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SUPPLEMENTARY MATERIAL

A Calibration of the parameters

We only prove the calibration in the setting of linear re-
gression with square loss (i.e., for Theorem 3 only and
not for the general Theorem 1). It remains an open
question whether the calibration of the parameters can
be performed in the general setting of Section 3. We
leave this question for future research. Furthermore,
for the sake of clarity the adaption to Y (which is only
necessary for clipping) is not considered here. How-
ever, it can be achieved simultaneously by updating
the clipping range based on the past observations Ys,
s ! t− 1 (see Gerchinovitz, 2013, Section 4.5).

The calibration algorithm (Algorithm 3) works as fol-
lows. We define large enough grids of parameters for
each doubling session j " 0

Gj =
{
(d0,α, U,B) ∈ [1, . . . , d]× R3

+ such that

d0 ∈ {0} ∪
{
2k, k = 0, . . . , ⌈log2 d⌉

}

α ∈
{
2k, k = −2j + ⌈log2(Bd0/Y

2)⌉, . . . ,
j + ⌈log2 d0⌉

}

U ∈
{
2k, k = −2j, . . . , 2j + ⌈2 log2 Y ⌉

}

B ∈
{
2k, k = −2j, . . . , 2j + ⌈2 log2 Y ⌉}

}
.

(7)

For each set of parameters p = (d0,α, U,B) ∈ Gj , we
perform a local version of SAEW to obtain an estima-
tor θ̃p,j at time t = 2j − 1. Then, the calibration algo-
rithm uses the online aggregation procedure BOA of
Wintenberger (2014) to make predictions from t = 2j

to 2j+1 − 1. Its predictions are based on online combi-
nations of the (clipped) forecasts made by the θ̃p,j .
Theorem 4. Let Y > maxt=1,...,T |Yt| almost surely.
With probability 1− δ, the excess risk of the estimator
f̃T produced by Algorithm 3 is of order

OT

(
Y 2

T
log
( (log d)(log T + log Y )

δ

)

+
d0X2σ2

α∗T
log
(d log T

δ

))
,

where d0 = ∥θ∗∥0 and α∗ > 0 is the largest value of α
satisfying Inequality (SC).

The proof is postponed to Appendix B.7.
Remark A.1. Similarly to the restricted eigenvalue con-
dition of the Lasso, we believe that the strong convex-
ity condition for α∗ might be necessary on subspaces
of dimension lower than or equal to d0 only. However,
to do so, SAEW should be used with a subroutine

Algorithm 3: Calibration algorithm
Parameters: Y > 0, δ > 0

Initialization: t0 = t = 1 and θ̄(0) = 0

For each j = 0, 1, . . .

• Define the grid Gj as in (7)

• For parameters p = (d0,α, U,B) ∈ Gj :

– Define δj = δ/(2(j + 1)2)

– Run SAEW with parameter (d0,α, U,B, δj)
for t = 0, . . . , 2j − 1 and get the estimator
θ̃2j−1, denoted by θ̃p,j .

– Define the clipped predictor

fp,j : x (→ [x⊤θ̃p,j ]Y

where [ · ]Y := max
{
− Y,min{ · , Y }

}
.

• For t = 2j , . . . , 2j+1 − 1,

– predict f̂t−1(Xt) by performing BOA with
experts (fp,j)p∈Gj

– output the estimator f̃t−1 = f̄j

• Define the average estimator

f̄j+1 = 2−j
2j+1−1∑

t=2j

f̂t−1 .

that produces sparse θ̂t−1. Up to our knowledge, such
procedures do not exist for convex optimization in the
ℓ1-ball. As stated previously, sparse procedures such
as RDA of Xiao (2010) cannot be used as subroutines
since they perform optimization in the ℓ2-ball and suf-
fer a linear dependence on d. We leave this question
for future work.
Remark A.2. For the sake of clarity, the above result
is only stated asymptotically. However the bound also
holds in finite time up to universal multiplicative con-
stant (as done in the proof). Additional negligible
terms of order O(1/T 2) then appear in the bound. Fur-
thermore, the finite time bound also achieves the best
of the two regimes (slow rate vs fast rate) as in Theo-
rem 3.
Remark A.3. Theorem 4 has been proven only for
square linear regression. However, it also holds for any
strongly-convex loss function, with locally bounded
gradients (i.e., with LIST condition, see Wintenberger,
2014).
Remark A.4. To perform the calibration, we left the
original framework of Section 2. First, because of the
clipping, the estimators f̃t−1 produced by Algorithm 3
are not linear any-more. Second, the meta-algorithm
implies that we can observe the gradients of all subrou-
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tines SAEW simultaneously. Tuning the parameters in
the original setting is left for future work.

B Proofs

B.1 Lemma 5

We first state Lemma 5, a classical result in strong
convexity, as it will be useful in the proofs. It relates
the ℓ2-error of an estimator with its excess risk when
the risk is strongly convex.
Lemma 5. If the risk is 2α-strongly convex, then

∥θ − θ∗∥22 ! α−1 Risk(θ)

for all θ ∈ Rd.

