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Abstract

In this paper, we study the information-
theoretic limits of learning the structure of
Bayesian networks (BNs), on discrete as well
as continuous random variables, from a fi-
nite number of samples. We show that the
minimum number of samples required by
any procedure to recover the correct struc-
ture grows as ⌦ (m) and ⌦

�

k logm+

k

2

/m
�

for non-sparse and sparse BNs respectively,
where m is the number of variables and
k is the maximum number of parents per
node. We provide a simple recipe, based
on an extension of the Fano’s inequality, to
obtain information-theoretic limits of struc-
ture recovery for any exponential family BN.
We instantiate our result for specific condi-
tional distributions in the exponential fam-
ily to characterize the fundamental limits of
learning various commonly used BNs, such
as conditional probability table based net-
works, Gaussian BNs, noisy-OR networks,
and logistic regression networks. En route to
obtaining our main results, we obtain tight
bounds on the number of sparse and non-
sparse essential-DAGs. Finally, as a byprod-
uct, we recover the information-theoretic lim-
its of sparse variable selection for logistic re-
gression.

1 Introduction

Motivation. Bayesian Networks (BNs) are a class of
probabilistic graphical models that describe the condi-
tional dependencies between a set of random variables
as a directed acyclic graph (DAG). However, in many
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problems of practical interest, the structure of the net-
work is not known a priori and must be inferred from
data.

Although, many algorithms have been developed over
the years for learning BNs (cf. [1] and [2] for a detailed
survey of algorithms), an important question that has
hitherto remained unanswered is the fundamental lim-
its of learning BNs, i.e., “What is the minimum num-
ber of samples required by any procedure to recover
the true DAG structure of a BN?”. The answer to
this question would help shed light on the fundamen-
tal limits of learning the DAG structure of BNs, and
also help determine if existing algorithms are optimal
in terms of their sample complexity or if there exists a
gap between the state-of-the-art estimation procedures
and the information-theoretic limits. In this paper we
obtain lower bounds on the minimum number of sam-
ples required to learn BNs over m variables, and sparse
BNs over m variables with maximum in-degree of k.

Contribution. In this paper, we make the follow-
ing contributions. We derive necessary conditions on
the sample complexity of recovering the DAG struc-
ture of non-sparse and sparse BNs. We show that
⌦ (m) samples are necessary for consistent recovery of
the DAG structure of BNs, while for sparse networks
⌦

�

k logm+

k

2

/m
�

samples are necessary. We provide
a simple recipe for obtaining the information-theoretic
limits of learning any exponential family BN, and we
instantiate our result for specific conditional distribu-
tions to determine the fundamental limits of learn-
ing the structure of various widely used BNs, namely,
conditional probability table (CPT) based networks,
Gaussian networks, noisy-OR networks, and logistic
regression networks. Our lower bound of ⌦

�

k2 logm
�

matches the upper bound on O �k2 logm�, obtained
by Ravikumar et al. [3] for `

1

-regularized logistic re-
gression. We also show that the SparsityBoost algo-
rithm developed by Brenner and Sontag [4] for learn-
ing binary CPT BNs, which has a sample complexity
of O �m2

(

1/✓
min

)

�

, is far from the information-theoretic
limit of ⌦

⇣

k logm+

k2

/m

log(

1
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⌘

, where ✓
min

, is the minimum
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probability value in the conditional probability tables.
An interesting corollary of our main result is that
learning layered BNs — where the ordering of the
nodes is known (upto layers) and the parent set of
each variable is constrained to be in the layer above
it — is as hard as learning general BNs in terms of
their sample complexity. Lastly, of independent inter-
est, are our extension of the Fano’s inequality to the
case where there are latent variables, and our upper-
bound on the KL divergence between two exponential
family distributions as the inner product of the differ-
ence between the natural parameter and the expected
sufficient statistics.

