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Abstract

Gibbs measures are a fundamental class of
distributions for the analysis of high dimen-
sional data. Phase transitions, which are also
known as degeneracy in the network science
literature, are an emergent property of these
models that well describe many physical sys-
tems. However, the reach of the Gibbs mea-
sure is now far outside the realm of physi-
cal systems, and in many of these domains
multiphase behavior is a nuisance. This nui-
sance often makes distribution fitting impos-
sible due to failure of the MCMC sampler,
and even when an MLE fit is possible, if the
solution is near a phase transition point, the
plausibility of the fit can be highly question-
able. We introduce a modification to the
Gibbs distribution that reduces the effects
of phase transitions, and with properly cho-
sen hyper-parameters, provably removes all
multiphase behavior. We show that this new
distribution is just as easy to fit via MCM-
CMLE as the Gibbs measure, and provide
examples in the Ising model from statistical
physics and ERGMs from network science.

1 Introduction

The Gibbs measure is a class of probability distribu-
tions describing the configuration of a (usually high
dimensional) set of random variables. Initially it was
motivated primarily by statistical mechanics [Gibbs
et al., 1902], though in more recent decades it has
found widespread usage in many areas of statistics and
machine learning, including computer vision [Li, 2012],
neuroscience [Stephens et al., 2011] and the modeling
of social networks [Frank and Strauss, 1986] to name
a few.
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While the Gibbs measure has shown wide applicability
as a general modeling framework, the presence of mul-
tiphase behavior has caused some practical difficulty.
Nowhere is this more apparent than in the network
science field, where the popular Exponential-family
Random Graph Model (ERGM) has been repeatedly
shown to suffer from model frailty due to the exis-
tence of multiphase parameter configurations. This is
known as “model degeneracy” in the network science
literature, and is perhaps the most fundamental chal-
lenge facing ERGMs both in theory [Schweinberger,
2011, Handcock, 2003, Bhamidi et al., 2008, Chatter-
jee et al., 2013] and practice [Robins et al., 2007, Gold-
enberg et al., 2010].

The contribution of this work is to introduce a new
class of statistical models for high dimensional data
that retains the flexibility of the Gibbs measure, with-
out the undesirable multiphase properties. The form
of this model class allows us to ensure that it is not
multiphase at any parameter values, and that the like-
lihood puts significant probability mass around the
configuration that is being modeled.

Let X be a set of random variables with realization
x and N be the sample space in which X may exist.
A Gibbs measure is defined by the probability mass
function

pgibbs(x|θ) =
1

Z(θ)
e
∑

k θkgk(x) x ∈ N

where θ is a vector of d parameters, g is a vector valued
set of sufficient statistics, and Z(θ) =

∑
x e

∑
i θigi(x) is

the partition function assuring that the probabilities
sum to unity. For notational convenience we will be
assuming throughout that x is discrete. The continu-
ous case may be handled with ease by replacing sums
over x by integrals.

Since the likelihood is only a function of the sufficient
statistics, the probability of observing a set of statistics
is

pgibbs(g(x)|θ) = N(g(x))
1

Z(θ)
e
∑

k θkgk(x) x ∈ N ,

where N(g(x)) is the count of configurations with
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statistics equal to g(x).

pgibbs is an exponential family distribution [Barndorff-
Nielsen, 1978] with natural parameters θ. An alternate
way to define the model is in terms of the mean value
parameters, which are defined as the expected values
of the sufficient statistics µ(θ) = Eθ(g(X)). There
is a one-to-one relationship between the natural and
mean value parameters, so a model may be expressed
in either terms [Barndorff-Nielsen, 1978].

One of the most attractive features of pgibbs as a class
of general modeling distributions is that it satisfies the
maximum entropy principle, in that among all possi-
ble probability distributions (p′) for X with identical
mean values (i.e. Ep′(g(X)) = µ(θ)), pgibbs has the
largest entropy [Jaynes, 1957]. Because entropy is a
measure of the informativeness of the distribution, the
Gibbs measure may be thought of as the least infor-
mative distribution consistent with the mean value pa-
rameters.

