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Abstract

We consider the problem of large scale matrix
recovery given side information in the form of
additional matrices of conforming dimension.
This is a parsimonious model that captures
a number of interesting problems including
context and location aware recommendations,
personalized ‘tag’ learning, demand learning
with side information, etc. Viewing the matrix
we seek to recover and the side information we
have as slices of a tensor, we consider the prob-
lem of Slice Recovery, which is to recover spe-
cific slices of a tensor from noisy observations
of the tensor. We provide an efficient algo-
rithm to recover slices of structurally ‘simple’
tensors given noisy observations of the tensor’s
entries; our definition of simplicity subsumes
low-rank tensors for a variety of definitions
of tensor rank. Our algorithm is practical for
large datasets and provides a significant per-
formance improvement over state of the art
incumbent approaches to tensor recovery. We
establish theoretical recovery guarantees that
under reasonable assumptions are minimax
optimal for slice recovery. These guarantees
also imply the first minimax optimal guaran-
tees for recovering tensors of low Tucker rank
and general noise. Experiments on data from
a music streaming service demonstrate the
performance and scalability of our algorithm.

1 Introduction

Consider the problem of learning the propensity of
a customer for a product from, say, observations of
customer transactions. One approach to this problem
is to cast it as a problem of noisy matrix recovery.
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Specifically, as a toy example, imagine anm×m matrix
P for which Pi,j encodes the probability that customer
i will buy a product j over some specific period. P is
never observed; instead we observe transactions which
we encode as a matrix X for which Xi,j = 1 if customer
i purchases product j, and is 0 otherwise. Our task can
now roughly be stated as recovering P , having observed
X. This is an incredibly well studied problem of noisy
matrix recovery.

Clearly, we can only hope to recover P if it is, in some
sense, ‘simple’. One common notion of simplicity here
is the rank of P , and it is well known that the minimax
error of any matrix estimator is Ω (r/m). For such a
guarantee to be meaningful in a relative sense, we need
that ‖P‖1 ≥ rm, or in other words, we loosely expect
to see r transactions per user on average. Unfortu-
nately, real world datasets are incredibly sparse: the
largest retailers have upwards of 108 active users and
products, but only 109 products sold yearly (FastCom-
pany (2015)). Given the discussion thus far, data this
sparse will only let us learn very simple ground truth
matrices.

The setup above paints a much bleaker picture than
is the reality of the task at hand: the sales matrix
is just one ‘slice’ of the data a retailer may collect –
other slices can be generated from clickstream data,
advertising, surveys, etc. that encode interactions be-
tween a customer and a product that are distinct from
a transaction but may well inform the likelihood of a
transaction. Succinctly, the data consists of many other
‘slices’ and these other slices may contain information
useful to estimate the original sales matrix P in our
example. The objective of this paper is to formalize
and exploit this observation.

In analogy to the matrix recovery problem above, a
reasonable formalization of the task we have laid out
is via the problem of recovering a three dimensional
tensor from its noisy observations, and there is by
now, a fairly robust literature on the problem of tensor
recovery. The mainstay of this literature is a convex
optimization approach that seeks to find a tensor that is
simultaneously ‘close’ to the observed data and ‘simple’
in the sense that a certain convex surrogate to the



Optimal Recovery of Tensor Slices

tensor rank is small. We will see that employing this
approach in our setting presents a few challenges.

Computation: The approaches at hand appear diffi-
cult to scale to massive amounts of data and typically
call for dense matrix operations at scales that are un-
tenable.

Rates of Recovery: The recovery rates established
for these approaches fall well short of what we are hop-
ing for: as we will show in the sequel, in our setting of
three dimensional tensors, these rates are akin to what
one would get by simply running a matrix recovery
algorithm on each individual slice of the tensor (ignor-
ing all other slices!). In addition, no guarantees are
available on the error of an individual slice.

1.1 Our Contribution

The present paper proposes a simple algorithm for
the problem of slice learning; applied to all slices this
also results in an algorithm for the recovery of three
dimensional tensors from their noisy observations. Rel-
ative to the extant literature, we make the following
contributions:

Statistical Power and Near-Optimal Recovery:
Under a broad set of assumptions, we show the
strongest available guarantees for the recovery of a
broad class of three dimensional tensors from their
noisy observations. Our analysis also admits guaran-
tees on error rates for individual slices which do not
have a counterpart in the extant tensor recovery liter-
ature. In addition to the above, the requirements we
place on the underlying ‘ground truth’ tensor and the
nature on the noise are looser than those required for
rigorous recovery via existing methods.