2 Related Work

Höffgen [5], and Friedman and Yakhini [6] were among
the first to derive sample complexity results for learn-
ing BNs. In both [5] and [6] the authors provide up-
per bounds on sample complexity of learning a BN
that is likelihood consistent, i.e., the likelihood of the
learned network is ✏ away from the likelihood of the
true network in terms of the Kullback-Leibler (KL)
divergence measure. Abbeel et al. [7] provide polyno-
mial sample complexity results for learning likelihood
consistent factor graphs.

Among sample complexity results for learning struc-
ture consistent BNs, where the structure of the learned
network is close to the true network, Spirtes et al.
[8] and Cheng et al. [9] provide such guarantees for
polynomial-time test-based methods, but the results
hold only in the infinite-sample limit. Chickering and
Meek in [10] also provide a greedy hill-climbing al-
gorithm for structure learning that is structure con-
sistent in the infinite sample limit. Zuk et al. [11]
show structure consistency of a single network and do
not provide uniform consistency for all candidate net-
works, i.e., the bounds relate to the error of learning
a specific wrong network having a score greater than
the true network. Brenner and Sontag [4] provide up-
per bounds on the sample complexity of recovering the
structure of sparse BNs. However, they consider bi-
nary valued variables only and the sample complexity
grows as O �m2

�

.

Fano’s method has also been used to obtain lower
bounds on the sample complexity of undirected graph-
ical model (Markov random fields or MRFs) selection.
See Appendix A for results for MRFs and technical
differences between learning BNs and MRFs.

3 Preliminaries

Let X = {X
1

, . . . , X
m

} be a set of random variables,
where X

i

2 X
i

, 8i 2 [m]. Let D def

= ⇥m

i=1

X
i

be the

domain in which the variables in X jointly take their
values. A BN for X is a tuple (G,P(G,⇥)); where G =

(V,E) is a directed acyclic graph (DAG) with V = [m]

being the vertex set and E ⇢ [m] ⇥ [m] being the set
of directed edges, and P(G,⇥) is a probability distri-
bution over X that is parameterized by ⇥ and factor-
izes according to the DAG structure G. Particularly,
8x 2 D, P(x;G,⇥) =

Q

m

i=1

P
i

(x
i

;⇡
i

(G),⇥), where
⇡
i

(G) ✓ [m]\{i} is the parent set of the i-th node in G,
X
⇡i(G)

= {X
j

|j 2 ⇡
i

(G)}, P
i

(.) = Pr

�

x
i

|X
⇡i(G)

,⇥
i

 

is the conditional distribution of X
i

given an assign-
ment to its parent set, and ⇥

i

are the parameters for
the i-th conditional distribution.

The DAG structure G of a BN specifies the conditional
independence relationships that exist between differ-
ent random variables in the set X. Different graph
structures which make the same conditional indepen-
dence assertions about a set of random variables are
called Markov equivalent.
Definition 1 (Markov equivalence). Two DAGs G

1

=

(V,E
1

) and G
2

= (V,E
2

) are Markov equivalent if for
all disjoint subsets A,B,C ⇢ V, XA ??XB|XC in G

1

() XA ??XB|XC in G
2

.

The set of DAGs that are Markov equivalent to the
DAG G is denoted by [G].

An essential graph1, consisting of both directed edges,
which are called protected edges, and undirected
edges, is a canonical representation of the (Markov)
equivalence class of DAGs. The undirected edges can
be oriented in either direction without changing the
conditional independence relationships encoded by the
graphs. We denote by G⇤ the essential graph for [G].