Performing likelihood-based inference on Gibbs mea-
sures is a non-trivial task because for even moderately
multivariate X, the sum in the normalizing constant
Z is typically computationally intractable, and thus it
is impossible to evaluate the likelihood directly. How-
ever, indirect sampling methods may be used by ex-
pressing the likelihood and its derivatives in terms of
expectations and covariances. The log likelihood of
the distribution is

`gibbs(θ|x) =
∑
k

θkgk(x)− log(Z(θ)),

and the first and second derivatives may then be found
to be

∂`gibbs
∂θi

= gi(x)− µi(θ)

and
∂2`gibbs
∂θi∂θj

= −cov(gi(X), gj(X)).

It is clear from setting the first derivative to zero that
at the maximum likelihood estimate (MLE) of θ, the
mean value parameters must match the observed suf-
ficient statistics (i.e. g(x) = µ(θ̂mle)).

Since pgibbs is known up to a constant, we may use
Markov Chain Monte Carlo (MCMC) methods to gen-
erate a sample from it. Using this sample, the above
equations may be approximated using weighted sam-
ple means and covariances in place of the population
expectations and covariances. The precise mechanics
of using these approximations to find the maximum
likelihood estimate of θ is known as Markov Chain
Monte Carlo Maximum Likelihood Estimation (MCM-
CMLE), and has been used successfully across many

disparate types of Gibbs measures [Geyer and Thomp-
son, 1992, Hunter and Handcock, 2012, Descombes
et al., 1997].

1.1 Example: The Ising Model

A canonical example of a Gibbs measure is the Ising
[1925] model of ferromagnetism, which in this case we
will define over an n-by-n toroidal lattice. Each xij
may either have magnetic spin up or down (xij ∈
{−1, 1} ∀ i, j ∈ {1, ..., n}), and is influenced by its
four neighbors x(i−1)j , x(i+1)j , xi(j−1), and xi(j+1).
Here we allow the subscripts to wrap, such that a sub-
script of 0 refers to index n and a subscript of n + 1
refers to index 1. The Ising probability model has
two sufficient statistics. The first models the gen-
eral tendency for up or down spins and is defined
as g1(x) =

∑
i,j xij . The second is the number of

neighbors sharing the same spin and is defined as
g2(x) =

∑
i,j xij(x(i+1)j + xi(j+1)).

While the Ising model was developed in the context
of statistical physics, the tendency of like to be con-
nected to like is a more universal concept, and thus the
model has found extensive use in domains far afield
from magnetism. To name a few examples, it is used
in computer vision for image denoising [Cohen et al.,
2015], in network modeling the classic two-star model
can be viewed as an Ising model [Palla et al., 2004,
Park and Newman, 2004], and in sociology it is use-
ful in understanding group choice [Galam, 1997] and
urban segregation [Stauffer, 2008].

2 Phases In Gibbs Measures

The Gibbs distribution captures many of the charac-
teristics of typical physical systems, even those which
in other domains may lead to computational difficul-
ties and implausible models. In particular, Gibbs mea-
sures often exhibit the phenomena of a phase transi-
tion point. This has been extensively studied in the
physics literature [Georgii, 2011]. In the context of
social network modeling, multiphase behavior has re-
sulted in significant difficulty in finding good models
for large complex networks [Handcock, 2003, Schwein-
berger, 2011, Chatterjee et al., 2013, Horvát et al.,
2015].

Consider an Ising model where θ1 = 0 and θ2 is very
large. If one were to start an MCMC chain at a con-
figuration where most vertices are set to 1. At equi-
librium we would find almost perfect alignment to 1.
Similarly, if the starting point for the chain was mostly
-1 then the equilibrium state would be a global -1 align-
ment.