Scalability: The approach we propose is provably
computationally efficient and, more importantly, easy
to scale to massive datasets. Specifically, every step
within our algorithm can be implemented as a sparse
matrix-vector operation, and can thus scale to gigan-
tic amounts of data using off-the-shelf computational
tools. Resultantly, we find that our algorithm is typi-
cally faster than a single iteration of iterative ‘operator
splitting’ algorithms used by incumbent approaches,
and considerably simpler to implement.

Before proceeding, we make the disclaimer that we are
focusing solely on three-dimensional tensors, so while
our algorithm and guarantee may compare favorably
against existing tensor recovery approaches, those ap-
proaches easily generalize for higher order tensors, while
ours does not. On the other hand, there is a vast array
of applications that makes studying 3D tensors specifi-
cally important, ranging from latent variable models
(Anandkumar et al. (2014)) to spatio-temporal analysis

(Bahadori et al. (2014)) to neuroimaging (Zhou et al.
(2013)). Furthermore, consider that the tools for com-
pleting two-dimensional tensors (matrix recovery) differ
substantially from the tools for one-dimensional tensors
(vector recovery, compressed sensing), and in particu-
lar, state-of-the-art matrix recovery algorithms are not
direct generalizations of state-of-the-art compressed
sensing algorithms, nor are compressed sensing algo-
rithms special cases of matrix completion algorithms.
Therefore, it is sensible to believe that algorithms for
3D tensor recovery will be specialized.

The remainder of this paper is organized as follows. We
begin by introducing our problem of slice recovery and
notion of simplicity for tensors in §2. In §3, we show a
minimax lower bound for tensor and slice recovery, and
review incumbent approaches to tensor recovery; for
space reasons, this discussion will serve as our review
of the related literature, along with inline citations
made throughout. We present our algorithm in §4 and
a theoretical recovery guarantee in §5. Experiments
are discussed in §6, and §7 concludes the paper.

2 Model and Problem

We begin by introducing some basic notation for three
dimensional tensors. Let M ∈ Rm1×m2×n denote a
three-dimensional tensor that represents the ‘ground
truth’. This tensor can be viewed as a collection of
n matrices, denoted M1, . . . ,Mn ∈ Rm1×m2 . We call
each of the matricesMk ‘slices’, and for ease of notation,
we will assume the slices are square, so m1 = m2 = m;
all our results easily extend to rectangular slices. We
denote the element in the ith row and jth column of
sliceMk byMk

i,j . We will require that every entry ofM
lie in [−1, 1]; this can always be satisfied by rescaling.

A common operation on tensors that we will use fre-
quently here is ‘unfolding’. The mode-1 unfolding
of M , denoted M(1), is the m-by-nm matrix whose
columns are the columns of M1, . . . ,Mn (the order
of the columns will not matter for us). Similarly the
mode-2 unfolding, denoted M(2), is the is the m-by-nm
matrix whose columns are the rows of M1, . . . ,Mn.1

Our problem is to recover M , or often a single slice of
M , from a noisy observation of its entries. In particular,
our observation consists of the data tensor X = M + ε,
where the elements of the ‘noise’ tensor ε are indepen-
dent with mean zero. We emphasize that, so far, we
have not restricted the elements of ε to be gaussian or

1For completeness, we can also define a third unfolding:
for each row and column index, we can take the correspond-
ing entries across all the slices to create a column vector in
Rn; these are the columns of the mode-3 unfolding, denoted
M(3), an n×m2 matrix
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even identically distributed2.

