFS FROM SECTION 3

k-means++:

In this section, we show that adding lower bounds to clus-
tering is a high

we provide the full details for Theorem 3. We start by show-
ing it is true for k = 2, and then we generalize to any k.

First we need the following lemma. Given a point set S, let
∆k(S) denote the optimal k-means cost of S.

Lemma 22 ((Ostrovsky et al., 2006)). Given a set S ⊆ Rd
and any partition S1 ∪ S2 of S with S1 6= ∅. Let s,s1,s2

denote the centers of mass of S, S1, and S2, respectively.
Then

1. ∆2
1(S) = ∆2

1(S1) + ∆2
1(S2) + |S1||S2|

|S| · d(s1, s2)2

2. d(s1, s)
2 ≤ ∆2

1(S)
|S| ·

|S2|
|S1| .

We define ri as the radius of cluster Ci, i.e. ri =
1
|Ci|

∑
x∈Ci d(x, ci). Given a clustering instance S satisfy-

ing (α, ε)-approximation stability, with upper and lower
bounds L and ` on the cluster sizes. We assume that
L ∈ O(`). For convenience, let |Ci| = ni for all i.

Lemma 23. max(r2
1, r

2
2) ≤ O(εα · L`)d(c1, c2)2.

Proof. From part 2 of Lemma 22, we have
∆2

1(X) = ∆2
2(X) + n1n2

n · d(c1, c2)2, which im-

plies that n
n1n2

· ∆2
2(X) = d(c1, c2)2 ∆2

2(X)

∆2
1(X)−∆2

2(X)
.

Let c denote the center of mass of X . Then ∆2
1(X) =∑

x∈X d(c, x)2 = n1d(c, c1)2 + n2d(c, c2)2 + ∆2
2(X) >

min(n1, n2)(d(c, c1)2 + d(c, c2)2) + ∆2
2(X) ≥

min(n1, n2)d(c1, c2)2+∆2
2(X). Therefore, n

n1
r2
1 + n

n2
r2
2 ≤

∆2
2(X)

minini·d(c1,c2) ≤ n
minini

· w2
avg

d(c1,c2)2 = n
minini

, and it follows
that max(r2

1, r
2
2) ≤ O(εα · L`)d(c1, c2)2.

Let ρ = 100ε
α < 1. Now we define the core of a cluster Ci

as Xi = {x ∈ Ci | d(x, ci)
2 ≤ r2i

ρ }. Then by a Markov
inequality, |Xi| ≥ (1 − ρ)ni for all i. This concentration
inequality, along with Lemma 23 are the key structures
needed to show k-means++ produces a good clustering.
Recall in k-means++, we pick seeds {ĉ1, . . . , ĉk} so that
we pick point x for ĉi+1 with probability proportional to
d(x, {ĉ1, . . . , ĉi})2.

Lemma 24. Assume k = 2. For sufficiently small ε,
Pr[(ĉ1 ∈ X1 && ĉ2 ∈ X2) || (ĉ2 ∈ X1 && ĉ1 ∈ X2)] =
1−O(ρ).

Proof. Wlog, we set d(c1, c2)2 = 1 for ease of computation
(scaling all distances does not affect the optimal clustering).
Let A =

∑
x∈X1,y∈X2

d(x, y)2 and B =
∑
x,y∈X d(x, y)2.

Then the probability is A/B. Let c′1 and c′2 denote the
centers of mass of X1 and X2, respectively. By Lemma
22, d(c1, c

′
1) ≤ ∆1(Ci)

|Ci| ·
10ε/α|Ci|

(1−10ε/α)|Ci| ≤ r2
iO(ρ

1−ρ) ≤
L
` ·O(εα)(1−O(εα))−2d(c1, c2), so d(c′1, c

′
2) ≥ d(c1, c2)−

d(c1, c
′
1)− d(c2, c

′
2) ≥ 1−O(L` · εα).

Therefore, A =
∑
x∈X1,y∈X2

d(x, y) = |X1|∆1(X2) +

|X2|∆1(X1) + |X1||X2|d(c′1, c
′
2)2 ≥ |X1||X2|d(c′1, c

′
2) ≥

n1n2(1−O(εα))2(1−O(L` · εα))2 ≥ n1n2(1−O(L` · εα)).

Dick, Li, Pillutla, White, Balcan, Smola

1

2

3

4

5

1

3

4

ts

T

S cost = 0

cost = � 1
cost = 0

capacity = 1

capacity = p
capacity = n(L� `)

supply = np

supply = 0

supply = � n`

supply = kn`� np

Figure 7: Minimum cost flow network to round x’s. Each node in a group has the same supply, which is indicated below.
The cost and capacity of each edge is indicated above.

B =
∑
x,y∈X d(x, y)2 = n2w2

avg + n1n2 ≤ n1n2(5
4 · εα ·

n2

n1n2
+ 1) ≤ n1n2(1 + ρL

2

`2). Therefore, AB ≥
1−O(L` ρ)

1+O(L` ·ρ)
.

This lemma, combined with Lemma 3.3 from (Ostrovsky
et al., 2006), immediately gives us the following theorem.

Theorem 25. k-means++ seeding with a Lloyd step outputs
a solution that is 1

1−ρ close to the optimal solution with
probability > 1−O(ρ), for clustering instances satisfying
(1 +α, ε)-approximation stability for the balanced 2-means
objective, with L

` ∈ O(1).

Now that we have k = 2, we move to the case where k ≤ ε
α .

This assumption is reasonable for real-world data which
does not have too many clusters and is sufficiently stable.
We need this assumption so that we can set ρ > ε·k

α . We still
assume that L ∈ O(`).

Assume that we sample k points ĉ1, . . . ĉk. We start with a
lemma similar to Lemma 24.

Lemma 26. The probability that ĉ1 and ĉ2 lie in the cores
of different clusters is 1−O(ρ).

Proof. A =
∑
x∈Xi, y∈Xj d(x, y)2 = |Xi|∆1(X2) +

|X2|∆1(X1) + |X1||X2|d(c′i, c
′
j)

2 ≥ n1n2(1 − O(ρ))2.
B =

∑
x∈Ci,!y∈Cj d(x, y)2 = (ni + nj)∆1(Ci ∪

Cj) = (ni + nj)
2(
w2
ini+w

2
jnj

ni+nj
) + ninjd(ci, cj)

2 =

ninj(
(ni+nj)

2

ninj
(
w2
ini+w

2
jnj

ni+nj
) + d(ci, cj)

2). Summing over
all i, j, we have the following.

A/B =

∑
i,j ninj∑

i,j ninj(1 +
(wini+wjnj)(ni+nj)

ninj
)
.

When L ∈ O(`), we simplify the denominator:∑
i,j ninj(1 +

(wini+wjnj)(ni+nj)
ninj

) =
∑
i,j ninj +∑

i,j(ni + nj)(wini + wjnj) =
∑
i,j ninj + O(L`) ·

n
k

∑
i,j(wini+wjnj) =

∑
i,j ninj+O(L`)·nk

∑
i,j 2n εα =

O(1 + ρ)
∑
i,j ninj when ρ > ε

α .

Therefore, A/B = 1−O(ρ).

Lemma 27.

Pr[ĉi+1 ∈
⋃

j /∈1,...,i

Xj | ĉ1, . . . , ĉi lie in the cores of

X1, . . . Xi] = 1−O(ρ).