Such behavior has important implications for prac-
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Figure 1: Simulations from the Ising model at the
MLE with θ̂mle = (0, 0.45). The observed configura-
tion is marked as a red point. Note that the configura-
tions similar to the observed are extremely uncommon
under the maximum likelihood model.

tice. The extreme multimodal nature of the like-
lihood dramatically reduced the computational ef-
ficiency of MCMC algorithms such as Metropolis-
Hastings. This has restricted their routine usage in
MCMC-based maximum likelihood estimation [Hand-
cock, 2003]. Secondly, if the true value is close to a
phase transition point and the MLE was found, the
model fit would typically not be useful [Chatterjee
et al., 2013].

Suppose instead of magnetic spins, the Ising model in-
dicated “liberal” or “conservative” political affiliation
and n = 100. Imagine that we observe a community
where exactly half of people are conservative and there
is a very strong tendency for like political affiliation to
be connected to like, with 177 of the 200 connections
being between the same affiliations. This can be con-
sidered a simple version of the social influence model
introduced in Robins et al. [2001]. Recall that at the
MLE, the mean value parameters equal their observed
values, so average simulations from the fit will consist
of 50% conservatives. However, as shown in Figure 1,
the MLE has two phases, one where almost all are con-
servative and one where almost all are liberal. Even
though the average of these two modes matches the
observed value, configurations like the one observed
are extremely rare. Thus the fit of the Ising model is
at best highly questionable.

Let N∗ be a smoothed twice differentiable approxima-

tion of N , and p∗(g(x)) = N∗(g(x))
N(g(x)) p(g(x)) be an ap-

proximation of the exponential family probability dis-
tribution p. This smoothed version of N∗, introduced

by Horvát et al. [2015], is a mathematical convenience
removing the effects of small local fluctuations and as-
suring the existence of a Hessian. While the choice
of N* could result in a probability distribution, this
is not a hard requirement of its construction, and in
many cases, N* could be made to be arbitrarily close
to N while still maintaining 2nd order differentiability.
Following Horvát et al. [2015] we define uniphase and
multiphase as:

Definition 1 A distribution p(g(x)) is uniphase with
respect to p∗ if it contains no local minima or saddle
points, and is multiphase otherwise.

Horvát et al. [2015] developed an insightful connec-
tion between multiphase behavior and the configura-
tion count function N . We restate two results from
that work here.

Lemma 1 Let f be a continuous twice differentiable
function and h(y) = f(y)eθ·y, where y is a vector. h
has no minima or saddlepoints in y for all θ if and
only if f is strictly log concave.

Theorem 1 A Gibbs measure pgibbs(g(x)|θ) is
uniphase with respect to smoothing p∗gibbs for all θ, if
and only if N∗ is strictly log concave.

Theorem 1 reduces the existence of multiphase param-
eter values to a statement about configuration density,
and motivates using sufficient statistics in the model
such that N is approximately log concave. However,
as a practical insight it is difficult to use. In most
cases, due to the high dimensional nature of x, N is
intractable and is therefore difficult to compute.

3 A Robust Extension of the Gibbs
Measure

In order to reduce the appearance of distributional
modes that are far away from one another in terms
of the sufficient statistics, we will use the same max-
imum entropy framework that underlies Gibb’s mea-
sures, but add an additional constraint that the vari-
ance of the sufficient statistics should be less than or
equal to a maximum value. The maximum entropy
problem is

maximize
q

∑
x

q(x) log(q(x))

subject to
∑
x

q(x) = 1,

Eq(gi(X)) = µi,

Eq((µi − gi(X))2) ≤ κi,
∀ i ∈ {1, . . . , d}.
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where q(x) ≥ 0 is a probability mass function. Re-
formulating the optimization problem using Karush-
Kuhn-Tucker multipliers into an unconditional mini-
mization yields an objective function of

J(q) =
∑
x

(
− q(x) log(q(x)) + θ0q(x)

+

d∑
k

θkgk(x)q(x)−
d∑
k

β−2k (µk − gk(x))2q(x)

)

where all β−2k > 0. We may then apply the calculus of
variations on the functional J . Noting that the con-
straints are constants and thus ∂µ/∂q = 0, finding the
root of the derivative of the term inside the sum results
in

0 =
∂

∂q

(
− q(x) log(q(x)) + θ0q(x) +

d∑
k

θkgk(x)q(x)

−
d∑
k

β−2k (µk − gk(x))2q(x)

)

= −1− log(q(x)) + θ0 +

d∑
k

θkgk(x)

−
d∑
k

β−2k (µk − gk(x))2.