In tensor recovery, the problem is to construct an esti-
mator M̂ , which is a function of the noisy observation
X, to minimize some loss function with respect to M .
We will take the loss function here to be the mean-
squared error (MSE):

MSE(M̂) = E

 n∑
j=1

1

nm2

∥∥∥M̂ j −M j
∥∥∥2
F

 .
As we have discussed, oftentimes the problem is to
recover a single slice of the tensor (having observed X).
In this case, MSE is not an appropriate loss function,
as it measures average recovery error over all slices.
Therefore, in addition to MSE, we will also consider
the slice mean-squared error (SMSE):

SMSE(M̂) = max
1≤j≤n

E

[
1

m2

∥∥∥M̂ j −M j
∥∥∥2
F

]
,

and refer to the problem of constructing an estimator
to minimize SMSE as slice recovery. SMSE is a more
robust loss function, as it measures the maximum re-
covery error over all slices, and so a guarantee on the
SMSE applies to every single slice. Also, since SMSE is
always greater than MSE, any upper bound for SMSE
will apply to MSE, and therefore the tensor recovery
problem.

2.1 Simplicity and Slice rank

Achieving low MSE or SMSE in our problem is impos-
sible without further assumptions on the ‘simplicity’ of
M . To this end, we introduce the notion of slice rank
and will subsequently require that M has small slice
rank. To be clear at the outset, tensors with low canon-
ical (or CP) rank or low Tucker rank will automatically
have low slice rank, so that the class of tensors of low
slice rank will contain those other classes.

Definition 1. The slice rank of a tensor M ∈
Rm×m×n, denoted Slice(M), is the maximum of
the ranks of its mode-1 and mode-2 unfoldings, i.e.
Slice(M) = max(rank(M(1)), rank(M(2))).

Note that the ranks of the mode-1 and mode-2 unfold-
ings need not be equal, and as such, their maximum is
taken in the definition above.

An equivalent, and perhaps more illuminating definition
is the following: if M has slice rank r, then there exist
matrices U ∈ Rm×r and V ∈ Rm×r such that each slice

2In our analysis, we will require that the row norms
of the unfoldings ε(1) and ε(2) be balanced in a sense we
will make precise later. This will also yield an interesting
algorithmic insight related to trimming procedures.

of M , M j can be decomposed as

(1) M j = USjV >

for some Sj ∈ Rr×r. This decomposition is a general-
ization of one proposed by Nickel et al. (2011) for three
dimensional tensors with symmetric slices.

The slice-wise form of (1) suggests that in fact the
tensor representation we have used so far may not be
needed, as the entire structure is well described as a
set of matrices. However, the value in viewing this as
a tensor is that this structure subsumes two popularly
used notions of tensor rank, the canonical (or CP) rank
and the Tucker rank, and therefore our recovery results
apply in those settings as well. In the language of the
definition above, these notions of rank can be defined
as follows:

1. If M has canonical rank r, then there exist matrices
U ∈ Rm×r and V ∈ Rm×r such that each slice of M ,
M j can be decomposed as M j = USjV >, where each
Sj is a diagonal matrix.

2. If M has Tucker rank (r, r, l), then there exist ma-
trices U ∈ Rm×r and V ∈ Rm×r such that each slice of
M , M j can be decomposed as M j = USjV >, wherein
rank

(
span

(
s1, s2, . . . , sn

))
= l where sj ∈ Rr2 is a

vectorization of Sj .

The equivalence of both the above definitions to the
typical definitions employed for canonical and Tucker
rank respectively require proof; this can be found in
the Appendix as Proposition 2. These definitions make
it apparent that the sets of tensors with canonical rank
bounded by r, CP(r), Tucker rank bounded component-
wise by (r, r, l), Tucker(r, r, l), and slice rank bounded
by r, Slice(r), satisfy:

CP(r) ⊆ Slice(r), and Tucker(r, r, l) ⊆ Slice(r)

which makes precise the notion that requiring low slice
rank is a weaker requirement than requiring either low
canonical rank, or low Tucker rank.

3 A Lower Bound and Incumbent
Approaches

We begin this section with establishing a minimax
result for the recovery of three dimensional tensors:
Proposition 1. For any estimator M̂ , we can con-
struct a tensor M ∈ Slice(r) with entries in [−1, 1]
and a random tensor ε with independent, zero mean
entries, such that X = M + ε has entries in [−1, 1]
almost surely, and