4 Problem Formulation

Let G be an ensemble of DAGs. We denote by G
m

the ensemble of DAGs over m nodes. Also, let '(G)
be some set of “parameter maps”. A parameter map
⇥ 2 '(G), maps a given DAG structure G to a spe-
cific instance of the conditional distribution parame-
ters that are compatible with the DAG structure G,
i.e., ⇥(G). It is useful to think of ⇥ as a policy for set-
ting the parameters of the conditional distributions,
given a DAG G. For instance, for binary CPT net-
works, a particular policy ⇥ would consist of several
candidate probability tables for each node, one for each
possible number of parents the node can have (from
0 to m � 1), with entries set to some specific val-
ues. Then, given a DAG structure G, ⇥(G) assigns
a probability table to each node (from the policy ⇥)
according to the number of parents of the node in G.
This notion of parameter maps affords us the ability

1See Andersson et. al. [12] for a formal definition.
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to generate a BN by sampling the DAG structure and
the parameters independently of each other, which, as
would be evident later, is a key technical simplifica-
tion. Let PG and P'(G) be probability measures on
the set G and '(G) respectively. Nature picks a graph
structure G, according to PG , and then samples a pa-
rameter map ⇥, independently, according to P'(G).
Thereafter, nature generates a data set of n i.i.d ob-
servations, S = {x(i)}n

i=1

, with x

(i) 2 D, from the BN
(G,P(G,⇥(G))). The problem of structure learning
in BNs concerns with estimating the graph structure
bG, up to Markov equivalence, from the data set S. In
that context, we define the notion of a decoder. A de-
coder is any function ⇣ : Dn ! G that maps a data set
of n observations to an estimated DAG bG 2 G. The
estimation error is defined as follows

p
err

def

= inf

⇣

sup

P'(G)

X

G

Z

⇥2'(G)

⇣

P'(G)(⇥)PG(G)⇥

Pr {⇣(S) /2 [G]|G,⇥}
⌘

, (1)

where the probability Pr {.|G,⇥} is computed over the
data distribution P(G,P(G,⇥(G))) for a specific DAG
structure G and parameters ⇥(G).

Note that our definition of estimation error is stronger
than what is typically used in the literature for struc-
ture recovery of MRFs (see e.g. [13] and [14]), since
we focus on the maximum error across all measures
P'(G) over the parameter maps '(G) which itself can
be uncountable. Here, we are interested in obtaining
necessary conditions for consistent structure recovery
of BNs, i.e., we show that if the number of samples is
less than a certain threshold, then any decoder ⇣ fails
to recover the true graph structure with probability of
error p

err

> 1/2.

We emphasize that while our sample complexity results
invariably depend on the parameter space '(G) under
consideration, the decoder only has access to the data
set S. Apart from G

m

, we consider various other en-
sembles of DAGs in this paper, to fully characterize the
fundamental complexity of learning different classes of
BNs. Among the ensembles we consider, G

m,k

denotes
the family of DAGs, where each node is allowed to have
at most k parents. We also consider generalizations of
QMR-DT [15] type two-layered BNs, to multiple lay-
ers of nodes, with nodes in each layer only allowed to
have parents in the layer above it.

Let V = {V
i

}l
i=1

, define an ordering of m nodes
into l layers where V

i

is the set of nodes in the i-th
layer. We have that |V

i

| = m
i

and
P

l

i=1

|V
i

| = m.
Gl

m

(V) denotes an ensemble of DAG structures where
8G = (V,E) 2 Gl

m

, V =

S

Vi2V V
i

and E = {(u, v)|u 2
V
i+1

^ v 2 V
i

, i 2 [l � 1]}. We write Gl

m

instead
of Gl

m

(V) to indicate that the members of Gl

m

have

some known layer-wise ordering of the m nodes, with-
out making the ordering explicit. Finally, we con-
sider another ensemble Gl

m,k

⇢ Gl

m

where the nodes
are allowed to have at most k parents. Together, the
ensembles G

m

,G
m,k

,Gl

m

and Gl

m,k

, span a wide range
of the sample complexity landscape of recovering the
structure of BNs. In the following section we present
our main result on the fundamental limits of learning
BNs.