Proof. Let θ ∈ Rd, by (SC) applied with θ1 = θ∗ and
θ2 = θ, we get

∥∥θ − θ∗
∥∥2
2
! α−1E

[
ℓt(θ)− ℓt(θ

∗)
]

+ α−1E
[
∇ℓt(θ

∗)
]⊤

(θ∗ − θ) .

But, E
[
∇ℓt(θ∗)

]⊤
(θ∗ − θ) ! 0. Otherwise, taking into

account the convexity of the domain, the direction θ−
θ∗ is a decreasing feasible direction, which contradicts
the optimality of θ∗.

B.2 Proof of Theorem 1

Let (δi) be a non-increasing sequence in (0, 1) such
that

∑∞
i=1 δi ! δ.

Step 1. Proof by induction that the subroutines
always perform the optimization in the correct
ℓ1-ball. We prove by induction on i " 0 that with
probability at least 1−

∑i
j=1 δj

∥∥θ∗ − [θ̄ti−1]d0

∥∥
1
! U2−i/2 . (Hi)

H0 is satisfied by assumption since ∥θ∗∥1 ! U and
[θ̄t0−1]d0 = [θ̄0]d0 = 0 (see SAEW for the definition of
[θ̄0]).

Let i " 0 and assume (Hi). The following Lemma
(whose proof is postponed to Appendix B.3) states that
the gradients are indeed upper-bounded by B in sup-
norm.
Lemma 6. Let i " 0. Under (Hi), for all t ∈
[ti, ti+1 − 1],

∥∥∇ℓt(θ̂t−1)∥∞ ! B almost surely.

Therefore, from the regret bound (5), the subroutine
Si satisfies for all t ∈ [ti, ti+1 − 1]

t∑

s=ti

ℓs(θ̂s−1)− ℓs(θ
∗)

! U2−i/2

(
a

√√√√
t∑

s=ti

∥∥∇ℓs(θ̂s−1)
∥∥2
∞ + bB

)
.

Bounding the cumulative risk with the regret thanks to
Theorem 10 in Appendix C.2, it yields with probability
at least 1−

∑i+1
j=1 δj ,

t∑

s=ti

E[ℓs](θ̂s−1)− E[ℓs](θ∗) ! U2−i/2 Errt (8)

where Errt := a′i

√∑t
ti

∥∥∇ℓs(θ̂s−1)
∥∥2
∞ + b′iB with

a′i := a+
√
2

√
log
(
1 +

1

2
log
( t− ti + 1

2

))
− log δi+1,

(9)and

b′i := b+
1

2
+ log

(
1 +

1

2
log
( t− ti + 1

2

))
− log δi+1 .

(10)

Thus, recalling that by definition (see SAEW)

θ̄t := (t− ti + 1)−1
t∑

s=ti

θ̂s−1 ,

and because the losses are i.i.d., Jensen’s inequality
yields

Risk(θ̄t) = E[ℓt+1](θ̄t)− E[ℓt+1](θ
∗)

Jensen
! (t− ti + 1)−1

t∑

s=ti

E[ℓs](θ̂s−1)− E[ℓs](θ∗)

(8)
! U Errt

2i/2(t− ti + 1)
. (11)

Together with the strong convexity of the risk
(Lemma 5), this entails

∥∥θ̄t − θ∗
∥∥2
2
! U Errt

α2i/2(t− ti + 1)
. (12)

We thus control the ℓ2-error of θ̄t. However, in order
to control the ℓ1-error without paying a factor d, we
need to truncate some coordinates of θ̄t. By definition
of [θ̄t]d0 (see SAEW), we have

[θ̄t]d0 ∈ argmin
θ∈Rd:∥θ∥0!d0

{∥∥θ̄t − θ
∥∥
2

}
. (13)

Now, (13) together with ∥θ∗∥0 ! d0 (by assumption)
yields ∥∥θ̄t − [θ̄t]d0

∥∥
2
!
∥∥θ̄t − θ∗

∥∥
2
. (14)
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Furthermore, because both ∥θ∗∥0 ! d0 and
∥∥[θ̄t]d0∥0 !

d0, we have

∥[θ̄t]d0 − θ∗∥0 ! 2d0 . (15)

Therefore, with probability at least 1−
∑i+1

j=0 δj

∥∥[θ̄t]d0 − θ∗
∥∥
1

(15)
!
√
2d0

∥∥[θ̄t]d0 − θ∗
∥∥
2

!
√
2d0
(∥∥[θ̄t]d0 − θ̄t

∥∥
2
+
∥∥θ̄t − θ∗

∥∥
2

)

(14)
! 2

√
2d0
∥∥θ̄t − θ∗

∥∥
2

(12)
! 2

√
2d0α−1U Errt 2−i/2(t− ti + 1)−1

=: εt , (16)

where the last equality holds by definition of εt (see
SAEW). Finally, (Hi+1) is fulfilled by definition of ti+1

(see SAEW), which satisfies εti+1−1 ! U2−(i+1)/2. The
induction is thus completed.