SMSE(M̂) ≥ MSE(M̂) ≥ C
(
r2

m2
+

r

nm

)
,

where C is a universal constant.
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An immediate consequences of Proposition 1, which
we alluded to in the introduction, is that in the ma-
trix recovery setting, i.e. n = 1 so that M is a
matrix of rank r, we have a minimax lower bound
of MSE(M̂) = Ω(r/m). This bound is well-known
(e.g. Candès and Plan (2011)) and a number of ma-
trix recovery algorithms achieve this bound. Conse-
quently, the naive approach of using an optimal matrix
recovery algorithm separately on each slice achieves
MSE = O(r/m) and SMSE = O(r/m). Beating such
an approach is precisely the motivation for our work
here. Fortunately, Proposition 1 also suggests that
we may be able to outperform this naive approach.
Specifically, the minimax bound suggests that with
sufficiently many slices (i.e. large n), it might be pos-
sible to achieve MSE = O(r2/m2), which is substan-
tially smaller. Where on this spectrum do existing
approaches to tensor recovery fall?

3.1 Incumbent Approaches

The dominant approach to tensor recovery relies on
convex optimization. Variants of this approach attempt
to find a tensor that is simultaneously ‘close’ to X while
also minimizing a a convex surrogate for the tensor
rank. Specialized to our setting, one such variant would
consider the estimator M̂ that is given by the optimal
solution to the problem

(2) min
Y
‖X − Y ‖2F + λ

3∑
i=1

∥∥Y(i)∥∥∗ ,
where we use the sum of the nuclear norms of each
tensor unfolding as a scalarized, convex surrogate of
the Tucker rank. The parameter λ is a weight cho-
sen by the user that intuitively should encode prior
knowledge of rank. This convex algorithm has been
studied extensively (Gandy et al. (2011), Tomioka et al.
(2011), Liu et al. (2013), and Signoretto et al. (2014)).
Tomioka et al. (2011) show that if the noise tensor has
i.i.d. Gaussian entries with standard deviation σ, the
estimator above achieves

(3) MSE(M̂) = O
(
σ2(r/m+ r/n)

)
if the Tucker rank of M is (r,r,r). There is good
reason to believe that this guarantee is tight. For
example, Tomioka et al. (2011) also show a very similar
guarantee in a special setting where random linear
combinations of the entries of M are observed, and
Mu et al. (2014) show that in fact that guarantee is
tight. Furthermore, in our experiments later on, we will
empirically observe that the recovery rate scales as (3).
Mu et al. (2014) also propose another convex relaxation
that works well for higher-dimensional tensors, though
for three dimensional tensors, it does not improve on

(3). Tomioka and Suzuki (2013) propose another convex
problem, but again their result for tensors of Tucker
rank (r, r, r) is the same as (3).

In short, (3) is the best known noisy recovery guarantee
for any convex approach. It should be emphasized
that the guarantee in (3) is not any stronger than the
naive benchmark, no matter the number of slices, and
furthermore, there is no guarantee for SMSE (while
there is one for the naive approach).

Outside of convex formulations, Suzuki (2015) recently
proposed a Bayesian estimator that matches the lower
bound in Proposition 1 for i.i.d. Gaussian noise, and
tensors with low CP rank (as is evident from the defi-
nition of CP rank, this is significantly more restrictive
than slice rank). Unfortunately, this procedure relies
on a Monte Carlo approach in high dimension and its
computational efficiency is unknown (i.e. we no longer
have the computational efficiency guarantees that come
with the convex approach).

Finally, some guarantees have been shown for the ten-
sor completion problem by Jain and Oh (2014), Huang
et al. (2015) and Yuan and Zhang (2015). The goal
there is understanding conditions under which exact
recovery is possible, though this requires incoherence
conditions similar to those made for matrix comple-
tion (see Candès and Tao (2010), Gross (2011), Recht
(2011)).

4 An Algorithm for Slice Learning

We will now present our algorithm for slice recovery
and tensor recovery. Recall that X is our observed data
tensor, and that the ground truth tensor, M being of
Slice rank r permits a decomposition wherein every
slice M j can be represented as M j = USjV > where
Sj is an r×r matrix, and U, V are both m×r matrices.
Our slice learning algorithm proceeds in two stages. In
the first stage, we use data from every slice to estimate
the column space and row space common to all slices
– specifically we will estimate the subspaces spanned
by the columns of U and V . In the second stage we
use these learned subspaces to then estimate M j by
projecting the observed slice Xj onto these learned
spaces.