5 Main Results

Fano’s inequality is one of the primary tools used for
deriving necessary conditions on structure recovery of
graphical models. The difficulty of recovering the DAG
structure of a BN, however, depends both on the struc-
tural properties of the ensemble of DAG structures
under consideration, as well as on the conditional dis-
tributions and their parameters. In order to obtain
guarantees about structure recovery, we treat the pa-
rameters of the conditional distributions as latent vari-
ables — variables that we do not observe and are not
interested in estimating. Given that the likelihood of
the observed data depends, both on the structure and
parameters of the BN that generated the data, it be-
hooves us to ask: “If we are only interested in recov-
ering the structure of BNs, do the presence of unob-
served parameters make structure estimation easier or
harder? ” To rigorously answer this question, we ex-
tend the classic Fano’s inequality, which is defined for
a Markov chain, to a slightly more general setting as
given below.

X Y bX

W

(a)

X Y bX

W

(b)

Figure 1: Fano’s inequality extension. In (a) the edge
between W and X is undirected to indicate that the edge
can be oriented in either direction.

Theorem 1 (Fano’s inequality extension). Let W,X,

and Y be random variables and let bX be any estimator
of X. If the random variables are related according to
the graphical model in Figure 1 (a), then

Pr

n

X 6= bX
o

� 1� I(Y ;X|W ) + log 2

H(X|W )

. (2)

Moreover, if W 2 W, is independent of X 2 X (Figure
1 (b)), and PX and PW be any probability measures
over X and W respectively, then,

sup

PW

X

x2X

Z

w2W
Pr

n

x 6= bX|X = x,W = w
o

PW(w)PX (x)
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G S bG

⇥

⇣(S)

Figure 2: The DAG structure G and a parameter map
⇥ are sampled independently. Data set S of m samples is
generated from the BN (G,P(G,⇥(G)). A decoder ⇣ then
estimates the DAG structure bG = ⇣(S).

� 1� sup

w2W I(Y ;X|W = w) + log 2

H(X)

. (3)

Proofs of main results can be found in Appendix B.
Remark 1. Theorem 1 can be seen an extension of
Fano’s inequality to the case where there are latent
variables W that influence Y , while we are interested
in only estimating X. If in Figure 1 we have that
W ! X, then I(X;Y |W ) � I(X;Y ). Further, since
H(X|W )  H(X), we conclude that presence of the
latent variable W , reduces the estimation error p

err

.
Remark 2. When X and W are independent, we get
I(X;Y |W ) = I(X;Y ), and (2) reduces to the well
known Fano’s inequality. However, the conditional
mutual information I(X;Y |W = w) in (3) can be com-
puted easily as compared to I(X;Y ) when we have ac-
cess to the conditional distribution of Y given X and
W . Also note that we do not need W to be countable.

Theorem 1 serves as our main tool for lower bounding
the estimation error, and subsequently obtaining nec-
essary conditions on the number of samples. In order
to obtain sharp lower bounds on p

err

, we assume that
DAG structures and parameters maps (and by exten-
sion parameters) are sampled independently. Figure 2
shows the schematics of the inference procedure.

Henceforth, we will use the terms “parameter maps”
and ”parameters” interchangeably, since given a DAG
structure G, the parameter map ⇥, maps G to a spe-
cific parameterization of the BN. Then, given any en-
semble of DAG structures G, the main steps involved
in using Theorem 1 to lower bound p

err

are: (a) ob-
taining lower bounds on H(G) = log |G|, which fol-
lows from our assumption that G is sampled uniformly
from G, and (b) computing the mutual information
between the data set and DAG structures over all
possible parameter choices, i.e., sup

⇥2'(G) I(S;G|⇥).
To accomplish each of the above objectives, we con-
sider restricted ensembles eG

m

⇢ G
m

and eG
m,k

⇢ G
m,k

,
of size-one equivalence classes, i.e., 8G 2 eG

m

_ G 2
eG
m,k

, |[G]| = 1. Note that for any graph G in Gl

m

or Gl

m,k

, we have that |[G]| = 1, since edges are con-
strained to go from layer (i + 1) to i. Thus, the en-
sembles eG

m

, eG
m,k

,Gl

m

and Gl

m,k

can be thought of as
consisting of essential DAGs, where all edges are pro-

tected. In the following section, we bound the number
of essential DAGs in each of the restricted ensembles.