In the rest of the proof, we consider that (Hi) are
satisfied for all i " 0. This occurs with probability
1−

∑∞
j=1 δj " 1− δ as stated by Step 1.

Step 2. Fast rate for the excess risk of θ̃t. First,
we prove that the excess risk of θ̃t is upper-bounded
as

Risk(θ̃t) !
d0B2

α

(
27a′2

t
+

211b′2

t2

)
+

2αU2

d0t2
, (17)

for all t " 1, where a′ = a′⌊2 log2 t⌋ and b′ = b′⌊2 log2 t⌋.

To do so, we start from the risk inequality (11). From
the definition of εt (see (16)), we get

Risk(θ̄t) !
αε2t
8d0

, t " 1 . (18)

Thus, by definition of θ̃t := θ̄argmins!t εs , we have

Risk(θ̃t) !
αmins!t ε2s

8d0
(19)

We conclude the proof of (17) with the following
lemma proved in Appendix B.4
Lemma 7. Let i " 0. Let ti − 1 ! t ! ti+1, then

min
s!t

εs ! U

(√
2γa′i√
t

+
2 + 4γb′i

t

)
,

where γ := 24d0B/(αU).

Let i " 0 such that ti−1 ! t ! ti+1. Lemma 7 together
with (19) and (x+ y)2 ! 2x2 +2y2 for x, y " 0, yields

Risk(θ̃t) !
αU2γ2

8d0

(√
2a′i√
t

+
2γ−1 + 4b′i

t

)2

(20)

! αU2γ2

d0

(
a′2i
2t

+
2γ−2 + 8b′2i

t2

)
. (21)

Now, remark that if i " 2 log t, then εti−1 ! U2−i !
U/t and from (19), Risk(θ̃t) ! αU2/(8d0t2). Together,
with (21), we get

Risk(θ̃t) !
αU2γ2

d0

(
a′2

2t
+

2γ−2 + 8b′2

t2

)
,

with a′ = a′⌊2 log2 t⌋ and b′ = b′⌊2 log2 t⌋. Substitut-
ing γ = 24d0B/(αU) concludes the proof of Inequal-
ity (17).

Step 3. Slow rate for the excess risk of θ̃t. Now,
we prove that

Risk(θ̃t) ! UB

(
a′√
t/2

+
4b′

t

)
+

αU2

8d0t
, t " 1 . (22)

For small values of t, the slow rate will be satisfied
from the initial bound of the subroutine during the
first session. At some time τ > 0, the fast rate becomes
better than the slow rate. This splitting time is defined
as the solution of the equality

Errt1−1

t1 − 1
= B

(√2a′√
τ

+
2γ−1 + 4b′

τ

)
. (23)

Let t " 1. To control Risk(θ̃t), we distinguish three
cases:

• if t ! t1 − 1, then, since by definition of εs

argmin
s!t

Errs
s

= argmin
s!t

εs ,

we get from Inequality (11) that

Risk(θ̃t) = Risk(θ̄argmins!t εs)

! U2−0/2 min
s!t

Errs
s

! U
Errt
t

.

By definition of Errt (see (8)) and upper-bounding
the gradients by B, we get

Risk(θ̃t) ! UB
( a′0√

t
+

b′0
t

)
.

• if t1 ! t ! τ , then following the same reasoning
as above, we have

Risk(θ̃t) ! U
Errt1−1

t1 − 1
,



Sparse Accelerated Exponential Weights

which yields by definition of τ (see Equality (23))
and by using t ! τ :

Risk(θ̃t) ! UB
(√2a′√

τ
+

2γ−1 + 4b′

τ

)

! UB
(√2a′√

t
+

2γ−1 + 4b′

t

)
.

• if τ ! t, since by definition of t1 (see SAEW),
εt1−1 ! U/2, then by definition of εt1−1 (see (16)),

2

√
2d0α−1U

Errt1−1

t1 − 1
! U

2
,

and thus taking the square and rearranging the
terms

d0
α

! U

25

( t1 − 1

Errt1−1

)
.

Using the definition of γ = 24d0B/(αU) and sub-
stituting Errt1−1 with Equality (23), this yields

αU2γ2

8d0
=

25d0B2

α
! UB

(√2a′√
τ

+
2γ−1 + 4b′

τ

)−1
.

Finally from Inequality (20), and using τ ! t

Risk(θ̃t) ! UB

(√
2a′√
t

+
2γ−1 + 4b′

t

)
.

Combining the three cases together and substituting
γ = 24d0B/(αU), concludes the proof of Inequal-
ity (22).

Step 4. Conclusion of the proof Combining In-
equalities (17) and (22), we get the risk inequality
stated in the Theorem 1 for θ̃t. It only remains to
choose δj = δ/(j + 1)2 so that

∑∞
j=1 δj ! δ and to

control a′ = a′⌊2 log2 t⌋ and b′ = b′⌊2 log2 t⌋. From (9),
we can use δ⌊2 log2 t⌋+1 " δ/(1 + 2 log2 t)

2 and Ti ! t.
Simple calculation yields that a′ − a is lower than
√

2
(
log(1 + 1/2 log(t/2))− log δ + 2 log(1 + 2 log2 t)

)

!
√
6 log(1 + 3 log t)− 2 log δ.