Learning Subspaces: Without loss let us focus on
learning the subspace spanned by the columns of U .
Our first step in this regard is to compute the unfolding
X(1), and to then ‘trim’ the columns in this unfolding
which we may view as dividing each column by a scalar;
in other words we post multiply X(1) with an mn ×
mn diagonal matrix W1. The analysis section will
specify an idealized trimming procedure; under many
conditions we can simply take W1 to be the identity.
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We now compute Û as the first r left singular vectors of
X(1)W1. More precisely, assuming that X(1)W1 admits
the singular value decomposition X(1)W1 = U1Σ1V

>
1 ,

we set Û to be the columns of U1 corresponding to the
r largest singular values. We treat the column space
of Û as our estimate of the column space of U . We
denote this entire procedure with the shorthand

Û = svds(X(1)W1, r).

We apply a similar procedure to learn the column space
of V , except this time we use the unfolding X(2), so
that V̂ = svds(X(2)W2, r).

Projection: The second stage is equally simple – we
use Û and V̂ to construct our estimate of each slice
M j : our estimate M̂ j is the projection of Xj onto
these spaces, i.e.

M̂ j = PÛX
jPV̂ = Û Û>Xj V̂ V̂ >.

The algorithm above is entirely reminiscent of hard
thresholding for matrices, albeit applied to three di-
mensional tensors which is quite attractive. The entire
slice learning algorithm is outlined in Algorithm 1.
We note again that an ‘idealized’ value for the inputs
W1 and W2 will be discussed in the next section, but
they can safely be taken as the identity for a broad
class of problems.

Algorithm 1: Slice Learning
Input :X, r, W1, W2

1. Û ← svds(X(1)W1, r)

2. V̂ ← svds(X(2)W2, r)

3. M̂ j ← PÛX
jPV̂ j = 1, . . . , n

Output : M̂ j , j = 1, . . . , n

4.1 Practical Considerations

We conclude this section with a few comments regarding
practical implementation and computational issues:

Knowing r: The algorithm above takes the value r
as input, but in practice this may not be known. Here
we anticipate that as opposed to preserving r singular
values in steps 1 and 2 of the algorithm, a ‘universal’
thresholding scheme where we only preserve singular
values above a certain easily calculated threshold will
work just as effectively. Specifically, by Marčenko and
Pastur (1967) we expect that the largest singular values
due to noise in either of the unfoldings will be on
the order O(

√
mn), whereas if the singular values of

M(1) are all within constant order of each other, these
singular values will be O(m

√
n/r); a clear separation.

Computation with large tensors: While the ambi-
ent dimensions of the input data are large, the data is
itself typically quite sparse. The only computationally
intensive step in the algorithm above is the computa-
tion of a (partial) svd. Specifically, there exist mature
linear algebraic algorithms that sequentially compute
the singular vectors while exploiting data sparsity. An
alternative to computing the svd altogether is employ-
ing alternating least squares; see Hastie et al. (2015)
for a similar approach in matrix completion. Of course,
all this is already drastically less computation than
convex approaches to this task, which by and large are
solved with iterative algorithms Gandy et al. (2011)
that require performing dense SVDs multiple times.

5 Recovery Guarantees for Slice
Learning

The goal of this section is to provide a recovery guaran-
tee for our slice learning algorithm for tensors with low
slice rank. In particular, we are looking for a guarantee
that improves upon the naive algorithm of recovering
each slice separately. As discussed in Section 3, that
naive algorithm achieves SMSE = O(r/m). It is fairly
clear that beating this rate is impossible without mak-
ing further assumptions. Specifically, consider the case
where M has n− 1 slices, all of whose entries are iden-
tically 0, and a single non-trivial slice with bounded
entires, which we take without loss as the first slice.
Further, assume that the noise tensor has independent
unit variance Gaussian entries on the first slice, and
is identically zero on the remaining n− 1 slices. The
problem of recovering the first slice is now literally no
different than matrix completion on the first slice since
the remaining slices are superfluous. To this end, we
define a structural parameter for M that we will even-
tually see controls the rate at which learning across
slices is possible. Specifically, define the ‘learning rate’
of M , γM according to

γM =
r

m2n
min

(
σ2
r(M(1)), σ

2
r(M(2))