Proof. A =
∑k
j=m+1

∑
x∈Xj d(x, Ĉ)2, and B =∑k

j=1

∑
x∈Cj d(x, Ĉ). Let

φ = max
j≥m+1

[max
x∈Xj

d(x,Cj)/d(cj , Ĉ)],

From Lemma 23, we have that φ ≤
maxi,j

(
√

ε
α)d(ci,cj)

d(ci,cj)−O(
√

ε
α)d(ci,cj)

≤ O(
√

ε
α)

1−O(
√

ε
α)
≤ 1. Then for

all points in the core of a cluster, d(x, Ĉ) ≥ (1−φ)d(cj , Ĉ).
Then A ≥ ∑k

j=m+1(1 − O(ρ))nj(1 − φ)2d(cj , Ĉ) ≥
(1− ρ− 2φ)

∑k
j=m+1 njd(cj , Ĉ)2. B ≤∑k

j=1(∆1(Cj) +

njd(cj , ĉpj)
2) ≤ ∆k(V) +

∑m
j=1 njd(cj , xj)

2 +∑k
j=m+1 njd(cj , Ĉ)2 ≤ ∆k(V) + 1

ρ

∑m
j=1 ∆1(Cj) +∑k

j=m+1 njd(cj , Ĉ) ≤ 1
ρ∆k(V) +

∑k
j=m+1 njd(cj , Ĉ)

If we set ρ = Ω(L` · εkα), then A/B = 1−O(ρ).

Lemma 28. Given we have sampled points {x̂1, . . . , x̂i},
and let C1, . . . Cm be all the clusters whose outer core
contains some point x̂j . Then Pr[x̂i+1 ∈ ∪kj=m+1Xj] ≥
1− 5ρ.

Data Driven Resource Allocation for Distributed Learning

Proof. This follows from the previous lemma.

Now we analyze the case where we sample more than k
points. Let N = 2k

1−5ρ .

Lemma 29. Say we sample N points. The probability that
for all i ∈ [k], there is some sampled point inX ′i , is≥ 1−ρ.

Proof. The proof follows from Lemma 28.

Finally, we perform a greedy removal phase. We refer the
reader to (Ostrovsky et al., 2006) since the analysis is the
same. This finishes the proof of Theorem 3.

k-median: Given a clustering instance (S, d) which satisfies
(1+α, ε)-approximation stability with respect to balanced k-
median, for some (l, L, k). We denote C = {C1, . . . , Ck} as
the optimal partition and c1, . . . , ck as the optimal centers.
Denote wavg as the average distance from a point to its
center in the optimal solution. Given a point x, define w(x)
as the distance to its center, and in general, for all i, denote
wi(x) as the distance to the center ci of cluster Ci in the
optimal solution. Note, we will discuss the p-replication
variant at the end of this section.

Lemma 30. Assume the size of the optimal clusters are
> 4εn(1 + 6

α). Then,

• For < εn
2 points x, there exists a set of ≥ εn

2 points y

from different clusters such that d(x, y) ≤ αw2
avg

ε .

• < 6εn
α points x have w(x) >

αw2
avg

6ε .

Proof. • Assume the statement is false. Then there exist
εn
2 pairs of distinct points (x, y) such that d(x, y) ≤
αw2

avg

ε (for example, because of Hall’s theorem). Now
we create a new partition C′ by swapping the points in
each pair, i.e., for a pair x ∈ Ci and y ∈ Cj , put x into
Cj and y into Ci. Then for a single swap, the increase
in cost is wj(x)−wi(x) +wi(y)−wj(y) ≤ wj(y) +
αw2

avg

ε − wi(x) + wi(x) +
αw2

avg

ε − wj(y) =
2αw2

avg

ε .
Therefore, the total difference in cost from OPT Φ

to Φ(C′) is then αOPT Φ. Note that since we only
performed swaps, C′ still satisfies all the capacity con-
straints of Φ. Furthermore, (C)′ is ε-close to OPT Φ

(since all clusters are size > 2εn, the optimal bijec-
tion between (C)′ and OPT Φ is the identity). This
contradicts the approximation stability property.

• This follows simply from Markov’s inequality.

Define x ∈ Ci as a good point if there are less than ε
2 points

y /∈ Ci such that d(x, y) ≤ αw2
avg

ε , and w(x) <
αw2

avg

6ε . If
a point is not good, then call it bad. Denote the set of bad

points by B. For all i, denote Xi = {x ∈ Ci | x is good}.
Then Lemma 30 implies that if the optimal clusters are size
> 2εn, |B| < εn(1 + 6

α).

Now we show that the optimal centers are sufficiently far
apart.

Lemma 31. Assume for all i, |Ci| > 7εn
α . Then for all i, j,

d(ci, cj) >
2
3 ·

αw2
avg

ε .

Proof. Given a cluster Ci. Since there are < εn
2 and < 6εn

α
points which do not satisfy properties 1 and 2 from Lemma
30, then at least one point from each cluster satisfies both
properties, i.e., is a good point. Then given i, j, let xi ∈ Ci
and xj ∈ Cj be good points. Then d(ci, cj) > d(xi, xj)−
d(xi, ci)−d(xj , cj) ≥ αw2

avg

ε −2 · αw
2
avg

6ε = 2
3 ·

αw2
avg

ε .

Combining Lemmas 30 an 31 implies that the threshold

graph with distance 2
3 ·

αw2
avg

ε will contain mostly “good”
edges between good points from the same cluster. The rest
of the argument for showing correctness of the algorithm is
similar to the analysis in (Balcan et al., 2013a). We include
it in Appendix 11 for completeness.

The following lemma is similar to Lemma 3.5 from (Balcan
et al., 2013a). We need to assume the clusters are larger, but
our proof generalizes to capacitated k-median.

Lemma 32. Assume the optimal cluster sizes are ≥ εn
2 (1 +

3
α). For τ =

αw2
avg

3ε , the threshold graph Gτ has the follow-
ing properties:

• There is an edge between any two good points x, y in
the same cluster Ci,

• There is not an edge between any two good points x, y
in different clusters; furthermore, these points do not
even share a neighbor in Gτ .

Proof. • Since x and y are both good, d(x, y) ≤ w(x) +

w(y) ≤ αw2
avg

6ε +
αw2

avg

6ε ≤ αw2
avg

3ε by the triangle in-
equality.

• Assume x and y have a common neighbor z. Consider a

point y2 from y’s cluster such that w(y2) ≤ αw2
avg

6ε . By
assumption, there are at least εn2 such points. Further-
more, d(x, y2) ≤ d(x, z) + d(z, y) + d(y, y2) ≤ 2τ +

w(y) + w(y2) ≤ 2αw2
avg

3ε +
αw2

avg

6ε +
αw2

avg

6ε =
αw2

avg

ε .
Since x is close to at least εn

2 points from different
clusters, x cannot be a good point, so we have reached
a contradiction.

Then the threshold graph is as follows. Each Xi forms a
clique, the neighborhood ofXi is exactlyXi∪B, and for all

Dick, Li, Pillutla, White, Balcan, Smola

i 6= j,N(Xi)∪N(Xj) = ∅. This facilitates an algorithm for
clustering in this setting, following analysis that is similar
to (Balcan et al., 2013a).

Lemma 33 ((Balcan et al., 2013a)). There is an efficient al-
gorithm such that, given a graph G satisfying the properties
of Lemma 32, and given b ≥ |B| such that each |Xi| ≥ b+2,
outputs a k-clustering with each Xi in a distinct cluster.

The proof of this theorem, given in (Balcan et al., 2013a),
depends solely on the properties of Lemma 32.

Lemma 34. There is an efficient algorithm such that if a
clustering instance satisfies (1 + α, ε)-approximation sta-
bility for the balanced k-median objective and all clusters
are size ≥ 3εn(1 + 3

α), then the algorithm will produce a
clustering that is O(εα)-close to the optimal clustering.

Proof. First we use the proof of Theorem 3.7 from (Balcan
et al., 2013a) (which assumes w2

avg is known) to the point
where they achieve error O(εα) by using their version of
Lemma 33. They go on to lower the error to ε, but this part
of the proof breaks down for us. For the case of unknown
w2
avg, we can use the same fix as in the proof of Theorem

3.8 from (Balcan et al., 2013a).