Similarly, for b′ − b. It is upper-bounded by

1

2
+ log

(
1 + (1/2) log(t/2)

)
− log δ + 2 log(1 + 2 log2 t)

! 1/2 + 3 log(1 + 3 log t)− log δ .

This concludes the proof.

B.3 Proof of Lemma 6

Since by assumption B " maxθ:∥θ∥1!2U ∥∇ℓt(θ)∥∞ a.s.
it suffices to show that ∥θ̂t−1∥1 ! 2U . By definition of
the session Si,

θ̂t−1 ∈ B1([θ̄ti−1]d0 , U2−i/2) .

Thus:
• if i = 0, since [θ̄0]d0 = 0, ∥θ̂t−1∥1 ! U .
• if i = 1, since ∥[θ̄t1−1]∥1 ! U as a truncated aver-

age of vectors in B1(0, U), we have

∥θ̂t−1∥1 ! ∥θ̂t−1 − [θ̄t1−1]d0∥1 + ∥[θ̄t1−1]d0∥1
! U/

√
2 + U ! 2U ;

• otherwise, i " 2 and ∥θ̂t−1∥1 is bounded by

∥θ̂t−1 − [θ̄ti−1]d0∥1 + ∥[θ̄ti−1]d0 − θ∗∥1 + ∥θ∗∥1
(Hi)
! U2−i/2 + U2−i/2 + U ! 2U .

Putting the tree cases together, ∥θ̂t−1∥1 ! 2U , which
concludes the proof.

B.4 Proof of Lemma 7

It is enough to control εti−1 " mins!t εs. To do so, we
prove that for every j " 0, Tj := tj+1 − tj cannot be
too large, so that at time t, i will be at least of order
log2 t.

Let j " 0. We can assume tj+1 > tj , otherwise Tj = 0.
Thus, from the bound on the gradients (Lemma 6) and
from the definition of Errt (see (8)) for all t ∈ [tj +
1, tj+1],

Errt−1 ! B(a′j
√
t− tj + b′j) , (24)

and from the definition of εt−1 (see (16))

εt−1 ! 2

√

2d0α−1UB
a′j
√
t− tj + b′j

2j/2(t− tj)
.

By definition, tj+1 is the smallest integer after tj satis-
fying εtj+1−1 ! U2−(j+1)/2. Hence, we have εtj+1−2 "
U2−(j+1)/2, which implies

2

√

2d0α−1UB
a′j
√
Tj − 1 + b′j

2j/2(Tj − 1)
" U2−(j+1)/2

⇔ 2j/2 24d0α
−1U−1B︸ ︷︷ ︸
:=γ

(
a′j
√
Tj − 1 + b′j

)
" Tj − 1

Then, by solving a second order equation in
√
Tj − 1

(see for instance Gaillard et al., 2014, Lemma 10), the
above inequality entails

Tj ! 1 + 2j γ2a′2j + 2j/2γb′j . (25)
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Therefore, summing over j = 0, . . . , i

ti+1 =!!t0 +
i∑

j=0

Tj

!
i∑

j=0

(
1 + 2j γ2a′2j + 2j/2γbj

)

! 21+i γ2a′2i + (1 +
√
2)2(i+1)/2γb′i + i+ 1

! 21+i γ2a′2i + 2(i+1)/2
√
2
(
2γb′i + 1

)
,

where the last inequality is because 2(i+1)/2 "
√
2(i +

1) for i " 0. Solving the second-order inequality in
2(i+1)/2 we get

2−(i+1)/2 ! γa′i√
ti+1

+
√
2
1 + 2γb′i
ti+1

.

Thus, since εti−1 ! U2−i/2, we have

εti−1 ! Uγ

( √
2a′i√
ti+1

+
2γ−1 + 4b′i

ti+1

)
.

The proof of Lemma 7 finally follows using t ! ti+1.

B.5 Proof of Theorem 2

With probability 1− δ, all inequalities provided in the
proof of Theorem 1 are satisfied. We also consider the
notation of the previous proof. Let t " 1.

Step 1. Slow rate We remark that for any i " 0,

(ti+1−1)∧t∑

s=ti

E[ℓs](θ̂s−1)− E[ℓs](θ∗)
(8)
! U2−i/2 Err(ti+1−1)∧t

(24)
! UB2−i/2(a′i

√
t+ b′i) (26)

where, in the last inequality, we use that (ti+1 − 1) ∧
t ! t and ti " 1. We will use this inequality for i !
⌊2 log t⌋. For i > ⌊2 log t⌋, we use the fact that the
gradients are bounded by B, so that by convexity of
the risk
(ti+1−1)∧t∑

s=ti

E[ℓs](θ̂s−1)− E[ℓs](θ∗)

!
(ti+1−1)∧t∑

s=ti

∥E[∇ℓs](θ̂s−1)
∥∥
∞∥θ̂s−1 − θ∗∥1

! UB2−i/2t . (27)

Summing (26) over i = 0, . . . , ⌊2 log2 t⌋ and (27) over
i = ⌈2 log2 t⌉, . . . ,∞, we get

Risk1:t(θ̂0:(t−1)) :=
t∑

s=1

E[ℓs](θ̂s−1)− E[ℓs](θ∗)

! UB

⌊2 log2 t⌋∑

i=0

2−i/2(a′i
√
t+ b′i)

+UBt
∞∑

i=⌈2 log2 t⌉

2−i/2 . (28)

The second sum is controlled as
∞∑

i=⌈2 log2 t⌉

2−i/2 ! t−1
∞∑

i=0

2−i/2 .