Enumerating DAGs. Essential DAGs, i.e.,
Markov equivalent classes of DAGs of size 1, was first
enumerated by Steinsky [16]. However, the number
of DAGs is given as a recurrence relation, for which a
closed form solution is difficult to compute. Therefore,
we compute tight bounds on the number of essential
DAGs in the following paragraphs. In the following
lemmas we bound the number of DAGs in each of the
restricted ensembles introduced previously.
Lemma 1. The size of the restricted ensemble eG

m

is
bounded as follows:

2

(

m(m�3)

/2)+1 
�

�

�

eG
m

�

�

�

 m! 2

m(m�1)

/2, (4)

and log

�

�

�

eG
m

�

�

�

� ((

m(m�3)/2) + 1) log 2.

Note that the lower bound in Lemma 1 is asymptot-
ically tight. Now we bound the number of essential
DAGs where each node is allowed to have at most k
parents.
Lemma 2. Assuming k > 1 and m > 2, the size of
the restricted ensemble eG

m,k

is bounded as follows:

2

(

k(k�3)

/2)+1

m�1

Y

j=k+1

 

k

X

i=0

✓

j � 1

i

◆

!


�

�

�

eG
m,k

�

�

�

 m! 2

k(k�1)

/2

m�1

Y

j=k+1

 

k

X

i=0

✓

j

i

◆

!

, (5)

and log

�

�

�

eG
m,k

�

�

�

� k
�

log(m � 2)! � (m � k � 2) log k �
log k!

 

+ {(k(k�3)/2) + 1} log 2.
Note that using Stirling’s factorial formula, the above
lemma gives the following lower bound on the number
of sparse essential DAGs: log

�

�

�

eG
m,k

�

�

�

= ⌦ (km logm).

Further, a little calculation shows that log

�

�

�

eG
m,k

�

�

�

=

O (km logm) for large enough m. Thus our bounds
for the number of sparse essential DAGs is tight. The
following lemma bounds the number of “layered” es-
sential DAGs.
Lemma 3. The number of BNs in the family Gl

m

and
Gl

m,k

is as follows:

�

�Gl

m

�

�

=

l�1

Y

i=1

(2

mi+1

)

mi ,
�

�Gl

m,k

�

�

=

l�1

Y

i=1

2

4

k

X

j=0

✓

m
i+1

j

◆

3

5

mi

.

(6)

Further, log
�

�Gl

m

�

� and log

�

�

�

Gl

m,k

�

�

�

are given as follows:

log

�

�Gl

m

�

�

= (log 2)

l�1

X

i=1

(m
i+1

)(m
i

),
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log

�

�Gl

m,k

�

� � k

l�1

X

l=1

m
i

log

⇣m
i+1

k

⌘

.

Next, we compute bounds on the mutual information
between the data set and DAG structures.

Mutual Information Bounds. The mutual infor-
mation I(S;G|⇥) cannot be computed exactly, in gen-
eral. Therefore, we use the following lemma to bound
the mutual information from above.
Lemma 4. Let PS|G,⇥

be the distribution of S condi-
tioned on a specific DAG G and specific parameters ⇥,
and let Q be any distribution over S. Then we have

sup

⇥2'(G)
I(S;G|⇥)  sup

⇥2'(G)

1

|G|
X

G2G
KL

�PS|G,⇥

�

�Q� .

(7)

Assuming that X
i

= X , 8i 2 [m], we chose the dis-
tribution Q to be the product distribution Q = Qmn

0

,
where Q

0

= P
i

(?,⇥
i

). In other words, the distribu-
tion Q is chosen to be the distribution encoded by a
DAG with no edges.

