
Gray-box Inference for Structured Gaussian Process Models:
Supplementary Material

Pietro Galliani, Amir Dezfouli, Edwin V. Bonilla and Novi Quadrianto

February 28, 2017

1 Proof of Theorem 2
Here we proof the result that we can estimate the expected log likelihood and its gradients using expectations
over low-dimensional Gaussians, that is that

Theorem. For the structured gp model defined in our paper the expected log likelihood over the given
variational distribution and its gradients can be estimated using expectations over Tn-dimensional Gaussians
and |V|2-dimensional Gaussians, where Tn is the length of each sequence and |V| is the vocabulary size.

1.1 Estimation of Lell in the full (non-sparse) model
For the Lell we have that:

Lell =

〈
Nseq∑
n=1

log p(yn|fn)

〉
q(fun)q(fbin)

(1)

=

Nseq∑
n=1

∫
fbin

∫
fun

q(fun)q(fbin) log p(yn|fn) dfundfbin (2)

=

Nseq∑
n=1

∫
fbin

∫
fun
n

∫
fun
\n

q(fun
\n |f

un
n)q(fun

n)q(fbin) log p(yn|fn) dfun
\ndf

un
n dfbin (3)

=

Nseq∑
n=1

〈log p(yn|fn)〉q(fun
n)q(fbin) (4)

=

Nseq∑
n=1

K∑
k=1

πk 〈log p(yn|fn)〉qkn(fun
n)q(fbin) , (5)

where qkn(fun
n) is a (Tn × |V|)-dimensional Gaussian with block-diagonal covariance Σk(n), each block of

size Tn × Tn. Therefore, we can estimate the above term by sampling from Tn-dimensional Gaussians
independently. Furthermore, q(fbin) is a |V|2-dimensional Gaussian, which can also be sampled independently.
In practice, we can assume that the covariance of q(fbin) is diagonal and we only sample from unary Gaussians
for the pairwise functions. �

1

1.2 Gradients
Taking the gradients of the kth term for the nth sequence in the Lell:

L(k,n)
ell = 〈log p(yn|fn)〉qkn(fun

n)q(fbin) (6)

=

∫
fbin

∫
fun
n

qkn(f
un
n)q(fbin) log p(yn|fn) dfun

n dfbin (7)

∇λun
k
L(k,n)

ell =

∫
fbin

∫
fun
n

qkn(f
un
n)q(fbin) log p(yn|fn)∇λun

k
log qkn(f

un
n) dfun

n dfbin (8)

=
〈
log p(yn|fn)∇λun

k
log qkn(f

un
n)
〉
qkn(fun

n)q(fbin)
, (9)

where we have used the fact that ∇xf(x) = f(x)∇x log f(x) for any nonnegative function f(x) Similarly. the
gradients of the parameters of the distribution over binary functions can be estimated using:

∇λbinL(k,n)
ell =

〈
log p(yn|fn)∇λbin log q(fbin)

〉
qkn(fun

n)q(fbin)
. (10)

�

2 KL terms in the sparse model
The KL term (Lkl) in the variational objective (Lelbo) is composed of a KL divergence between the approximate
posteriors and the priors over the inducing variables and pairwise functions:

Lkl = −KL(q(u)‖p(u))︸ ︷︷ ︸
Lun

kl

−KL(q(fbin)‖p(fbin))︸ ︷︷ ︸
Lbin

kl

, (11)

where, as the approximate posterior and the prior over the pairwise functions are Gaussian, the KL over
pairwise functions can be computed analytically:

Lbin
kl = −KL(q(fbin)‖p(fbin)) = KL(N (fbin;mbin,Sbin)‖N (fbin;0,Kbin)) (12)

= −1

2

(
log
∣∣Kbin∣∣− log

∣∣Sbin∣∣+ (mbin)T (Kbin)−1mbin + tr (Kbin)−1Sbin − |V|
)
.

(13)

For the distributions over the unary functions we need to compute a KL divergence between a mixture of
Gaussians and a Gaussian. For this we consider the decomposition of the KL divergence as follows:

Lun
kl = −KL(q(u)‖p(u)) = Eq[− log q(u)]︸ ︷︷ ︸

Lent

+Eq[log p(u)]︸ ︷︷ ︸
Lcross

, (14)

where the entropy term (Lent) can be lower bounded using Jensen’s inequality:

Lent ≥ −
K∑
k=1

πk log

K∑
`=1

π`N (mk;m`,Sk + S`)
def
= L̂ent. (15)

and the negative cross-entropy term (Lcross) can be computed exactly:

Lcross = −
1

2

K∑
k=1

πk

|V|∑
j=1

[M log 2π + log |κ(Zj ,Zj)|+ mT
kjκ(Zj ,Zj)

−1mkj + tr κ(Zj ,Zj)−1Skj]. (16)

2

3 Proof of Theorem 3
To prove Theorem 3 we will express the expected log likelihood term in the same form as that given in
Equation (5), showing that the resulting qkn(fun

n) is also a (Tn×|V|)-dimensional Gaussian with block-diagonal
covariance, having |V| blocks each of dimensions Tn × Tn. We start by taking the given Lell, where the
expectations are over the joint posterior q(f ,u|λ) = p(fun|u)q(u)q(fbin):

Lell =

〈
Nseq∑
n=1

log p(yn|fn)

〉
p(fun|u)q(u)q(fbin)

(17)

=

∫
f

log p(y|f)
∫
u

q(u)p(fun|u)du︸ ︷︷ ︸
q(fun)

q(fbin)df , (18)

where our our approximating distribution is:

q(f) = q(fun)q(fbin) (19)

q(fun) =

∫
u

q(u)p(fun|u)du, (20)

which can be computed analytically:

q(fun) =

K∑
k=1

πkqk(f
un) =

K∑
k=1

πk

|V|∏
j=1

N (fun
j ;bkj ,Σkj) (21)

bkj = Ajmkj (22)

Σkj = K̃j + AjSkjA
T
j . (23)

We note in Equation (21) that qk(fun) has a block diagonal structure, which implies that we have the same
expression for the Lell as in Equation (5). Therefore, we obtain analogous estimates:

Lell =

Nseq∑
n=1

K∑
k=1

πk 〈log p(yn|fn)〉qkn(fun
n)q(fbin) , (24)

Here, as before, qkn(fun
n) is a (Tn × |V|)–dimensional Gaussian with block-diagonal covariance Σk(n), each

block of size Tn × Tn. The main difference in this (sparse) case is that bk(n) and Σk(n) are constrained by
the expressions in Equations (22) and (23). Hence, the proof for the gradients follows the same derivation as
in §1.2 above. �

4 Gradients of Lelbo for sparse model
Here we give the gradients of the variational objective wrt the parameters for the variational distributions
over the inducing variables, pairwise functions and hyper-parameters.

4.1 Inducing variables
4.1.1 KL term

As the structured likelihood does not affect the KL divergence term, the gradients corresponding to this term
are similar to those in the non-structured case (Dezfouli and Bonilla, 2015). Let Kzz be the block-diagonal

3

covariance with |V| blocks κ(Zj ,Zj), j = 1, . . . Q. Additionally, lets assume the following definitions:

Ckl
def
= Sk + S`, (25)

Nk`
def
= N (mk;m`,Ckl), (26)

zk
def
=

K∑
`=1

π`Nk`. (27)

The gradients of Lkl wrt the posterior mean and posterior covariance for component k are:

∇mk
Lcross = −πkK−1zz mk, (28)

∇Sk
Lcross = −

1

2
πkK

−1
zz (29)

∇πk
Lcross = −

1

2

|V|∑
j=1

[M log 2π + log |κ(Zj ,Zj)|+ mT
kjκ(Zj ,Zj)

−1mkj + tr κ(Zj ,Zj)−1Skj], (30)

where we note that we compute K−1zz by inverting the corresponding blocks κ(Zj ,Zj) independently. The
gradients of the entropy term wrt the variational parameters are:

∇mk
L̂ent = πk

K∑
`=1

π`

(
Nk`
zk

+
Nk`
z`

)
C−1kl (mk −m`), (31)

∇Sk
L̂ent =

1

2
πk

K∑
`=1

π`

(
Nk`
zk

+
Nk`
z`

)[
C−1kl −C−1kl (mk −m`)(mk −m`)

TC−1kl
]
, (32)

∇πk
L̂ent = − log zk −

K∑
`=1

π`
Nk`
z`

.