Thus, since
∑∞

i=0 2
−i/2 = 2 +

√
2 ! 4, we have

Risk1:t(θ̂0:(t−1)) ! 4UB(a′
√
t+ b′) + 4UB ,

where we recall that a′ = a′⌊2 log2 t⌋ and b′ = b′⌊2 log2 t⌋.
This concludes Step 1.

Step 2. Fast rate Let us now prove the fast rate

Risk1:t
(
θ̂0:(t−1)

)
! 25d0B2

α
a′2 log2 t

+ 4BU(1 + b′) + U2 α

8d0
,

for all t " 1.

First, we remark that similarly to (18), we get for all
i " 0 that

ti+1−1∑

s=ti

E[ℓs](θ̂s−1)− E[ℓs](θ∗)
(8)
! U

Errti+1−1

2−i/2Ti
Ti

(16)
!

αε2ti+1−1

8d0
Ti

! αU22−i

16d0
Ti (29)

where the last inequality is because εti+1−1 !
U2−(i+1)/2 by definition of ti+1 (see SAEW). We will
use this inequality for i ! ⌊2 log t⌋. Summing (29) over
i = 0, . . . , ⌊2 log2 t⌋ and (27) over i = ⌈2 log2 t⌉, . . . ,∞,
we get

Risk1:t(θ̂0:(t−1)) :=
t∑

s=1

E[ℓs](θ̂s−1)− E[ℓs](θ∗)

! U2α

24d0

⌊2 log2 t⌋∑

i=0

2−iTi

+UBt
∞∑

i=⌈2 log2 t⌉

2−i/2 . (30)

We upper bound both sums. The second one is con-
trolled as we did for (28). The first one is upper-
bounded thanks to (25)

⌊2 log2 t⌋∑

i=0

2−iTi !
⌊2 log2 t⌋∑

i=0

(
γ2a′2i + 2−i/2γb′i + 2−i

)
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! 2γ2a′2 log2 t+ 4γb′ + 2 .

Therefore, substituting the two sums into (30), the
cumulative risk Risk1:t(θ̂0:(t−1)) is upper-bounded by

U2α

24d0

(
2γ2a′2 log2 t+ 4γb′ + 2

)
+ 4UB ,

which, by substituting γ = 24d0B/(αU), is equal to

25d0B2

α
a′2 log2 t+ 4BU(1 + b′) +

αU2

8d0
.

This concludes the proof.

B.6 Proof of Theorem 3

Let first check that we are indeed in the setting of
Theorem 1. The risk is strongly convex because for
any θ1, θ2 ∈ Rd

E[ℓt(θ1)− ℓt(θ2)] = E
[
(Yt −X⊤

t θ1)
2 − (Yt −X⊤

t θ2)
2
]

= E
[
− 2(Yt −X⊤

t θ1)X
⊤
t (θ1 − θ2)−

(
X⊤

t (θ1 − θ2)
)2]

= ∇E[ℓt](θ1)⊤(θ1 − θ2)− (θ1 − θ2)
⊤E
[
XtX

⊤
t

]
(θ1 − θ2) .

Assumption (SC) is thus satisfied with α =
λmin(E

[
XtX⊤

t

]
). Besides, for all θ such that ∥θ∥1 !

2U , we have

∥∇ℓt(θ)∥∞ = ∥2(Yt−X⊤
t θ)Xt∥∞ ! 2(Y+2XU)X = B .

Now, we mimic the proof of Theorem 1. In the rest
of the proof, we consider that (Hi) are satisfied for
all i " 0. This occurs with probability 1 − δ and all
inequalities stated in the proof of Theorem 1 are satis-
fied.

The proof is based on the following Lemma that we
substitute to Inequality (24) from the proof of Theo-
rem 1.
Lemma 8. For all t ∈ [ti, ti+1 − 1], with probability
1− δi+1,

Errt−1 ! 2
√
2Xσa′i

√
t− ti +Bc′i ,

where c′i := b′i + a′i
(√

log δ−1
i+1 +

√
2b + 2a

)
. We recall

that Errt−1 is defined in (8).

Proof of Lemma 8. In the particular case of the square
loss, the gradients are given by ∇ℓt(θ) = 2Xt(X⊤

t θ −
Yt), so that

∥∇ℓt(θ̂t−1)∥2∞ ! 4X2ℓt(θ̂t−1) . (31)

Following Gerchinovitz, 2013, Corollary 2.2, we get
from Inequality (5) that

tend∑

t=tstart

ℓt(θ̂t−1)−ℓt(θ
∗) ! 2aUX

√√√√
tend∑

tstart

ℓt(θ̂t−1)+bUB .