However, there is a problem with Lemma 34: even though it
returns a clustering with small error, the capacity constraints
might be violated. We can fix the capacity violations if we
double our error.

Lemma 35. Given an ε′ > 0 and a clustering C′, if C′
is ε′-close to the optimal clustering, then it is possible in
polynomial time to construct a valid clustering C′′ which is
2ε′-close to the optimal clustering.

Proof. For each cluster C ′i in C, let vi be the number of
points for which C ′i violates the capacity, i.e., |C ′i| − L or
l − |C ′i| or 0. Clearly,

∑
i vi ≤ ε′n, or else C′ would not be

ε′-close to the optimal. Then we can iteratively take a point
from the largest cluster, and place it into the smallest cluster.
In each iteration,

∑
i vi is reduced by at least 1. So in ≤ ε′n

rounds, we reach a valid clustering, and the error is only ε′

more than C′.

Part 1 of Theorem 4 follows immediately from the previous
lemma.

Note that all of the proofs in this section can be trivially
extended to the case where there is p-replication. However,
p-replication does not mesh well with stability assumptions.
Although Theorem 4 works completely under p-replication,
all but an ε-fraction of the data appears to have “trivial”
replication, in which there are k

p groups of data, each of
which have nearly the same p centers. This makes the prob-
lem similar to a k

p -clustering problem, up to εn points. The
reason for this phenomenon is the following. If good points

xi and xj share center c in addition to having other cen-
ters ci and cj , then by the triangle inequality, ci and cj are
close together. This would contradict Lemma 31 unless each
pair of good points either have p centers in common, or no
centers in common.

Examples of balanced approximation stable instances:

In this section, we explicitly construct clustering instances
which satisfy approximation stability for balanced cluster-
ing, but not for approximation stability for unbalanced clus-
tering.

Given n, α, ε, `, L, and let k = 2. Denote the two optimal
centers as c1 and c2. Let d(c1, c2) = 1.9. We place x ≤ εn

α
points at distance 1 from c1, and .9 from c2. Call this set of
points A. Then we place `n − x points at distance 0 from
c1 (denote by B1), and we place the rest of the points at
distance 0 from c2 (denote by B2). We need to assume that
`n− x ≥ 0.

Then for balanced clustering, C1 = A ∪B1, and C2 = B2,
because C1 must contain at least `n points. The optimal
cost is x. For standard clustering, C1 = B1, and C2 =
A∪B2, and the optimal cost is .9x. This clustering instance
is not (10

9 ,
x
n)approximation stable for standard clustering:

all points in A can move from C2 to C1, incurring a cost of
.1x to the objective.

However, this clustering instance is (1+α, ε)-approximation
stable for the balanced clustering objective. Moving any
point to a different cluster incurs a cost of at least 1. Given a
partition with cost (1+α)x = x+α·x ≤ x+α εnα ≤ x+εn.
Then less than εn points have switched clusters.

k-center:

Now we will prove the rest of Theorem 4. Given a clustering
instance, denote its optimal balanced k-center radius by r∗.
Lemma 36. Given a clustering instances satisfying (2, 0)-
approximation stability for balanced k-center, then for all
p ∈ Ci, q ∈ Cj , i 6= j, d(p, q) > r∗.

Proof. Assume the claim is false. Then ∃p ∈ Ci, q ∈
Cj such that d(p, q) ≤ r∗ and i 6= j. Then consider the
optimal clustering, except switch p for q. So the clusters are
Ci∪{q}\{p},Cj∪{p}\{q}, and the other k−2 clusters are
the same as in OPT . This clustering achieves a balanced k-
center radius of 2r∗. The only points with a new distance to
their center are p and q. By the triangle inequality, d(ci, q) ≤
d(ci, p)+d(p, q) ≤ 2r∗ and d(cj , p) ≤ d(cj , q)+d(q, p) ≤
2r∗. Furthermore, since the updated clusters are still the
same size as Ci and Cj , all the balance constraints still hold.
But this gives us a contradiction under (2, 0)-approximation
stability, since we have found a valid clustering of cost 2r∗

which is different from OPT .

From this lemma, there is a simple algorithm to optimally
cluster instances satisfying (2, 0)-approximation stability

Data Driven Resource Allocation for Distributed Learning

for balanced k-center. We merely need to create the thresh-
old graph for threshold distance r∗ and output the connected
components. Since every point is distance ≤ r∗ to their cen-
ter by definition, all points in an optimal cluster will be in the
same connected component. By Lemma 36, no two points
from different clusters will appear in the same connected
component.

The final part of Theorem 4 is to prove hardness of balanced
k-center under (2 − ε, 0)-approximation stability, for all
ε > 0, unless NP = RP . Note that there does not exist an
efficient algorithm for (2− ε)-approximation stability, if the
algorithm takes in ` and L as parameters. This is a corollary
of Theorem 10 in (Balcan et al., 2016), by setting ` = 0 and
L = 1.

However, we can show something stronger: we can show
no algorithm exists, even for the special case when ` = L.
We show the analysis from (Balcan et al., 2016) carries over
in this case.

Given a hard balanced-3-Dimensional Matching instance
X1, X2, X3, T , where |X1| = |X2| = |X3| = m, and each
t ∈ T is a triple t = (x1, x2, x3), x1 ∈ X1, x2 ∈ X2,
x3 ∈ X3. We modify the reduction to balanced-perfect-
dominating set as follows. We start by converting it to a
graph G = (V,E) in the same way as (Balcan et al., 2016).
Now we make four copies of this graph, G1, G2, G3, G4.
For each vertex v in G1 corresponding to an element in T
(denote this set by GT1), we add edges from v to its other
three copies in G2, G3 and G4. Call the resulting graph G′.
Note this reduction is still parsimonious. It has the additional
property that if a dominating set of size |T |+ 3|M | exists,
then each vertex in the dominating set hits exactly 4 vertices.
First, assume a 3-matching for the 3DM instance exists.
Then we can achieve a dominating set of size |T |+ 3|M |.
Pick the vertices corresponding to the 3-matching, there
are 4|M | such vertices, each of which have edges to the
3 elements they represent. We also put in the dominating
set, the |T | − |M | elements in GT1 that are not in the 3-
matching. Each of these elements have edges to their 3
copies in G2, G3, and G4. This makes a full dominating set
of size |T |+ 3|M |. If there is no 3-matching for the 3DM
instance, then the dominating set must be strictly larger.
Finally, the reduction from Unambiguous-Balanced Perfect
Dominating Set to clustering is the exact same proof, but
now since each vertex in the dominating set hits 4 vertices,
we get that each cluster is size exactly 4.

12 PROOFS FROM SECTION 4

Each clustering of the entire space X can be represented as
a pair (f, C) where C = {c1, . . . , ck} is a set of centers and
f : X →

(
C
p

)
is a function that assigns each point in X to p

of the k centers. We measure the quality of a clustering of X
as follows: given a data distribution µ over X , our goal is to
find a clustering with centers C and an assignment function

f : X →
(
C
p

)
that minimizes either the k-median objective

Q(1) or the k-means objective Q(2) given by

Q(1)(f, C) = E
x∼µ

[∑
i∈f(x)

d(x, ci)

]

and

Q(2)(f, C) = E
x∼µ

[∑
i∈f(x)

d(x, ci)
2

]
,

subject to the constraint that each cluster has probability
mass between ` and L. Specifically, we require for each
cluster index i that Px∼µ(i ∈ f(x)) ∈ [`, L]. Throughout
this section, we use the notation Q, Qn, and Q̂n as a place-
holder for either the k-median or k-means objective.

In our algorithm, each point x in the subsample S acts as a
representative for those points in X that are closer to it than
any other sample point (i.e., its cell in the Voronoi partition
induced by S). Since each sample point might represent
more or less of the probability mass of µ, we consider the
following weighted clustering problem of a dataset S. A
clustering of the data set S is a pair (g, C) for some set
of centers C = {c1, . . . , ck} and an assignment function
g : S →

(
C
p

)
that assigns each point of S to p of the centers.