)
We will shortly see how γM plays the role of a learning
rate. For now, we merely comment on the range of
values one might reasonably expect this quantity to
take. On the low end observe that by , if the noise
tensor were i.i.d., the (squared) singular values of the
noise tensor unfoldings ε(1) and ε(2) are O(mn). A
minimal requirement is that the singular values of M(1)

and M(2) dominate those of the noise unfoldings which
would in turn imply that γM = Ω(r/m). At the other
end of the spectrum, given that the entires of M are
required to be bounded, we must have that ‖M(1)‖2F =
O(m2n), so that σ2

r(M(1)) = O(m2n/r). This is turn
implies that γM = O(1). In summary, the loosest
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requirement we can reasonably place on γM is to require
γM = Ω(r/m), and the strongest requirement we can
place is to require it be a constant.

Before proceeding with a statement of our main result,
we will place an assumption on the noise (our only
non-trivial assumption thus far). Specifically, we will
require the noise to be ‘balanced’ in a certain sense.

Assumption 1. (Balanced Noise) Let v be the tensor
whose entries are the variance of the corresponding
entries of ε. Specifically, vjk,l = E[(εjk,l)

2]. The noise ε
is said to be balanced if the row-norms of v(1) are all
equal and the row-norms of v(2) are all equal.

The assumption above is trivially satisfied in the case
of i.i.d. noise. Refinements of our result will allow
for weaker versions of this assumption; we can permit
a certain amount of discrepancy in the row norms of
v(1) and v(2), and allow this to grow with m,n and
r. In addition, we will see that in the event that the
assumption were violated altogether, an oracle based
trimming procedure could compensate for the violation.
We are now ready to state our main result.

Theorem 1. Assume the entries of M lie in [−1, 1].
If the entries of ε are independent, mean-zero, and
E[ε6ij ] ≤ K6, and if furthermore ε is balanced, then
there exists a universal constant c such that for the
slice learning algorithm (without trimming),

MSE(M̂) ≤ SMSE(M̂) ≤ c
[
K2r2

m2
+
K2(K4 + 1)r2

γ2Mmn

]
.

We next evaluate this result in light of the minimax
guarantee established in Proposition 1, and more gen-
erally, our broader goal of slice recovery:

Learning from slices: As discussed earlier, at the
very least we expect γM = Ω(r/m). Even in this
setting, we see that provided n is sufficiently large the
Theorem above guarantees an SMSE (and consequently
MSE as well) that is O(r2/m2). In particular, for
n sufficiently large, we obtain a recovery rate that
meets the leading term of the minimax guarantee in
Proposition 1. Of course, this is substantially better
than the available guarantees for the Naive approach
which was O(r/m).

High learning rate: As γM grows, so does our ability
to learn across slices. Specifically, for γM = Θ(1),
the theorem guarantees MSE ≤ SMSE = O(r2/m2 +
r2/mn). This is within a factor of r off from the lower
bound of MSE = Ω(r2/m2 + r/mn) in Proposition 1.
Put a different way, we achieve SMSE = O(r2/m2)
with only n = Ω(m) slices of side information.

Tensor rate: This recovery rate here is for low
slice rank tensors, which includes tensors with low

Figure 1: Comparison of slice learning and convex approach
for noisy recovery of low Tucker rank tensors. MSE vs.
(r/m)2 is plotted for each replication.

Tucker rank and CP rank. We emphasize that the rate
SMSE = O(r2/m2+r2/mn) greatly improves upon the
best known theoretical guarantees for noisy recovery of
low Tucker rank tensors, and for convex optimization
approaches to recovering low CP rank tensors.

5.1 Unbalanced noise and trimming

Recall from Section 4 that in the first stage of the
slice learning algorithm, we can ‘trim’ the columns
in the unfolding X(1), i.e. post multiply X(1) with
an mn × mn diagonal matrix W1, before taking the
singular value decomposition; the trimming procedure
can also be done on X(2) with W2.

One reason to trim is to ‘rebalance’ the noise ε when
it does not satisfy the balanced assumption, which
suggests an ideal choice for trimming weights: sup-
pose that we have diagonal matrices W1 and W2 such
that ε(1)W1 and ε(2)W2 are balanced. Then the re-
sult of Theorem 1 effectively still holds (in fact, if the
elements of M(1)W1 and M(2)W2 lie in [−1, 1], and
mini=1,2 σ

2
r(M(i)Wi) ≥ γMm2n/r, then Theorem 1 re-

mains exactly the same).