Solving the second-order inequality (see Gaillard et al.,
2014, Lemma 10), it yields the improvement for small
losses
√√√√

tend∑

t=tstart

ℓt(θ̂t−1) !

√√√√
tend∑

t=tstart

ℓt(θ∗) +
√
bUB + 2aUX .

Thus, from (31),

√√√√
t−1∑

s=ti

∥∥∇ℓs(θ̂s−1)
∥∥2
∞ ! 2X

√√√√
t−1∑

s=ti

ℓs(θ∗)

+ 2X
√
bUB + 4aUX2 .

But, with probability 1−δi+1, we have from Theorem 9

t−1∑

s=ti

ℓs(θ
∗) ! (e− 1)

t−1∑

s=ti

E[ℓs(θ∗)] + (Y +XU)2 log δ−1
i+1

! 2σ2(t− ti) + (Y +XU)2 log δ−1
i+1 ,

where σ2 = E[ℓt(θ∗)]. Plugging into the previous in-
equality and using

√
x+ y ! √

x +
√
y for x, y > 0,

this yields

2−1X−1

√√√√
t−1∑

s=ti

∥∥∇ℓs(θ̂s−1)
∥∥2
∞ (32)

!
√
2σ

√
t− ti + (Y +XU)

√
log δ−1

i+1 +
√
bUB + 2aUX

!
√
2σ

√
t− ti + 2−1BX−1

(√
log δ−1

i+1 +
√
2b+ 2a

)
,

(33)

where the second inequality is because B/(2X) " (Y +
XU) " XU . The proof of Lemma 8 is concluded by
using the definition of Errt−1 (see (8)).

The proof of Theorem 3 is then completed following
the one of Theorem 1 by using Lemma 8 instead of
Inequality (24). Finally, it only suffices to substitute
Ba′i with 2

√
2Xσa′i and b′i with c′i in the final results.

At the end, b′ of Theorem 1 must thus be substituted
with

c′ := b′ + a′
(√

2 log(1 + 2 log2 T )− log δ +
√
2b+ 4a

)

! 1/2 + b+ 3 log(1 + 3 log T )− log δ

+
(
a+

√
6 log(1 + 3 log t)− 2 log δ

)

(√
2 log(1 + 3 log T )− log δ +

√
2b+ 2a

)

! 1

2
+ b+ 3 log(1 + 3 log T )− log δ + 4a2

+2b+ 6 log(1 + 3 log T )− 2 log δ)

! 1/2 + 3b+ 4a2 + 9 log(1 + 3 log T )− 3 log δ .

# 1 + b+ a2 + log log T − log δ
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However, in contrast to the bound B on the gradients,
Lemma 8 only holds with probability 1− δi+1 (instead
of almost surely). A union bound over all events states
that the final result only holds with probability 1−δ−∑∞

i=1 δi+1 = 1 − 2δ. To get a result with probability
1− δ, δ must thus be multiplied by 2 in the results.

This gives that, from the risk bound of Theorem 1,
with probability 1− δ, Risk

(
θ̃t
)

is upper-bounded by

min

{
4U

(
Xσa′√

T
+

Bc′

T

)
+

αU2

8d0T
,

d0
α

(
210X2σ2a′2

T
+

211B2c′2

T 2

)
+

2αU2

d0T 2

}
,

where a′ = 2a+ 2
√

6 log(1 + 3 log T ) + 2 log(2/δ) and
c′ = 1 + 3b+ 4a2 + 9 log(1 + 3 log T ) + 3 log(2/δ).

The bound of the theorem is then obtained by using
that B = 2X(Y + 2XU).

B.7 Proof of Theorem 4

For the sake of clarity, we only perform this proof up
to universal constants. Let B∗ = 2X(Y +2X∥θ∗∥1) !
maxθ∈B(0,2∥θ∗∥1) ∥∇ℓt(θ)∥∞ almost surely. We also de-
fine by α∗ the maximal number strong convexity pa-
rameter that satisfies (SC).

Let T ! 1. Then, by definition (see Alg. 3), f̃T−1 = f̄j
for j = ⌊log2 T ⌋ − 1.

We aim at controlling the excess risk of the average
estimator f̄j =

∑2j+1−1
t=2j f̂t. To do so, we control the

cumulative risk for t = 2j , . . . , 2j+1 − 1

Risk(j) :=
2j+1−1∑

t=2j

Et−1

[
(Yt − f̂t(Xt))

2
]

− E
[
(Yt −X⊤

t θ∗)2
]
,

where Et−1[ · ] = E
[
· |(X1, Y1), . . . , (Xt−1, Yt−1)

]
. We

will use that

Risk(f̄j) " Risk(j) 2−j # Risk(j)

T
. (34)

We first prove that it exists a predictor fp,j with p ∈
Gj that has a small excess risk. Then, we will apply
Theorem 4.5 of Wintenberger, 2014 to show that BOA
almost achieves this performance.