The weight for point xi is wi = Px∼µ(NNS(x) = xi),
where NNS(x) denotes the nearest neighbor in S to the
point x. The weighted k-median and k-means objectives on
S are given by

Q(1)
n (g, c) =

n∑
j=1

wj
∑

i∈g(xj)

d(xj , c(i))

and

Q(2)
n (g, c) =

n∑
j=1

wj
∑

i∈g(xj)

d(xj , c(i))
2,

where the subscript n refers to the size of the subsample
S. The weighted capacity constraints require that the total
weight of each cluster i, given by

∑
j:i∈g(xj) wj , is between

` and L. Since the distribution µ is unknown, our algorithm
uses a second sample drawn from µ to estimate the weights.
Given estimates ŵ1, . . . , ŵn of the true weights, the esti-
mated k-median and k-means objective functions are

Q̂(1)
n (g, c) =

n∑
j=1

ŵj
∑

i∈g(xj)

d(xj , c(i))

and

Q̂(2)
n (g, c) =

n∑
j=1

ŵj
∑

i∈g(xj)

d(xj , c(i))
2,

and the estimated weight of a cluster is
∑
j:i∈g(xj) ŵj . Fi-

nally, for any clustering (g, c) of S, define the nearest neigh-
bor extension to be (ḡ, c) where ḡ(x) = g(NNS(x)). The

Dick, Li, Pillutla, White, Balcan, Smola

assignment function ḡ assigns each point in X to the same
p clusters as its nearest neighbor in S.

Finally, we introduce notation for the various relevant
classes of cluster assignment functions. For lower and upper
bounds on cluster sizes ` and L, we denote the set of cluster
assignments of the entire space X that satisfy the capacity
constraints by

F (`, L) =

{
f : X →

(
k

p

)
: P
x∼µ

(i ∈ f(x)) ∈ [`, L] ∀i
}
.

Similarly, for the samples S, for true and estimated weights,
define the sets of feasible assignments respectively as:

Gn(`, L) =

{
g : S →

(
k

p

)
:
∑

j:i∈g(x)

wj ∈ [`, L] ∀i
}

Ĝn(`, L) =

{
g : S →

(
k

p

)
:
∑

j:i∈g(x)

ŵj ∈ [`, L] ∀i
}
.

Before proving the main results in the paper, we need the
following lemmas. We first show that if we take the second
sample size n′ to be Õ(n/ε2), then with high probability
the error in any sum of the estimated weights ŵj is at most
ε.
Lemma 37. For any ε > 0 and δ > 0, if we set n′ =
O
(

1
ε2 (n+ log 1

δ)
)

in Algorithm 2, then with probability at
least 1− δ we have

∣∣∑
i∈I(wi − ŵi)

∣∣ ≤ ε uniformly for all
index sets I ⊂ [n].

Proof. Let Vi be the cell of point xi in the Voronoi partition
induced by S. For any index set I ⊂ [n], let VI denote
the union

⋃
i∈I Vi. Since the sets V1, . . . , Vn are disjoint,

for any index set I we have that µ(VI) =
∑
i∈I wi and

µ̂(VI) =
∑
i∈I ŵi, where µ̂ is the empirical measure in-

duced by the second sample S′. Therefore it suffices to
show uniform convergence of µ̂(VI) to µ(VI) for the 2n

index sets I . Applying Hoeffding’s inequality to each index
set and the union bound over all 2n index sets, we have that

P
(

sup
I⊂[n]

∣∣∣∣∑
i∈I

wi − ŵi
∣∣∣∣ > ε

)
≤ 2ne−2n′ε2 .

Setting n′ = O
(

1
ε2 (n + log 1

δ)
)

results in the right hand
side being equal to δ.

Next we relate the weighted capacity constraints and objec-
tive over the set S to the constraints and objective over the
entire space X .
Lemma 38. Let (g, c) be any clustering of S that satisfies
the weighted capacity constraints with parameters ` and
L. Then the nearest neighbor extension (ḡ, c) satisfies the
capacity constraints with respect to µ with the same param-
eters. For the k-median objective we have

|Q(1)
n (g, c)−Q(1)(ḡ, c)| ≤ p E

x∼µ

[
d(x,NNS(x))

]
,

and for the k-means objective we have

Q(2)
n (g, c) ≤ 2Q(2)(ḡ, c) + 2p E

x∼µ

[
d(x,NNS(x))2

]
and

Q(2)(ḡ, c) ≤ 2Q(2)
n (g, c) + 2p E

x∼µ

[
d(x,NNS(x))2

]
.

Proof. The fact that ḡ satisfies the population-level capacity
constraints follows immediately from the definition of the
weights w1, . . . , wn.

By the triangle inequality, k-median objective over X with
respect to µ can be bounded as follows

Q(1)(ḡ, c) ≤ E
x∼µ

[∑
i∈ḡ(x)

d(x,NNS(x))

]

+ E
x∼µ

[∑
i∈ḡ(x)

d(NNS(x), c(i))

]
= p E

x∼µ
[d(x,NNS(x))] +Q(1)

n (g, c).

The reverse inequality follows from an identical argument
applying the triangle inequality to Q(1)

n .

For the k-means objective, the result follows similarly by
using the following approximate triangle inequality for
squared distances: d(x, z)2 ≤ 2(d(x, y)2 + d(y, z)2),

We are now ready to prove Theorem 39. The statement
below is modified to include the k-means objective.

Theorem 39. For any ε > 0, δ > 0, let (ḡn, cn) be the
output of Algorithm 2 with parameters k, p, `, L and second
sample size n′ = O

(
(n + log 1/δ)/ε2

)
. Let (f∗, c∗) be

any clustering of X and (g∗n, c
∗
n) be an optimal clustering

of S under Q̂n satisfying the estimated weighted balance
constraints (`, L). Suppose the algorithm used to cluster S
satisfies Q̂(gn, cn) ≤ r · Q̂(g∗n, c

∗
n) + s. Then w.p. ≥ 1− δ

over the second sample the output (ḡn, cn) will satisfy the
balance constraints with `′ = ` − ε and L′ = L + ε. For
k-median we have

Q(1)(ḡn, cn) ≤ r ·Q(1)(f∗, c∗) + s+ 2(r + 1)pDε

+ p(r + 1)α1(S) + rβ1(S, `+ ε, L− ε),

and for k-means we have

Q(2)(ḡn, cn) ≤ 4r ·Q(2)(f∗, c∗) + 2s+ 4(r + 1)pD2ε

+ 2p(2r + 1)α2(S) + 4rβ2(S, `+ ε, L− ε).

Proof. Lemma 37 guarantees that when the second sample
is of size O(1

ε2 (n + log 1
δ)) then with probability at least

1− δ, for any index set I ⊂ [n], we have
∣∣∑

i∈I wi− ŵi
∣∣ ≤

ε. For the remainder of the proof, assume that this high
probability event holds.

Data Driven Resource Allocation for Distributed Learning

First we argue that the clustering (gn, cn) satisfies the true
weighted capacity constraints with the slightly looser param-
eters `′ = `−ε and L′ = L+ε. Since the clustering (gn, cn)
satisfies the estimated weighted capacity constraints, the
high probability event guarantees that it will also satisfy the
true weighted capacity constraints with the looser parame-
ters `′ = `− ε and L′ = L+ ε. Lemma 38 then guarantees
that the extension (ḡn, cn) satisfies the population-level ca-
pacity constraints with parameters `′ and L′.