4.1.2 Expected log likelihood term

Retaking the gradients in the full model in Equation (9), we have that:

∇λun
k
L(k,n)

ell =
〈
log p(yn|fn)∇λun

k
log qkn(f

un
n)
〉
qkn(fun

n)q(fbin)
, (33)

where the variational parameters λun
k are the posterior means and covariances ({mkj} and {Skj}) of the

inducing variables. As given in Equation (21), qk(fun) factorizes over the latent process (j = 1, . . . , |V|), so
do the marginals qkn(fun

n), hence:

∇λun
k

log qkn(f
un
n) = ∇λun

k

|V|∑
j=1

logN (fun
nj ;bkjn,Σkjn), (34)

where each of the distributions in Equation (34) is a Tn–dimensional Gaussian. Let us assume the following
definitions:

Xn : all feature vectors corresponding to sequence n (35)

Ajn
def
= κ(Xn,Zj)κ(Zj ,Zj)

−1 (36)

K̃n
j

def
= κj(Xn,Xn)−Ajnκ(Zj ,Xn), therefore: (37)

bkjn = Ajnmkj , (38)

Σkjn = K̃n
j + AjnSkjA

T
jn. (39)

4

Hence, the gradients of log qk(fun) wrt the the variational parameters of the unary posterior distributions
over the inducing points are:

∇mkj
log qkn(f

un
n) = AT

jnΣ−1kjn
(
fun
nj − bkjn

)
, (40)

∇Skj
log qkn(f

un
n) =

1

2
AT
jn

[
Σ−1kjn(f

un
nj − bkjn)(f

un
nj − bkjn)

TΣ−1kjn −Σ−1kjn

]
Ajn (41)

Therefore, the gradients of Lell wrt the parameters of the distributions over unary functions are:

∇mkj
Lell =

πk
S
κ(Zj ,Zj)

−1
Nseq∑
n=1

κ(Zj ,Xn)(Σkjn)
−1

S∑
i=1

(fun
nkij − bkjn) log p(yn|fun

nki, f
bin
i), (42)

∇Skj
Lell =

πk
2S

Nseq∑
n=1

AT
jn

{ S∑
i=1

[
(Σkjn)

−1(fun
nkij − bkjn)((f

un
nj)

(k,i) − bkjn)
T (Σkjn)

−1 (43)

− (Σkjn)
−1] log p(yn|fun

nki, f
bin
i)

}
Ajn

4.1.3 Pairwise functions

The gradients of the Lbin
kl wrt the parameters of the posterior over pairwise functions are given by:

∇mbinLbin
kl = −(Kbin)−1mbin (44)

∇SbinLbin
kl =

1

2

(
(Sbin)−1 − (Kbin)−1

)
(45)

The gradients of the Lell wrt the parameters of the posterior over pairwise functions are given by:

∇mbinLell =
1

S

Nseq∑
n=1

K∑
k=1

πk

S∑
i=1

(Sbin)−1(fbin
i −mbin) log p(yn|fun

nki, f
bin
i) (46)

∇SbinLell =
1

2S

Nseq∑
n=1

K∑
k=1

πk

S∑
i=1

[(Sbin)−1(fbin
i −mbin)(fbin

i −mbin)T (Sbin)−1 − (Sbin)−1] log p(yn|fun
nki, f

bin
i)

(47)

5 Piecewise pseudolikelihood
Piecewise pseudolikelihood (Sutton and McCallum, 2007) approximates the likelihood p(yn|fun

nki, f
bin
i) of

sequence n given the latent functions fun
nki and fbin

i by computing the product,1 for every single factor and
every variable occurring in it, of the conditional probability of the variable given its neighbours with respect
to that factor.

In our linear model, this yields the following expression for the log pseudolikelihood p̃(yn|fun
nki, f

bin
i):

log p̃(yn|fun
nki, f

bin
i) =

Wn∑
w=1

log p((yn)w|fun
nki) +

∑
|w1−w2|=1

log p((yn)w1 |(yn)w2 , f
bin
i) =

Wn∑
w=1

log p̃((yn)w|fun
nki, f

bin
i)

where Wn is the number of words in sentence n and

p((yn)w|fun
nki) ∝ exp(fun

nkiyn
(w)); (48)

p((yn)w|(yn)w+1, f
bin
i) ∝ exp(fbin

i ((yn)w, (yn)w+1)); (49)

p((yn)w+1|(yn)w, fbin
i) ∝ exp(fbin

i ((yn)w, (yn)w+1)). (50)

1Here i represents the index of the specific samples fun
nki and fbin

i taken from our distributions qkn(f
un
n) and q(fbin).

5

6 Experiments

6.1 Experimental set-up
Before starting all experiments, our program selected the positions of the 500 inducing points by performing
K-means clustering on the training data. The initial values of the means (one mean value for every inducing
point p and for every possible label l) are set as the fraction of the points of the training set in the cluster
whose centroid is p that belong to label l.