Rearranging terms and absorbing θ0 into the partition
function, we arrive at the maximum entropy distribu-
tion subject to variation constraints

q(x|θ, β) =
1

Z(θ, β)
e
∑

k θkgk(x)−
∑

k β
−2
k (µk(θ,β)−gk(x))2 ,

(1)
where µ(θ, β) = Eq(g(x)) makes the dependence of the
mean value parameters of θ and β explicit. A related
distributional family where the squared deviation term
is centered around a general m is

q′(x|θ, β,m) =
1

Z(θ, β,m)
e
∑

k θkgk(x)−
∑

k β
−2
k

(mk−gk(x))2 .

(2)

We call these distributions tapered Gibbs measures
and recognize that q and q′ are similar to the Gibbs
measure, but have a term attached tapering the likeli-
hood of configurations far from the mode of the term
(µ and m respectively). Each βk may be interpreted
as the strength of the attractive force to the tapering
term’s mode for statistic gk, with a reduction of 1 be-
ing applied to the log likelihood when a configuration’s
sufficient statistic is βk units away from the mode and
increasing quadratically thereafter. We may also note
that q is subclass of q′ in that

q(x|θ, β) = q′(x|θ, β,m = Eq′(g(X))).

Both q and q′ are exponential family, and because m
does not depend on θ, q′ can be seen as a Gibbs mea-
sure with an additional offset term reducing the en-
tropy.

Theorem 2 For any m, there exists a vector α such
that for any β satisfying 0 < βi < αi ∀ i ∈ {1, ..., d}, q
and q′ are uniphase for all θ with respect to smoothing
q∗ and q′∗.

Proof. For q′ with any particular m, taking the ta-
pering term and N∗ together and applying Lemma
1 we see that the theorem is true if and only if
log(N∗(g(x)))−

∑
k β
−2
k (mk − gk(x))2 is strictly con-

cave, or equivalently that its Hessian is negative defi-
nite. We have no control over the Hessian of the first
term, however the Hessian of the second is a diagonal
matrix with elements β−2i . By choosing all α−2i to be
greater than the largest eigenvalue of∇2 log(N∗(g(x)))
we achieve a negative definite result for the whole term.
The result for q follows as it is a subclass of q′.

�

It is certainly possible to entertain other functional
forms of the tapering term that down weight extreme
values. However, the proof of Theorem 2 shows that
our quadratic form is a natural one, as its Hessian
depends only on β and not m or g.

Theorem 2 guarantees that for small enough β, q is
uniphase; however, the computational complexity of
N makes it difficult to check directly if a particular
β yields a multiphase distribution. From a practical
standpoint, one can find a good uniphase value for
β by drawing MCMC samples from different values
for β and inspecting the histograms of the sufficient
statistics for multimodality.

4 Estimation and Inference

Because q′ simply involved adding on an offset term to
a Gibbs measure, maximum likelihood inference for θ
is unchanged. The first and second derivatives are

∂`q′

∂θi
= gi(x)− µi(θ, β,m)

and
∂2`q′

∂θi∂θj
= −cov(gi(X), gj(X)).

As in the Gibbs measure case, we may sample from q′

using MCMC and approximate the population expec-
tations using sample expectations. Thus, MCMCMLE
may be performed to find the MLE. q′ may not be a
particularly compelling class of distributions depend-
ing on the choice of m. Ideally we would like to coun-
teract the multiphase tendencies of the Gibbs measure
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and have a mode centered around the mean value pa-
rameters. So, q is a more appropriate distribution for
general modeling.