Next we bound the difference between the estimated and
true weighted objectives for any clustering (g, c) of S. For
each point xj in the set S, let Cj =

∑
i∈g(xj) d(xj , c(i))

be the total distance from point xj to its p assigned centers
under clustering (g, c), and let J be the set of indices j for
which ŵj > wj . Then by the triangle inequality, we have
the following bound for the k-median objective:

|Q̂(1)
n (g, c)−Q(1)

n (g, c)|

≤
∣∣∣∣∑
j∈J

(ŵj − wj)Cj
∣∣∣∣quad+

∣∣∣∣∑
j 6∈J

(wj − ŵj)Cj
∣∣∣∣

≤
(∣∣∣∣∑

j∈J
(ŵj − wj)

∣∣∣∣+

∣∣∣∣∑
j 6∈J

(wj − ŵj)
∣∣∣∣)pD

≤ 2pDε, (4)

where the second inequality follows from the fact that Cj ≤
pD and the sum has been split so that (ŵj − wj) is always
positive in the first sum and negative in the second. For
the k-means objective, the only difference is that our upper
bound on Cj is D2 instead of D, which gives |Q̂(2)

n (g, c)−
Q

(2)
n (g, c)| ≤ 2pD2ε.

Finally, let (hn, c
′
n) be the clustering of S that attains the

minimum in the definition of β(S, ` + ε, L − ε). That is,
the clustering of S satisfying the capacity constraints with
parameters `+ε and L−εwhose nearest neighbor extension
has the best objective over X with respect to µ (note that
this might not be the extension of (g∗n, c

∗
n)).

Now we turn to bounding the k-median objective value
of (ḡn, cn) over the entire space X . Combining Lemma 38,
equation (4), the approximation guarantees for (gn, cn) with
respect to Q̂n, and the optimality of (g∗n, c

∗
n), we have the

following:

Q(1)(ḡn, cn) ≤ Q(1)
n (gn, cn) + pα1(S)

≤ Q̂(1)
n (gn, cn) + 2pDε+ pα1(S)

= Q(1)
n (gn, cn)− r · Q̂(1)

n (g∗n, c
∗
n)

+ r · Q̂(1)
n (g∗n, c

∗
n) + 2pDε+ pα1(S)

≤ s+ 2pDε+ pα1(S)

+ r · Q̂(1)
n (hn, c

′
n)

≤ s+ 2(r + 1)pDε+ pα1(S) + r ·Q(1)
n (hn, c

′
n)

≤ s+ 2(r + 1)pDε+ p(r + 1)α1(S)

+ r ·Q(1)(h̄n, c
′
n)

≤ s+ 2(r + 1)pDε+ p(r + 1)α1(S)

+ r · β1(S, `+ ε, L− ε) + r ·Q(1)(f∗, c∗).

The proof for the case of k-means is identical, except we use
the corresponding result from Lemma 38 and the alternative
version of equation (4).

Bounding α(S):

In this section, we prove the following Lemma bounding
the α term from Theorem 39:

Lemma 40. For any ε, δ > 0, and X ⊆ Rq, if a randomly
drawn S from µ is of sizeO(qq/2ε−(q+1)(q log

√
q

ε +log 1
δ))

in the general case, or O(ε−d0(d0 log 1
ε + log 1

δ)) if µ is
doubling with dimension d0, then w.p≥ 1− δ, α1(S) ≤ εD
and α2(S) ≤ (εD)2.

First we show that when the setX is bounded in Rq , then for
a large enough sample S drawn from µ, every point x ∈ X
will have a close neighbor uniformly with high probability.

Lemma 41. For any r > 0 and any ε > 0, there exists
a subset Y of X containing at least 1 − ε of the proba-
bility mass of µ such that, for any δ > 0, if we see an
iid sample S of size n = O(1

ε (
D
√
q

r)q(q log
D
√
q

r + log 1
δ))

drawn from µ, then with probability at least 1− δ we have
supx∈Y d(x,NNS(x)) ≤ r.

Proof. Let C be the smallest cube containing the support
X . Since the diameter of X is D, the side length of C is
at most D. Let s = r/

√
q be the side-length of a cube in

Rq that has diameter r. Then it takes at most m = dD/seq
cubes of side-length s to cover the set C. Let C1, . . . , Cm
be such a covering of C, where each Ci has side length s.

Let Ci be any cube in the cover that has probability mass
at least ε/m under the distribution µ. The probability that a
sample of size S drawn from µ does not contain a sample
in Ci is at most (1− ε/m)n. Let I denote the index set of
all those cubes with probability mass at least ε/m under
µ. Applying the union bound over the cubes indexed by
I , the probability that there exists a cube Ci with i ∈ I
that does not contain any sample from S is at most m(1−

Dick, Li, Pillutla, White, Balcan, Smola

ε/m)n ≤ me−nε/m. Setting n = m
ε (lnm + log 1

δ) =

O(1
ε (
D
√
q

r)q(q log
D
√
q

r +log 1
δ)) results in this upper bound

being δ. For the remainder of the proof, suppose that this
high probability event occurs.

Define Y =
⋃
i∈I Ci. Each cube from our cover not used in

the construction of Y has probability mass at most ε/m and,
since there are at most m such cubes, their total mass is at
most ε. It follows that Px∼µ(x ∈ Y) ≥ 1 − ε. Moreover,
every point x in Y belongs to one of the cubes, and every
cube Ci with i ∈ I contains at least one sample point. Since
the diameter of the cubes is r, it follows that the nearest
sample to x is at most r away.

Setting r = Dε, we obtain one half of Lemma 40.

For the remainder of this section, suppose that µ is a dou-
bling measure of dimension d0 with support X and that
the diameter of X is D > 0. First, we shall prove general
lemmas about doubling measures. They are quite standard,
and are included here for the sake of completion. See, for
example, (Krauthgamer and Lee, 2004; Kpotufe, 2010).

Lemma 42. For any x ∈ X and any radius of the form
r = 2−TD for some T ∈ N, we have

µ(B(x, r)) ≥ (r/D)d0 .

Proof. Since X has diameter D, for any point x ∈
X we have that X ⊂ B(x,D), which implies that
µ(B(x,D)) = 1. Applying the doubling condition T
times gives µ(B(x, r)) = µ(B(x, 2−TD)) ≥ 2−Td0 =
(r/D)d0 .

Lemma 43. For any radius of the form r = 2−TD for some
T ∈ N, there is a covering of X using balls of radius r of
size no more than (2D/r)d0 .

Proof. Consider the following greedy procedure for cov-
ering X with balls of radius r: while there exists a point
x ∈ X that is not covered by our current set of balls of
radius r, add the ball B(x, r) to the cover. Let C denote the
set of centers for the balls in our cover. When this procedure
terminates, every point in X will be covered by some ball
in the cover.

We now show that this procedure terminates after adding
at most (2D/r)d0 balls to the cover. By construction, no
ball in our cover contains the center of any other, implying
that the centers are at least distance r from one another.
Therefore, the collection of balls B(x, r/2) for x ∈ C are
pairwise disjoint. Lemma 42 tells us that µ(B(x, r/2)) ≥
(r/2D)d0 , which gives that 1 ≥ µ

(⋃
x∈C B(x, r/2)

)
=∑

x∈C µ(B(x, r/2)) ≥ |C|(r/2D)d0 . Rearranging the
above inequality gives |C| ≤ (2D/r)d0 .

The next lemma tells us that we need a sample of size
O
(
(Dr)d0(d0 log D

r + log 1
δ)
)

in order to ensure that there
is a neighbor from the sample no more than r away from
any point in the support with high probability. The second
half of Lemma 40 is an easy corollary.