6 Experiments

We performed two sets of experiments to evaluate the
slice learning algorithm. The first set, using randomly
generated tensors, reveals that the slice learning algo-
rithm drastically outperforms convex algorithms by an
order of magnitude, even though convex algorithms
require drastically greater computation. The second
set, using a large real-world dataset, demonstrates the
scalability and performance of our approach in practice.
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(a) n = 1 (b) n = r (c) n = m

Figure 2: Comparison of slice learning and convex approach for noisy slice recovery of low slice rank tensors with varying
numbers of slices. SMSE vs. (r/m)2 is plotted for each replication.

6.1 Synthetic Recovery Experiments

Tensor learning and Tucker rank: For our first
experiment, we randomly generated m-by-m-by-m ten-
sors of Tucker rank (r, r, r). In each replication, we
randomly drew orthonormal m-by-r matrices U , V ,
and W , along with an r-by-r-by-r tensor S with en-
tries drawn from the standard normal distribution. The
ground truth tensor was then constructed in the canon-
ical way from U , V , W , and S (see Appendix, Section
B), and the data tensor X was observed with mean-zero
gaussian noise of standard deviation 0.1.

We compared the slice learning algorithm against the
convex algorithm that minimizes (2) in §3.1. We solved
this via the Douglas-Rachford splitting method, as
described in Gandy et al. (2011). Note that the slice
learning algorithm requires an estimated rank as input,
and in this experiment, the algorithm was given the
true rank r in each replication. On the other hand, the
convex objective (2) has a parameter λ that must be
selected; to level the playing field, in each iteration we
solved (2) for values of λ ranging from 2−2 to 25 and
reported the best performance among all of these.

We performed 100 simulations. In each simulation, m
was drawn randomly between 10 and 50, and r was
drawn randomly between 1 and m. The MSE of both
the slice learning algorithm and (2) are reported in
Figure 1, where each simulation is represented by two
points representing the MSE of both algorithms, and
the MSE’s are plotted against the value (r/m)2 for
that particular replication.

In Figure 1, the MSE of the slice learning algorithm
appears to scale linearly with (r/m)2, as predicted by
Theorem 1, while the convex algorithm is sublinear
in (r/m)2. That is to say the slice learning algorithm

outperforms the convex algorithm in recovering tensors
of low Tucker rank, even though the convex algorithm
is suited specifically for tensors of low Tucker rank.

In terms of computation, the slice learning algorithm
is also superior. The first order Douglas-Rachford
splitting method for solving (2) requires three singular
value decompositions, meaning each iteration is slower
than the entire slice learning algorithm, and in our
experiments, the whole algorithm was consistently at
least 10 times slower. Along these lines, there is ongoing
progress in improving the computational efficiency of
convex optimization approaches Liu et al. (2014).

The Value of Side Information: We performed a
similar experiment to test the recovery of tensors with
varying numbers of slices, and particularly recovery in
terms of SMSE. We randomly generated m-by-m-by-n
tensors of slice rank r. In each replication, we randomly
drew orthonormalm-by-r matrices U and V , along with
r-by-r matrices S1, . . . , Sn from the standard normal
distribution, and we set the slices of the tensor to be
M j = USjV >. Gaussian noise of standard deviation
0.1 was used as before.

We used a similar convex algorithm as a benchmark:

(4) argmin
Y

2∑
i=1

λ
∥∥Y(i)∥∥∗ + ‖Y −X‖2F .

This convex algorithm was catered to recovering low
slice rank tensors, as the mode-3 unfolding is not in-
cluded in the objective. We solved this with a similar
Douglas-Rachford splitting method.