One must know both θ and µ in order to be able to
sample from q, which on its face make the prospect
of MCMCMLE inference seem unlikely. We can side
step this problem using q′. First, we establish some
properties of q. The log likelihood is

`q(θ|x, β) =
∑
i

(
θigi(x)− β−2i (µi(θ, β)− gi(x))2

)
− log(Z(θ, β)).

In order to simplify notation, we define the derivative
with respect to θi of the log of the numerator of the
likelihood as

ti(x, θ, β) = gi(x)−
∑
k

2β−2
k

∂µk(θ, β)

∂θi
(µk(θ, β)− gk(x)).

The derivatives of the mean value parameters are

∂µr(θ, β)

∂θi
= cov(gr(X), ti(X, θ, β))

= cov(gr(X), gi(X))

−
∑
k

2β−2k
∂µk(θ, β)

∂θi
cov(gr(X), gk(X)).

The derivative of µ is on both the right and left
hand side of this equation, so to solve this linear
system of equations, define a matrix B and vectors
ci with elements Brk = 2β−2k cov(gr(X), gk(X)) and
cir = cov(gr(X), gi(X)). The derivatives of the mean
value parameters are then

∂µ(θ, β)

∂θi
= (B + I)−1ci,

where I is the identity matrix.

The first derivative of the log likelihood is

∂`q
∂θi

= ti(x, θ, β)− E(ti(X, θ, β))

= gi(x)− µi(θ, β)

− 2
∑
k

β−2k
∂µk(θ, β)

∂θi

(
µk(θ, β)− gk(x)

)
(3)

Setting Equation 3 to 0, we see a solution under the
usual moment conditions of g(x) = µ(θ̂mle, β). The
second derivative of the log likelihood is

∂`q
∂θi∂θj

=− ∂µi(θ, β)

∂θj

− 2
∑
k

β−2k
∂2µk(θ, β)

∂θi∂θj

(
µk(θ, β)− gk(x)

)
− 2

∑
k

β−2k
∂µk(θ, β)

∂θi

∂µk(θ, β)

∂θj
.

At the MLE this simplifies to

∂`

∂θi∂θj

∣∣∣∣
θ̂mle

= −∂µi(θ, β)

∂θj
− 2

∑
k

β−2
k

∂µk(θ, β)

∂θi

∂µk(θ, β)

∂θj
.

(4)

4.1 Inference for q

Using the fact that at the MLE of q, g(x) = µ(θ, β), we
can use MCMCMLE inference on q′ to find the MLE
of q. Noting that

q′(x|θ̂mle, β,m = g(x)) = q′(x|θ̂mle, β,m = Eq′(g(X)))

= q(x|θ̂mle, β),

finding the MLE of q reduces to finding the MLE of
q′ setting m = g(x). At this point, both the natural

(θ̂mle) and mean value parameters (µ(θ̂mle, β) = g(x))
are known and thus q may be sampled from using
MCMC.

Unfortunately, there is no information in the likeli-
hood that can be used to estimate β as

∂`q
∂β = 0 at

θ̂mle, and choosing a β that yields a uniphase distri-
bution and sufficiently realistic stochastic variation is
likely domain dependent. That said, βk causes only
a small adjustment to the log likelihood (< 1) when
|µk − gk(x)| < βk, so if one has a target variance
vk for gk then choosing β = r

√
(vk) will ensure that

only observations more than r “standard deviations”
away from the mean receive large tapering adjust-
ments. This strategy is employed in the example of
Section 4.3 with r = 2.

4.2 Example: The Ising Model Revisited

One plausible theory as to why the Ising model in Sec-
tion 2 failed to represent the data well is that the
model only considered local neighbor-to-neighbor in-
teractions and ignored the possibility of more global
cohesive effects. When making political affiliation de-
cisions, actors are influenced by their neighbors, but
also by larger scale media, which may be targeted at a
more average individual, perhaps tempering more rad-
ical philosophies and pulling those actors toward the
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# Conservative # Like-to-Like Ties
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Figure 2: Histogram density estimates based on 10,000
simulations at each β value from the MLE fit to the
configuration with 50 conservatives and 177 like affili-
ation ties. Smaller values of β remove the bimodality
of the phase transition.

average position. This tendency to pull of actors to
the average is precisely the effect of the tapering term
in Equation 1.