Lemma 44. For any r > 0 and any δ > 0, if we
draw an iid sample S of size n = (2D

r)d0(d0 log(4D
r) +

log(1
δ)), then with probability at least 1 − δ we have

supx∈X d(x,NNS(x)) ≤ r

Proof. By Lemma 43 there is a covering of X with balls
of radius r/2 of size (4D/r)d0 . For each ball B in the
cover, the probability that no sample point lands in B is
(1 − µ(B))n ≤ (1 − (r/2D)d0)n ≤ exp(−n(r/2D)d0).
Let E be the event that there exists at least one ball B
in our cover that does not contain one of the n sample
points. Applying the union bound over the balls in the
cover, we have that P(E) ≤ (4D/r)d0 exp(−n(r/2D)d0).
Setting n = (2D/r)d0(d0 log(4D/r) + log(1/δ)) =
O
(
(Dr)d0(d0 log D

r + log 1
δ)
)
, we have that P(E) < δ.

When the bad event E does not occur, every ball in our
covering contains at least one sample point. Since every
point x ∈ X belongs to at least one ball in our covering and
each ball has diameter r, we have supx∈X d(x,NNS(x)) ≤
r.

Bounding β(S): In this section, we prove the following
bound on β:

Lemma 45. Let µ be a measure on Rq with support X of
diameterD. Let f∗, some clustering of µ that satisfies capac-
ities (`+ ε, L− ε), be φ-PL. If we see a sample S drawn iid

from µ of sizeO
(

1
ε

(
1

φ−1(ε/2)

)q(
q log

√
q

φ−1(ε/2) +log 1
δ

))
in

the general case or O
((

1
φ−1(ε)

)d0(
d0 log 4

φ−1(ε) + log 1
δ

))
when µ is a doubling measure of dimension d0 then, w.p. at
least 1− δ over the draw of S, we have that β1(S, `, L) ≤
pDε and β2(S, `, L) ≤ pD2ε.

First, we define the Probabilistic Lipschitzness condition:

Definition 5 (Probabilistic Lipschitzness). Let (X , d()) be
some metric space of diameter D and let φ : [0, 1] →
[0, 1]. f : X → [k] is φ-Lipschitz with respect to some
distribution µ over X , if ∀λ ∈ [0, 1]: Px∼µ

[
∃y : I{f(x) 6=

f(y)} and d(x, y) ≤ λD
]
≤ φ(λ)

Proof of Lemma 45. Suppose Px∼µ(f∗(NNS(x)) 6=
f∗(x)) ≤ ε.
Define the restriction fS : S →

(
k
p

)
of f ∈ F (`, L) to

be fS(x) = f(x) for x ∈ S. Firstly, we shall show that
the cluster sizes of f∗S can be bounded. Recall that the
sizes of cluster i in a clustering f of X and a clustering
g of the sample S are respectively is Px∼µ(i ∈ f(x)) and
Px∼µ(i ∈ ḡ(x)). By the triangle inequality, |Px∼µ(i ∈
f̄∗S(x)) − Px∼µ(i ∈ f∗(x))| ≤ Px∼µ(f̄∗S(x) 6= f∗(x)) =

Data Driven Resource Allocation for Distributed Learning

Px∼µ(f∗(NNS(x)) 6= f∗(x)) and this is at most ε, by our
assumption.

Consider β(S). Since f∗ ∈ F (`+ 2ε, L− 2ε), we have that
f∗S ∈ Gn(`− ε, L+ ε), we have

β(S) ≤ Q(f̄∗S , c
∗)−Q(f∗, c∗)

= E
x∼µ

[∑
i∈f∗(NNS(x))

‖x− c(i)‖ −
∑

i′∈f∗(x)

‖x− c(i′)‖
]

By the triangle inequality, ‖x−c(i)‖−‖x−c(i′)‖ ≤ ‖c(i)−
c(i′)‖. Since f∗(x) and f∗S(NNS(x)) can differ on at most
p assignments, and since any two centers are most a distance
D apart, we have that β(S) ≤ Ex∼µ(pD·I{f∗(NNS(x)} 6=
f∗(x))) = pD · Px∼µ(f∗(NNS(x)) 6= f∗(x)) ≤ pDε.
All that remains is to show that Px∼µ(f∗(NNS(x)) 6=
f∗(x)) ≤ ε for big enough n. Lemma 46 lists the conditions
when this is true.

We require the following lemma for nearest neighbor classi-
fication, similar in spirit to that of Urner et al (Urner et al.,
2013). Note that since f is a set of p elements, this lemma
holds for multi-label nearest neighbor classification.

Lemma 46. Let µ be a measure on Rq with support X of
diameter D. Let the labeling function, f be φ-PL. For any
accuracy parameter ε and confidence parameter δ, if we see
a sample S of size at least

• 2
ε

⌈ √
q

φ−1(ε/2))

⌉q(
q logd

√
q

φ−1(ε/2)e + log 1
δ

)
in the gen-

eral case

•
(

2
φ−1(ε)

)d0(
d0 log 4

φ−1(ε) + log 1
δ

)
when µ is a dou-

bling measure of dimension d0

then nearest neighbor classification generalizes well. That is,
with probability at least 1−δ over the draw of S, the error on
a randomly drawn test point, Px∼µ(f(x) 6= f(NNS(x))) ≤
ε.

Proof. Let λ = φ−1(ε). We know that most of X can
be covered using hypercubes in the general case, as in
Lemma 41 or entirely covered using balls in the case when
µ is a doubling measure, as in Lemma 43, both of diameter
λD. In case we have cubes in the cover, we shall use a ball
of the same diameter instead. This does not change the sam-
ple complexity, since a cube is completely contained in a
ball of the same diameter.

Formally, let C be the covering obtained from Lemma 41 or
Lemma 43, depending on whether or not the measure is a
doubling measure. Define B(x) to be the set of all the balls
from C that contain the point x. A point will only be labeled
wrongly if it falls into a ball with no point from S, or a ball

that contains points of other labels. Hence,

P
x∼µ

(f(NNS(x)) 6= f(x)) ≤ P
x∼µ

(∀C ∈ B(x) : S ∩ C = ∅)

+ P
x∼µ

(∃y ∈
⋃

C∈B(x)

C : f(y) 6= f(x))

Since each ball is of diameter λD, the second term is at
most Px∼µ(∃y ∈ B(x, λD) : f(y) 6= f(x)). By the PL
assumption, this is at most φ(λ) = ε, independent of the
covering used.

For the first term, our analysis will depend on which cover-
ing we use:

• From Lemma 41, we know that all but 1− ε fraction
of the space is covered by the covering C. When the
sample is of sizeO(1

ε (
√
q

λ)q(q log(
√
q

λ)+log 1
δ)), each

C ∈ C sees a sample point. For a sample this large, the
first term is ≤ ε. Substituting ε with ε/2 completes this
part of the proof.

• When µ is a doubling measure, we can do better.If
every ball of the cover sees a sample point, the first
term is necessarily zero. From the proof of Lemma 44,
we know that if we draw a sample of size n =
(2/λ)d0(d0 log(4/λ) + log(1/δ)) samples, then every
ball of the cover sees a sample point with probability
at least 1− δ over the draw of S. This completes the
proof.

13 DETAILS FOR THE EXPERIMENTS

Experimental System Setup: We now describe the dis-
tributed implementation used for the experiments. We start
one worker process on each of the available processing
cores. First, a single worker subsamples the data, clusters
the subsample into k clusters, and then builds a random par-
tition tree for fast nearest neighbor lookup. The subsample,
clustering, and random partition tree describe a dispatching
rule, which is then copied to every worker. Training the
system has two steps: first, the training data is dispatched
to the appropriate workers, and then each worker learns a
model for the clusters they are responsible for. During the
deployment phase, the workers load the training data in par-
allel and send each example to the appropriate workers (as
dictated by the dispatch rule). To minimize network over-
head examples are only sent over the network in batches of
10,000. During the training phase, each worker calls either
Liblinear or an L-BFGS solver to learn a one-vs-all linear
classifier for each of their clusters. For testing, the testing
data is loaded in parallel by the workers and the appropriate
workers are queried for predictions.