We performed 400 replications, where in each repli-
cation, m was drawn randomly between 10 and 50,
and r drawn randomly between 1 and m, and finally
n was set equal to either 1, r, or m. We measured
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Users Songs Sparsity Naive Matrix Slice

2,412 1,541 5.7 0.76 (4) 0.83 (7) 0.91 (14)
4,951 2,049 4.1 0.73 (7) 0.78 (12) 0.91 (15)

27,411 3,472 2.0 0.66 (9) 0.67 (19) 0.87 (20)
23,300 10,106 1.0 0.86 (1) 0.87 (1) 0.95 (18)
53,713 10,199 0.6 0.82 (3) 0.84 (1) 0.95 (13)

Table 1: Summary of experiments on Xiami data for recovering the Collect slice. Columns ‘Users’ and ‘Songs’ show the
number of users and songs in each experiment, and ‘Sparsity’ gives the average number of collects per user in the data.
Results for the naive benchmark, the matrix-based benchmark, and the slice learning algorithm are shown in the last three
columns. The average AUC over 10 replications is reported, along with the rank in parentheses.

the SMSE of the slice learning algorithm and (4). The
results for each of the three cases (n = 1, r,m) are
depicted in three separate plots in Figure 2. Figure 2a
shows that with a single slice, both algorithms have
SMSE sublinear in (r/m)2; this is to be expected as
the exercise is equivalent to matrix recovery where the
best achievable rate is r/m (Proposition 1). Figure 2c
shows that the slice learning algorithm achieves the
gold standard performance of SMSE linear in (r/m)2

with n = m slices, while the convex algorithm is still
sublinear. The good performance of the slice learning
algorithm is to be expected since in Theorem 1 we were
able to show that n = m slices are sufficient to achieve
the (r/m)2 rate. The surprising result is that Figure
2b is almost identical to Figure 2c, implying that n = r
slices are sufficient to achieve this same rate. This
suggests that there are settings where slice learning
can greatly outperform standard matrix learning, with
only very little side information.

6.2 Experiments on Real Data

We also performed experiments using real-world data
from Xiami.com, a major online music streaming ser-
vice where users may listen to songs and share their
own music. Within the service, users can interact with
songs in different ways: they can ‘Listen’ to, ‘Down-
load’, and ‘Collect’ any song offered by the service.
The collect interaction is especially important, as it is
a strong signal of a user’s affinity for a song, but is
performed with the least frequency in our data. We
represent this data as a tensor with three slices, with
binary entries indicating whether that particular user-
song interaction occurred during the data’s observation
period.

We conducted a set of completion experiments: in each
experiment, approximately half of the entries (chosen
uniformly at random) were observed without noise,
and the remaining entries were hidden and meant to be
recovered. We compared the slice learning algorithm
against two benchmarks. The first benchmark is the
naive approach of using a matrix recovery algorithm
separately on each slice, which is still today a typical
approach to collaborative filtering. The second bench-

mark is a more sophisticated approach: form one of
the unfoldings and use a matrix recovery algorithm
on the unfolding; we will refer to this algorithm as
the matrix approach. Mu et al. (2014) studied such
algorithms and demonstrated theoretical guarantees
for high-dimensional tensors. Since our experiments
were quite large (see Table 1), calculating SVDs using
standard libraries meant for dense matrices was not
feasible. Instead, we used the off-the-shelf software
package PROPACK, which exploits data sparsity.

We treated the experiment as a binary classification
task. The results of the experiment in terms of recov-
ering the Collect slice, measured by area under ROC
curve (AUC), are summarized in Table 1. We per-
formed experiments on tensors of five different sizes,
created by selecting subsets of the densest rows and
columns of the original data set. Note that the data
is extremely sparse – in the largest tensor, we observe
less than a single collect per user.

In absolute terms, the slice learning algorithm performs
very well, with an AUC consistently above 0.87. The al-
gorithm also consistently outperforms both benchmark
approaches by a significant margin. For example, in
the largest experiment with approximately 50K users
and 10K songs, the slice learning algorithm has an
average AUC of 0.95, while the naive and matrix algo-
rithms have AUCs of 0.82 and 0.84, respectively. Part
of this strong performance comes from the fact that
the slice learning algorithm is able to estimate more
complex models, which is demonstrated by the consis-
tently higher rank values. The results for recovering
the Listen and Download slices can be found in the
Appendix.

7 Conclusion

We introduced the problem of slice recovery, with the
goal of learning particular slices of a three-dimensional
tensor. We proposed the slice learning algorithm, a
fast, scalable algorithm that achieves the minimax lower
bound for recovery with sufficiently many slices. Ex-
periments supported the performance and scalability
of the algorithm.

Xiami.com
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