Figure 2 shows simulations from the MLE model fit of
q to our hypothetical community with varying degrees
of tapering. No tapering was added to g2 as β2 =∞ in
all simulations. When both βs are infinite, the model
reduces to a Gibbs measure. At β1 = 30 we start to
see increasing density around the mean value statistic,
but the two modes are still prominent. At β1 = 10,
configurations with 55 or 45 conservatives receive a
log probability reduction of 1, and the ones with 0 or
100 conservatives receive a log probability reduction
of 100. The distribution of counts of conservatives is
symmetric and looks nearly Gaussian. β1 = 5 has a
qualitatively similar look to that of β1 = 10, except
the variation in the counts has been reduced.

With no tapering term, we see a high variation in the
counts of conservatives (g1). A priori, an analyst might
have expected a level of variation similar to a binomial
distribution, which would be v1 = 100∗0.5∗(1−0.5) =
25. Using r = 2 yields β1 = 2

√
25 = 10 and at β1 = 10,

the MLE displays none of the bimodality present in the
untapered model.

4.3 Example: A Network Model for Network
Science Collaboration

Exponential-family random graph models (ERGM)
represent a very general and flexible class of distri-
butions for modeling relational ties. A quite exten-
sive literature on these models exists, see for example
Robins et al. [2007] and references therein. An ERGM
is a Gibbs measure where elements of x indicate the
present or absence of a relational tie between individ-
uals. Node i is tied to node j if xij = 1 and xij = 0
otherwise.

What makes ERGMs different from any other Gibbs
Measure is the choice of sufficient statistics to use in
modeling. These statistics are chosen to match our
theoretical understanding of the forces governing social
interactions, six of which are described here.

edges The number of edges in the graph.

k-star The number of subgraphs where k edges are
connected to a single vertex.

isolates The number of vertices with no neighbors.

triangles The number of triangles present in the
graph.

k-esp The number of edges whose vertices share ex-
actly k neighbors in common.

dcp The cross-product of the degrees of connected
vertices divided by the number of total edges.

The first three terms (“edges,” “k-star” and “isolates”)
model the distribution of the number of neighbors of
the vertices in the network. This is known as the de-
gree distribution. The next two terms “k-esp” and
“triangles” model the transitivity of relations. If i is
connected to j and k, then j and k may be more likely
to be connected. The final term “dcp” models tenden-
cies of high degree vertices to be connected to other
high degree vertices.

The above terms have been repeatedly shown to have
extreme difficulties in modeling real world social net-
works due to multiphase behavior [Schweinberger,
2011, Chatterjee et al., 2013, Handcock, 2003], espe-
cially in networks of any significant size. However,
because we now have the tools to remove phase tran-
sitions, it is possible to model networks never before
amenable to ERGM analysis.

Newman [2006] collected and introduced a network
representing the co-authorship of scientists publishing
on the topic of network science. The full network con-
tains 1589 scientists, of which we removed one outly-
ing biology paper with an extreme number of authors
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Term g(x) ŝd(g(X)) θ̂ ŝe(θ̂)
edges 2555 21.73 -4.07 0.22
2-star 12816 152.52 0.11 0.02
3-star 38035 277.11 -0.0005 0.004

isolates 128 8.73 -4.00 0.17
0-esp 221 9.73 -8.32 0.21
1-esp 503 20.76 -3.49 0.13
2-esp 534 25.23 -1.79 0.10
3-esp 458 24.33 -0.94 0.09
4-esp 262 18.83 -0.50 0.08
5-esp 82 9.62 -0.66 0.12

triangles 2625 49.38 0.63 0.06
dcp 41.22 0.95 -21.60 2.90

Table 1: Parameter and summary statistics for an
MCMCMLE fit of network science collaborations.