Step 1. Either it exists a predictor fp,j with
small excess risk or Risk(j) is small. Since all
predictions f̂t(Xt) lie in [−Y, Y ] almost surely,

Risk(j) " Y 22j " Y 2T . (35)

Let d0 in Gj (i.e., a power of 2) such that d0/2 "
∥θ∗∥0 " d0. We show that if the conditions of Theo-
rem 3 cannot be satisfied with any parameter of the
grid Gj , the cumulative risk Risk(j) is small enough.
We start with the choice of the parameter U , which
should be of order ∥θ∗∥1:

a) If ∥θ∗∥1 " 2−2j . It exists a predictor in Gj such
that fp,j = 0 (consider d0 = 0). In this case,

Risk(fp,j) = E[(Yt − 0)2] " B∗∥θ∗∥1
" B∗2−2j # B∗T−2 ,

where we used that 2−j # T−1.

b) If ∥θ∗∥1 ! 22j+⌈2 log Y ⌉, then 2j " Y −2∥θ∗∥12−j

and from Inequality (35),

Risk(j) " ∥θ∗∥12−j # ∥θ∗∥1
T

# ∥θ∗∥0(B∗)2

α∗T
.

Otherwise, we can choose U in Gj such that U/2 "
∥θ∗∥1 " U . Similarly for B:

c) if B < 2−2j , then for fp,j = 0,

Risk(fp,j) = E[ℓ(Yt, 0)] " B∗∥θ∗∥1

" ∥θ∗∥12−2j # ∥θ∗∥1
T 2

,

d) if B > 22j+⌈2 log Y ⌉, then from Inequality (35),
Risk(j) " B∗2−j # B∗T−1.

Otherwise, we can choose B in Gj such that B/2 "
B∗ " B. Finally, for α:

e) if α∗ < 2−2j+⌈log2(B
2d0/Y

2)⌉ " d0B22−2j/Y 2,
then 2j " d0B2/(Y 2α∗2j) and thus

Risk(j) " Y 22j " Y 2 d0B2

Y 2α∗2j
# ∥θ∗∥0(B∗)2

α∗T
.

Otherwise, we can choose α in Gj such that
min{d0/T,α∗/2} " α " α∗.

f ) Applying Theorem 3, with high probability the
excess risk of the estimator fp,j with the choice
(d0,α, U,B) described above satisfies

Risk(fp,j)
clipping
" Risk(θ̃p,j)

# min

{
X2

γ

(
σ2a′2

T
+

(Y +X∥θ∗∥1)2c′2

T 2

)
+

γ∥θ∗∥21
T 2

,

∥θ∗∥1X
(
σa′√
T

+
(Y +X∥θ∗∥1)c′

T

)
+

γ∥θ∗∥21
T

}
,

with γ = max{d0/α, 1/T}.
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Putting everything together, either (for cases b), d),
and e))

Risk(j) !
(
B∗ +

∥θ∗∥0(B∗)2

α∗

)
T−1 (36)

or, for cases a), c), and f), there exists p ∈ Gj such
that with high probability

Risk(fp,j) ! min

{
1

γ

(
X2σ2a′2

T
+

(B∗c′)2

T 2

)
+

γ∥θ∗∥21
T 2

,

∥θ∗∥1X
(
σa′√
T

+
(Y +X∥θ∗∥1)c′

T

)
+

γ∥θ∗∥21
T

}
+

B∗

T 2
,

(37)

Step 2. Bound of the meta-algorithm. Using
that the square loss is 4Y -Lipschitz over the domain
[−Y, Y ] and 2-strongly convex, we can apply Theo-
rem 4.5 of Wintenberger, 2014 with Cb = 4Y , Cℓ = 2,
and M = #Gj . We get that with high enough proba-
bility

Risk(j) ! T min
p∈Gj

Risk(fp,j)

+Y 2
(
log#Gj + log(log T + log Y )− log δ

)
.

Substituting

#Gj ! (j + log Y )3 log d ! (log T + log Y )3 log d ,

this yields

Risk(j) ! minp∈Gj Risk(fp,j)

T
+Y 2

(
log log d+ log(log T + log Y )− log δ

)
.

Combining with Inequality (37), we obtain that Risk(j)
is at most of order

Risk(j) ! Y 2
(
log log d+ log(log T + log Y )− log δ

)

+min

{
1

γ

(
X2σ2a′2 +

(B∗c′)2

T

)
+

γ∥θ∗∥21
T

,

∥θ∗∥1X
(
σa′

√
T + (Y +X∥θ∗∥1)c′

)
+ γ∥θ∗∥21

}
+

B∗

T
.

Finally, using Inequality (34), keeping only the main
asymptotic term in 1/T , and substituting a′ !
log((d log T )/δ) concludes the proof.

C Martingale inequalities

In this section, we prove two martingale inequalities
that are used in the analysis.