The main hurdle in using (7) to bound the mutual in-
formation I(S, G|⇥), is computing the KL divergence
KL

�PS|G,⇥

�

�Q�. Often times, in BNs characterized by
local conditional distributions, coming up with a closed
form solution for the joint distribution over all nodes
or even the marginal distribution of an arbitrary node
is not possible; unless we assume that the marginal
distribution of the parents of a node form a conjugate
prior for the conditional distribution of the node —
an assumption which is quite restrictive. Therefore, to
tackle the above problem, we derive the following up-
per bound on the KL divergence for exponential family
distributions which is easy to compute.
Lemma 5 (KL Divergence Bound for Exponential
Family Distributions). Let X 2 Rd be any random
variable. Let P

1

and P
2

be distributions over X, be-
longing to the exponential family, with natural param-
eters ⌘

1

and ⌘
2

respectively, i.e.

P
1

(x) = exp(⌘T

1

T(x)�  (⌘
1

))h(x),

where T(X) is the sufficient statistics (similarly for
P
2

). Assuming h(x) 6= 0 8x 2 Rd, we have

KL (P
1

kP
2

)  �(⌘
1

,⌘
2

), (8)

�(⌘
1

,⌘
2

)

def

= (⌘
1

� ⌘
2

)

T

(T (⌘
1

)� T (⌘
2

)), (9)

where T (⌘
1

)

def

= E
X

[T(x)|⌘
1

] is the expected sufficient
statistic of X as computed by the distribution parame-
terized by ⌘

1

(similarly for T (⌘
2

)).

Note that even though KL (P
1

kP
2

) is not symmetric,
its upper bound �(⌘

1

,⌘
2

) is symmetric. Given the
fact that S is sampled i.i.d from P(G,⇥(G)), which
in turn factorizes as a product of conditional distri-
butions P

i

, we then have the following result for the
mutual information I(S;G|⇥).
Lemma 6 (Mutual Information Bound). For any en-
semble of DAG structures G, we have

sup

⇥2'(G)
I(S;G|⇥) 

n

|G|
X

G2G

m

X

i=1

sup

⇥2'(G)
EX⇡i

[KL (P
i

(⇡
i

(G),⇥)kQ
0

)] , (10)

where P
i

(⇡
i

(G),⇥) is the conditional distribution of
the i-th node. Further, if we have that, 8i 2 [m], X

i

2
X and P

i

(⇡
i

(G),⇥
i

) belongs to the exponential family
with natural parameter ⌘

i

def

= ⌘(X
⇡i ,⇥i

) and Q
0

be-
longs to the exponential family with natural parameter
⌘
0

; then,

sup

⇥2'(G)
I(S;G|⇥)  n

|G|
X

G2G

m

X

i=1

sup

⇥2'(G)
EX⇡i

[�(⌘
i

,⌘
0

)] .

Remark 3. In the above lemma, �(⌘
i

,⌘
0

) is a ran-
dom variable because the natural parameter ⌘

i

depends
on the parents X

⇡i . The quantity �(⌘
i

,⌘
0

) in the
above lemma is non-negative and measures how far
the conditional distribution of a variable with parents
⇡
i

(G) is from the distribution of the variable with no
parents, as a function of the difference between the ex-
pected sufficient statistics and the natural parameters.
The mutual information between the data set S and the
DAG structure G is then a sum of the expected “dis-
tances” of the conditional distributions from the distri-
bution of a variable with no parents.

With the exception of Gaussian BNs, where we can
write the joint and marginal distributions of the vari-
ables in closed form, it is in general difficult to compute
the expectation of �(⌘

i

,⌘
0

). Therefore, we bound the
mutual information by bounding �(⌘

i

,⌘
0

), which can
be easily done for bounded random variables. From
the above lemma, we then get the following mutual
information bound for layered BNs.
Corollary 1 (Mutual Information Bound for Layered
BNs). If G = Gl

m

(V) _ G = Gl

m,k

(V), then

sup

⇥2'(G)
I(S;G|⇥)  (m�m

l

)n

|G|
X

G2G

n

max

i2V\Vl

sup

⇥2'(G)