[Giot et al., 2003]. This resulted in an undirected net-
work with 1572 vertices and 2555 edges.

Under a completely random graph, we would expect
the distribution of sub-graph counts to be distributed
approximately Poisson, and thus they have variance
equal to their expectation. Using the logic of Section
4.1 we set a target variance equal to the expectation of
the sufficient statistics at the MLE and r = 2, which
yields β = 2

√
Eq̂(g(X)) = 2

√
g(x).

Table 1 shows model summaries for the MLE fit.
The standard deviations of the sufficient statistics
(ŝd(g(X))) were estimated by drawing MCMC sam-

ples from the fit distribution. θ̂ are the MLE parame-
ter estimates and ŝe(θ̂) are the standard errors of the
estimates. The standard errors were, as per standard
practice in ERGMs, calculated by inverting the esti-
mated observed Fisher information (see Equation 4).

The negative isolates term shows us that there are
fewer authors who collaborate with no-one than we’d
expect by chance. The positive 2-star term tells use
that the degree distribution has higher spread than
would be expected by chance, and the small (insignifi-
cant) 3-star term indicates that it is not overly skewed.
All of the “esp” and “triangle” terms are very signif-
icant indicating that there is much more transitivity
than if collaboration ties were formed randomly. Fi-
nally the highly negative “dcp” term suggests that
high degree individuals tend to collaborate with low
degree individuals. This makes intuitive sense, as se-
nior researchers tend to pair with students and junior
faculty in their writings.

Figure 3 shows a goodness-of-fit plot for the full de-
gree and ESP distributions. We see good agreement
between the networks simulated from the model and
the observed graph. Figure 4 displays the observed
graph alongside three simulated networks. The sim-
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Figure 3: The degree and ESP distributions from 200
simulated networks (black) from the MLE compared
to the observed network (red).

ulated networks share many similarities with the ob-
served graph, including a large component, many tri-
angles, and a hub-and-spoke pattern caused by high
degree nodes being connected to lower degree nodes.

Fitting this model without using the tapering term
proved fruitless. All attempts yielded an MCMCMLE
process that diverged either to the empty or com-
pletely full graph, suggesting that a multiphase point
had been reached. Utilizing the “degeneracy robust”
statistics of Snijders et al. [2006] in place of the more
intuitive statistics we used here similarly led to a di-
vergent MCMC process.

5 Discussion

Phase transitions are an interesting emergent phenom-
ena in Gibbs measures. In many physical systems, this
closely matches the reality of distinct transitions be-
tween magnetic polarity or liquids and solids. How-
ever, in a great many cases, phase transitions are an
unwanted anomaly. One that not only stymies compu-
tational efforts to find a maximum likelihood fit, but
also renders that fit an unrealistic representation of
the underlying phenomena.

Researchers have focused much effort on engineering
sufficient statistics that are less prone to phase transi-
tions, with some success [Snijders et al., 2006, Horvát
et al., 2015]; however recent theoretical work suggests
that as networks become larger, phase transition be-
havior may become more and more common [Chatter-
jee et al., 2013]. Further, while there is an art to engi-
neering features, there is no theoretical result showing
that statistics stable in one network will be stable in
another.

The probability model developed here represents a new
perspective on the problem. By augmenting the dis-
tribution and down-weighting extreme configurations,
we achieve a model that not only shows good behavior
in practice, but has theoretical guarantees regarding
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Figure 4: The observed network science collaboration network and three independent networks simulated from
the MLE.

its stability. Using these methods frees the researcher
to utilize sufficient statistics that are of theoretical in-
terest, improving the interpretability of their results.

Using the rule βk = r
√
vk with r = 2 provided non-

degenerate fits in both the Ising (Section 4.2) and net-
work science (Section 4.3) analyses. However, choice
of β remains an important open area for future work.
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