C.1 Poissonian inequality

First, we prove a Poissonian inequality which only
works for nonnegative increments.
Theorem 9. Let T " 1. Let (Xt)t!1 be a sequence of
random variables such that Xt ∈ [0, B] almost surely,
then with probability at least 1− δ

T∑

t=1

Xt # (e− 1)
T∑

t=1

Et−1[Xt] +B log(1/δ) .

Proof. Let Zt = Xt/B ∈ [0, 1]. From Cesa-Bianchi
and Lugosi, 2006, Lemma A.3, for all t " 1, and all
s > 0

Et−1

[
exp

(
sZt − (es − 1)Et−1[Zt]

)]
# 1 .

Thus,

E
[
exp

(
s

T∑

t=1

Zt − (es − 1)
T∑

t=1

Et−1[Zt]
)]

= E
[
ET−1

[
exp

(
sZT − (es − 1)ET−1[ZT ]

)]

exp
(
s
T−1∑

t=1

Zt − (es − 1)
T−1∑

t=1

Et−1[Zt]
)]

# E
[
exp

(
s
T−1∑

t=1

Zt − (es − 1)
T−1∑

t=1

Et−1[Zt]
)]

By induction, we get

E
[
exp

(
s

T∑

t=1

Zt − (es − 1)
T∑

t=1

Et−1[Zt]
)]

# 1 .

We conclude thanks to Markov’s inequality, with prob-
ability at least 1− δ

T∑

t=1

Zt #
es − 1

s

T∑

t=1

Et−1[Zt] +
1

s
log(1/δ) .

The final result is obtained by substituting Zt = Xt/B
and by choosing s = 1.

C.2 From cumulative regret to cumulative
risk

Theorem 10. Let x > 0. Assume θ∗ ∈ B1(θcenter, ε).
The cumulative risk of any convex optimization proce-
dure in B1(θcenter, ε) satisfies, with probability 1− δ

Risk1:T (θ̂0:(T−1))− Reg1:T (θ̂0:(T−1))

# ε

√√√√2 log
(2 + log(T/2)

2δ

) T∑

t=1

∥∥∇ℓt(θ̂t−1)∥2∞
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+
(1
2
+ log

(
1 +

1

2
log(T/2)

)
− log δ

)
εB ,

where B ! maxθ∈B1(θcenter,ε)

∥∥∇ℓt(θ̂t−1)∥∞ almost
surely.

Proof. This is a consequence of Theorem 4.1 of
Wintenberger, 2014. Let δ ∈ (0, 1) and
(ηt)t!0 be a sequence adapted to the filtration
(Ft = {ℓ1, . . . , ℓt−1})t!0. Then, with the notation
ℓ2j,t " ε2∥∇ℓt(θ̂t−1)∥2∞, applying Theorem 4.1 of Win-
tenberger (2014), we get that with probability 1− δ

RT := Risk1:T (θ̂0:(T−1))− Reg1:T (θ̂0:(T−1))

" ε2
T∑

t=1

ηt−1∥∇ℓt(θ̂t−1)∥2∞

+
log
(
1 + E

[
log(η1/ηT )

])
− log δ

ηT
, (38)

where Risk1:T (θ̂0:(T−1)) :=
∑T

t=1 E[ℓt](θ̂t−1)−E[ℓt](θ∗)
and Reg1:T (θ̂0:(T−1)) :=

∑T
t=1 ℓt(θ̂t−1)− ℓt(θ∗).

We obtain the stated inequality from (38), by properly
setting the tuning parameters

ηt :=
1

ε
min

{
1

B
,

cΓ

Vt−1

}
,

where c will be set by the analysis and

Γ :=
√
log
(
1 + log(

√
T/c)

)
− log δ ,

and

Vt−1 :=

√√√√
t−1∑

s=1

∥∥∇ℓs(θ̂s−1)
∥∥2
∞ .

Indeed, first we use that that η1/ηT "
√
T/c so that

E[log(η1/ηT )] " log(
√
T/c). Then, similarly to the

proof of Cesa-Bianchi et al., 2007, Theorem 5, we can
show that the first term in the right-hand side of (38)
is upper-bounded as

T∑

t=1

ηt−1∥∇ℓt(θ̂t−1)∥2∞ " B

2ε
+

cΓ

2ε
VT .

But, by definition of ηT , the second term is also con-
trolled as

log
(
1 + E

[
log(η1/ηT )

])
− log δ

ηT
" εΓmax

{
BΓ,

1

c
VT

}
.

Plugging these two last inequalities into (38) leads to

RT " Bε

2
+

cΓε

2
VT + εΓmax

{
BΓ,

VT

c

}
.

We then need to distinguish two cases

• if cΓB " VT , then optimizing in c =
√
2

RT " Bε

2
+
( c
2
+

1

c

)
ΓεVT " Bε

2
+

√
2ΓεVT

• if cΓB ! VT , then

RT " Bε

2
+

1√
2
ΓεVT + εBΓ2 .

Therefore, putting the two cases together

RT " Bε

2
+
√
2ΓεVT + εBΓ2 .

We conclude the proof by substituting Γ and VT with
their definitions.
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