Dick, Li, Pillutla, White, Balcan, Smola

Details of LSH-baseline: The LSH family used by our LSH
baseline is the concatenation of t random projections fol-
lowed by binning. Each random projection is constructed
by sampling a direction u from the standard Gaussian dis-
tribution in Rd. An example x is then mapped to the index
bu>x/wc, where w is a scale parameter. Two points x and y
map to the same bin if they agree under all t hash functions.
In our experiments, the parameter t was set to 10 and w is
chosen so that hashing the training data results in approxi-
mately 2k non-empty bins. We tried several other values of
t and w but performance did not change significantly.

Details for Synthetic Data Distribution: The synthetic dis-
tribution used in Section 5 is an equal-weight mixture of 200
Gaussians in R20 with means chosen uniformly at random
from the unit cube [0, 1]20. Each Gaussian is associated with
one of 30 class labels. To decide the class labels, we con-
struct a hierarchical clustering of the Gaussian centers using
complete linkage and assign labels using a simple recursive
procedure: each internal node of the subtree is associated
with a range of permissible labels. The permissible labels
assigned to the left and right children of the parent node are
a partition of the parent’s assigned labels, and the number of
labels they receive is proportional to the number of leaves in
the subtree. If a subtree has only one permissible label, both
children are given that label. Finally, each leave chooses a
label uniformly at random from the set of permissible labels
it was assigned (in many cases, there will only be one). This
labeling strategy results in nearby Gaussians having similar
labels.

Inception Network: The specific architecture for the
nerual network we used when constructing the fea-
ture representations for the CIFAR-10 dataset can
be found here: https://github.com/dmlc/
mxnet/blob/master/example\/notebooks/
cifar10-recipe.ipynb.

Hardware: The experiments for MNIST-8M, CIFAR10,
and the CTR datasets were performed on a cluster of 15
machines, each with 8 Intel(R) Xeon(R) cores of clock rate
2.40 GHz and 32GB shared memory per machine. The ex-
periments for the large synthetic experiment were performed
on AWS. We used clusters of 8, 16, 32, and 64 m3.large
EC2 instances, each with an Intel (R) Xeon E5-2670 v2
processors and 7.5 GB memory per machine.

Clustering algorithm selection: In Section 3 we showed
that k-means++ will find high-quality balanced clusterings
of the data whenever a natural stability condition is satisfied.
Since the k-means++ algorithm is simple and scalable, it
is a good candidate for implementation in real systems. In
this section we present an empirical study of the quality
of the clusterings produced by k-means++ for the datasets
used in our experiments. For each of the datasets used in our
learning experiments, we find that the clustering obtained
by k-means++ is very competitive with the LP rounding

techniques. We also include a synthetic dataset designed
specifically so that k-means++ with balancing heuristics
will not perform as well as the LP-rounding algorithms.

We compare the clustering algorithms on two metrics: (1)
the k-means objective value of the resulting clustering and
(2) the mean per-cluster class distribution entropy. Since
the LP rounding algorithms may violate the replication by
a factor of 2, we use an averaged version of the k-means
objective

Q(f, c) =

n∑
i=1

1

|f(xi)|
∑

j∈f(xi)

‖x− cj‖2,

which provides a fair comparison when |f(xi)| is not exactly
p for all points. The second metric is the mean per-cluster
class distribution entropy which measures how well the clus-
ters are capturing information about the class labels. Each
cluster has an empirical distribution over the class labels
and this distribution will have low entropy when the cluster
contains mostly examples from a small number of classes.
Therefore, when the average class-distribution entropy per
cluster is small, we expect the learning problems for each
cluster to be simpler than the global learning problem, which
should lead to improved accuracy. Formally, given a dataset
(x1, y1), . . . , (xn, yn) with yi ∈ {1, . . . ,M} and a cluster-
ing (f, c), we compute

H(f, c) = −1

k

k∑
j=1

M∑
y=1

pj,y log2(pj,y),

where pj,y is the fraction of the points in cluster j that
belong to class y.

Results: We run the k-means++ algorithm with balancing
heuristics described in Section 5, the LP-rounding algorithm
for the k-means objective, and the LP-rounding algorithm
for the k-median objective. For each dataset, we randomly
subsample 700 points and run the algorithm for values of k
in {8, 16, 32, 64, 128} with p = 2 and compute the above
metrics. This is averaged over 5 runs. The k-means objective
values are shown in Figure 8 and the mean per-cluster class
entropies are shown in Figure 9.

For every dataset, the k-means++ algorithm finds a clus-
tering of the data that has better k-means objective value
than the LP-rounding algorithms, and for all but the large
values of k, the per-cluster class entropies are also smaller
for k-means++. It is interesting to note that the LP-rounding
algorithm for k-median achieves better k-means objective
that the LP-rounding algorithm for k-means! This might be
explained by the smaller approximation factor for k-median.
The balancing heuristics for k-means++ never resulted in
the algorithm outputting more than k clusters (though for
k = 128, it output on average 16 too few clusters). Finally,
the LP-rounding algorithms assigned the majority of points
to only 1 center (which is allowed under our bi-criteria anal-
ysis). This reduces the cluster sizes, which explains why

https://github.com/dmlc/mxnet/blob/master/example\/notebooks/cifar10-recipe.ipynb
https://github.com/dmlc/mxnet/blob/master/example\/notebooks/cifar10-recipe.ipynb
https://github.com/dmlc/mxnet/blob/master/example\/notebooks/cifar10-recipe.ipynb

Data Driven Resource Allocation for Distributed Learning

the per-cluster class entropy is lower for the LP rounding
algorithms when k is large. These results justify the use of
k-means++ in our distributed learning experiments.

Additional Synthetic Distribution for Bounded Parti-
tion Trees: In this section we present an additional synthetic
distribution for which our algorithm significantly outper-
forms the balanced partition tree. The data distribution is
uniform on the 100-dimensional rectangle [0, 10]× [0, 10]×
[0, 1]×· · ·× [0, 1], where the first two dimensions have side
length 10 and the rest have side length 1. The class of an
example depends only on the first 2 coordinates, which are
divided in to a regular 4 × 4 grid with one class for each
grid cell, giving a total of 16 classes. Figure 10 shows a
sample from this distribution projected onto the first two
dimensions. We use either balanced partition trees or our
algorithm using k-means++ to partition the data, and then
we learn a linear one-vs-all SVM on each subset. If a sub-
set is small enough to only intersect with one or two grid
cells, then the learning problem is easy. If the subset inter-
sects with many grid cells, there is not usually a low-error
one-vs-all linear classifier.

Intuitively, balanced partition trees fail on this dataset be-
cause in order for them to produce a good partitioning, they
need to repeatedly split on one of the first two dimensions.
Any time the balanced partition tree splits on another di-
mension, the two resulting learning problems are identical
but with half the data. On the other hand, clustering-based
approaches will naturally divide the data into small groups,
which leads to easier learning problems. The accuracies
for the balanced partition trees and k-means++ are shown
in Figure 11. Our method is run with parameters p = 1,
` = 1/(2k), and L = 2/k.

14 COMPARISON OF CLUSTERING
ALGORITHMS

In this section, we empirically and theoretically compare
the LP rounding and k-means++ algorithms on a data distri-
bution designed specifically to show that in some cases, the
LP rounding algorithm gives higher performance.