As described in Algorithm 1, we adaptively choose the correct learning rates for all parameters by searching
(beginning from an initial guess, and doubling or dividing it by two as needed) for the biggest step size that
causes the objective to decrease over twenty stochastic optimization steps. The step size to use for the given
parameter is taken as one fourth of this value, to avoid instability. The initial step sizes were 0.5 for unary
mean parameters, 0.0005 for binary mean parameters, 0.005 for unary covariance parameeters, 0.0005 for
binary covariance parameters and 1.0 for (linear) kernel hyperparameters (these values were selected only
to speed up, insofar as possible, the process of parameter search); and the optimal step sizes were found in
the order unary mean → unary covariance → binary mean → binary covariance → kernel hyperparameter.
Of course this is not an exhaustive grid search; but it is less computationally expensive and works well in
practice.

6.2 Optimization
Then we optimize the three sets of parameters (unaries, binaries, hyperparameters) in a global loop, in
the same order as mentioned earlier, through standard Stochastic Gradient Descent, until the time limit is
reached, using 4000 new random samples each step for the estimation of the relevant gradients and averages.2

For the small-scale experiments, the variational parameters for unary nodes are optimized for 500 iterations,
variational parameters for pairwise nodes are optimized for 100 iterations, and hyper-parameters are updated
for 20 iterations.

We keep a tight bound (10 in the unary case, 20 in the binary one) on the maximum possible absolute
values that covariance parameters can take. If an update would bring their value beyond it, we recompute
the gradients with new samples: oftentimes, this resolves the issue (in brief, because the faulty update was
due to a bad estimation of the gradients). If the problem persists, we disregard the current sentence and
move on to the next one; and if after ten attempts the problem still persists, we move back to the latest “safe”
position that did not cause out-of-bound errors. In this way, we can use a relatively small number of samples
and maintain rather aggressive step sizes while recovering neatly from out-of-bounds errors.

The setting for the large-scale experiments was similar, except that the optimization schedule was
(12500, 2500, 500) (that is 12500 unary optimization steps, 2500 binary ones and 500 hyperparameter ones)
for the big base np and chunking experiments. All the experiments were run for four hours, not counting
initial clustering or final prediction (but counting step size selection). For comparison, the (small-scale)
gp-ess experiments, which were run for 250,000 elliptical slice sampling steps, took on average 11.34 hours
for chunking, 21.19 hours for base np, 2.07 hours for segmentation and 15.75 for japanese ne.

6.3 Performance profiles
Figure 1 shows the performance of our algorithm as a function of time. We see that the test likelihood
decreases very regularly in all the folds and so does overall the error rate, albeit with more variability. The
bulk of the optimization, both with respect to the test likelihood and with respect to the error rate, occurs
during the first 120 minutes. This suggests that the kind of approach described in this paper might be
particularly suited for cases in which expected loglikelihood of the prediction and speed of convergence are
priorities.

2When computing the gradient of the kernel hyperparameter, 8000 samples were used instead to insure greater stability.

6

Algorithm 1 Method for computing the step size
1: function check_stepsize(parameters, step_size, num_to_check=20)
2: to_check ← num_to_check sentences at random from the training set;
3: old_obj ← current value of the objective function;
4: for i← 0 . . . num_to_check do
5: grad ← gradient of objective wrt parameters;
6: parameters ← parameters - step_size · grad;
7: if parameters are out of bounds then
8: return False;
9: new_obj ← current value of the objective function;

10: if new_obj < old_obj then
11: return True;
12: else
13: return False;
14: function search_stepsize_up(parameters, initial_step_size)
15: step_size ← initial_step_size;
16: old_params ← current parameter values of the model;
17: while True do
18: is_good ← check_stepsize(parameters, step_size);
19: if is_good = False then
20: parameters ← old_params;
21: return step_size

factor2 ;
22: step_size ← step_size · factor;
23: function search_stepsize_down(parameters, initial_step_size)
24: step_size ← initial_step_size;
25: old_params ← current parameter values of the model;
26: while True do
27: is_good ← check_stepsize(parameters, step_size);
28: if is_good = True then
29: parameters ← old_params;
30: return step_size

factor ;
31: step_size ← step_size/factor;
32: function choose_stepsize(parameters, initial_step_size, factor = 2)
33: step_size ← search_stepsize_up(parameters, initial_step_size, factor);
34: if step_size == initial_step_size

factor2 then
35: step_size ← search_stepsize_down(parameters, initial_step_size, factor);
36: return step_size/factor;

7

Figure 1: The test performance of gp-var-t on chunking for the large scale experiment as a function of
time.

References
Amir Dezfouli and Edwin V Bonilla. Scalable inference for Gaussian process models with black-box likelihoods. In

NIPS. 2015.

Charles Sutton and Andrew McCallum. Piecewise pseudolikelihood for efficient training of conditional random fields.
In ICML, 2007.

8