The synthetic distribution is a mixture of two Gaussians in
R2, one centered at (0, 0) and the other centered at (10, 0).
We set the balancing constraints to be ` = 1/10 and L = 1
so that no cluster can contain fewer than 10% of the data.
The mixing coefficient for the Gaussian at (10, 0) is set to
0.8` = 0.08, so in a sample this Gaussian will not contain
enough data points to form a cluster on its own. In an optimal
2-clustering of this data with the given constraints, cluster
centered at (10, 0) will steal some additional points from
the Gaussian centered at (0, 0). Running the k-means++
algorithm, however, will produce a clustering that does not
satisfy the capacity constraints, and the merging heuristic
described in Section 5 will simply merge the points into one

cluster. The following labeling function is designed so that
there is no globally accurate one-vs-all linear classifier, but
for which there is an accurate classifier for each cluster in
the optimal clustering.

f(x) =


−1 if x1 ≤ 0

1 if x1 ∈ (0, 5]

2 otherwise.

The LP rounding algorithm requires the replication param-
eter p to be at least two, so we run both algorithms with
p = 2 and k = 4, in which case the above intuitions still
hold but now each of the clusters is assigned two centers
instead of one. Figure 12 shows a sample drawn from this
distribution labeled according to the above target function.

We evaluate the LP rounding algorithm, k-means++, and
an algorithm that optimally solves the clustering problem
by solving the corresponding integer program (this is only
feasible for very small input sizes). Other aspects of the ex-
periment are identical to the large scale learning experiments
described in Section 5. In all cases, we set the parameters
to be k = 4, p = 2. The training size is 10,000, the test-
ing size 1,000, and the clustering is performed on a sample
of size 200. Running k-means++ results in accuracy 0.768
(averaged over 500 runs), using the LP rounding algorithm
results in accuracy 0.988, and exactly solving the capaci-
tated clustering IP results in accuracy 0.988. Since the LP
rounding and IP based algorithms are deterministic, we did
not run the experiment multiple times. The accuracy of k-
means++ does not significantly increase even if we cluster
the entire sample of training 10,000 points rather than a
small sample of size 200. This experiment shows that, while
the k-means++ heuristic works effectively for many real-
world datasets, it is possible to construct datasets where its
performance is lower than the LP rounding algorithm.

With a modification to this distribution, but with the same
intuition, we can prove there is a point set in which the LP
rounding algorithm outperforms k-means++.

Lemma 47. There exists a distribution such that with
constant probability, classification using the k-median LP
rounding algorithm as a dispatcher outperforms the k-
means++ algorithm with a balancing heuristic.

Proof. The point set is as follows. All points are on a line,
and there are three groups of points, groupA,B, andC. Two
points in the same group are at distance zero. Group A is
distance 1 from groupB, and groupB is distance 10. Group
A is distance 101 from group C. Group A contains 112
points, groupB contains 111 points, and group C contains 1
point. Set k = 2, n` = 112, and L = 1. For now, p = 1. All
points in A, B, and C are labeled −1, 0, and 1, respectively.

Then the optimal k-median 2-means cluster is to put centers
at A and B. Then the points at A and B pay zero, and the

Dick, Li, Pillutla, White, Balcan, Smola

8 16 32 64 128
k

20000

22000

24000

26000

28000

30000

32000

34000

36000

k-
m

e
a
n
s

o
b
je

ct
iv

e

lpr_kmeans

lpr_kmedian

kmpp

(a) MNIST-8M

8 16 32 64 128
k

1000

1500

2000

2500

3000

3500

k-
m

e
a
n
s

o
b
je

ct
iv

e

lpr_kmeans

lpr_kmedian

kmpp

(b) CIFAR-10 Early Features

8 16 32 64 128
k

300

350

400

450

500

550

600

k-
m

e
a
n
s

o
b
je

ct
iv

e

lpr_kmeans

lpr_kmedian

kmpp

(c) CIFAR-10 Late Features

8 16 32 64 128
k

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

k-
m

e
a
n
s

o
b
je

ct
iv

e

lpr_kmeans

lpr_kmedian

kmpp

(d) Synthetic Dataset

Figure 8: Comparison of the k-means objective value.

Data Driven Resource Allocation for Distributed Learning

8 16 32 64 128
k

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

M
e
a
n
 p

e
r-

cl
u
st

e
r

cl
a
ss

 e
n
tr

o
p
y lpr_kmeans

lpr_kmedian

kmpp

(a) MNIST-8M

8 16 32 64 128
k

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

M
e
a
n
 p

e
r-

cl
u
st

e
r

cl
a
ss

 e
n
tr

o
p
y lpr_kmeans

lpr_kmedian

kmpp

(b) CIFAR-10 Early Features

8 16 32 64 128
k

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

M
e
a
n
 p

e
r-

cl
u
st

e
r

cl
a
ss

 e
n
tr

o
p
y lpr_kmeans

lpr_kmedian

kmpp

(c) CIFAR-10 Late Features

8 16 32 64 128
k

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

M
e
a
n
 p

e
r-

cl
u
st

e
r

cl
a
ss

 e
n
tr

o
p
y lpr_kmeans

lpr_kmedian

kmpp

(d) Synthetic Dataset

Figure 9: Comparison of the mean per-cluster class distribution entropy.

Dick, Li, Pillutla, White, Balcan, Smola

0 2 4 6 8 10
0

2

4

6

8

10

Figure 10: Scatter plot of the data after projecting onto the
first two coordinates (note: some colors are reused)

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u
ra

c
y

2
1

2
2

2
3

2
4

2
5

2
6

of clusters (k)

kmpp
bpt

Figure 11: Accuracy of learning using balanced partition
trees and k-means++

−4 −2 0 2 4 6 8 10 12 14
−4

−3

−2

−1

0

1

2

3

Figure 12: A dataset which has two well defined clusters
that are not balanced in size.

points at C pay 10 · 10 = 100 to connect to the center at B.
So the total k-median score is 100.

The LP rounding algorithm is guaranteed to output an 11-
approximation, so it must output a 2-clustering with score
≤ 110 (it only works when p ≥ 2, but we will modify the
proof for p ≥ 1 at the end). Note, the centers must stay at A
and B, because if a center is not at (wlog) A, then the center
must be distance at least 1 away from A, which means the
score of this clustering is ≥ 111. Now we know the LP
algorithm is guaranteed to output centers at A and B. Then
the clusters must be A and B ∪ C, because this assignment
minimizes the flow in the graph the LP algorithm uses to
assign points to clusters. Therefore, each cluster has ≤ 2
labels, which can easily be classified using a linear separator.

Now we consider the k-means++ algorithm. First we calcu-
late the probability that a center is placed in group C. Note,
there is zero probability that both centers are in the same
group. So this probability is the complement of the probabil-
ity the centers fall in A and B. By a simple calculation, the
probability is 1− 112

224 · 1·111
1·111+11·1− 111

224 · 1·112
1·112+10·1 = .09016.

However, if a center is placed in group C, then the clusters
will be A ∪B and C, which means the k-means++ balanc-
ing heuristic will combine both clusters into a single cluster.
Then, there are 3 groups of points with different labels on
a line, so a linear separator must classify at least one point
incorrectly.

The proof of Lemma 47 can be modified for k-means. The
probability that k-means outputs a bad clustering is inversely
proportional to the approximation factor of the LP algorithm,
but since the LP algorithm has constant-factor approxima-
tion ratios, the probability is constant. The proof can also be
modified for p = 2 similar to the explanation in the experi-
mental evaluation. Set p = 2 and k = 4, and the problem
stays the same, since the optimal clustering puts two centers
at A and two centers at B.

	INTRODUCTION
	FAULT TOLERANT BALANCED CLUSTERING
	BALANCED CLUSTERING UNDER STABILITY
	EFFICIENT CLUSTERING BY SUBSAMPLING
	EXPERIMENTS
	CONCLUSION
	RELATED WORK CONTINUED
	Distributed Machine Learning
	Capacitated Clustering

	STRUCTURE OF BALANCED CLUSTERING
	DETAILS FROM SECTION 2
	k-CENTER
	PROOFS FROM SECTION 3
	PROOFS FROM SECTION 4
	DETAILS FOR THE EXPERIMENTS
	COMPARISON OF CLUSTERING ALGORITHMS