EX⇡i
[KL (P

i

(⇡
i

(G),⇥)kQ
0

)]

o

,

where we recall that V = {V
j

}l
j=1

is an ordering of
nodes into l layers, V

j

is the set of nodes in the j-th
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layer and m
j

= |V
j

|. Further, for exponential family
conditional distributions, we have

sup

⇥2'(G)
I(S;G|⇥)  (m�m

l

)n

|G|
X

G2G

n

max

i2V\Vl

sup

⇥2'(G)

EX⇡i
[�(⌘

i

,⌘
0

)]

o

.

In order to obtain tight sample complexity results, we
need to create “difficult instances” of BNs that are hard
to learn. Intuitively speaking, inferring the parents of
a node will be hard if the conditional distribution of
a node with many parents is close to that of a node
with no parents. Therefore, we make the following
crucial assumption about the conditional distributions
specified by the BN (G,P(G,⇥(G))).

Assumption 1. The KL divergence between the
conditional distributions P

i

(⇡
i

(G),⇥) and Q
0

def

=

P
i

(?,⇥) over the variable X
i

is bounded by a constant,
which for exponential family distribution translates to:

sup

⇥2'(G)
EX⇡i

[�(⌘
i

,⌘
0

)]  �

max

, 8i 2 [m],

where �

max

> 0 is a constant.

We show that under certain parameterizations, As-
sumption 1 holds for many commonly used BNs under
very mild restrictions on the parameter space '(G).
Theorem 2. Let X = {X

1

, . . . , X
m

} be a set of ran-
dom variables with X

i

2 X . Let G be a DAG structure
over X drawn uniformly at random from some fam-
ily G of DAG structures. Further assume that we are
given a data set S of n i.i.d samples drawn from a
BN (G,P(G,⇥(G))), where the parameter map ⇥, is
drawn from some family '(G). Assuming that the con-
dition in Assumption 1 holds for the conditional distri-
butions P

i

, then If n  L(G), than any decoder ⇣ fails
to recover the true DAG structure G with probability
p
err

� 1/2, where p
err

is defined according to (1). The
necessary number of samples L(G), for various classes
of BNs, is given as follows:

L(eG
m

) =

log 2

�

max

✓

m� 3

2

� 1

m

◆

,

L(eG
m,k

) =

1

2m�

max

⇣

k
n

log(m� 2)!� log k!

�(m� k � 2) log k
o

+ {(k(k�3)/2)� 1} log 2
⌘

,

L(Gl

m

) =

log 2

2(m�m
l

)�

max

 

l�1

X

i=1

m
i+1

m
i

� 2

!

,

L(Gl

m,k

) =

k
P

l�1

i=1

m
i

log

⇣

mi+1

k

⌘

� 2 log 2

2(m�m
l

)�

max

.

Since the difficulty of learning a class of BNs is deter-
mined by the difficulty of learning the most difficult
subset within that class, we immediately get the fol-
lowing corollary on the fundamental limits of learning
non-sparse and sparse BNs.
Corollary 2 (Fundamental limits of BN structure
learning). The necessary number of samples required
to learn BNs on m variables and sparse BNs on m
variables and maximum number of parents k is as fol-
lows:

L(G
m

) =

log 2

�

max

✓

m� 3

2

� 1

m

◆

,

L(G
m,k

) =

1

2�

max

⇣

k log(m� 2) +

k(k � 3) log 2

2m
�

R(m, k)
⌘

,

where R(m, k) = (

k/m)
n

(m�2)+2 log(m�2)+log k!+

(m� k � 2) log k
o

+

(log 2)/m.

In the above corollary, the lower bounds for non-sparse
and sparse BNs come from the results for the restricted
ensembles eG

m

and eG
m,k

respectively.
Remark 4. For sparse BNs, if k is constant with
respect to m, then the reminder term in the lower
bound is R(m, k)  1 for sufficiently large m and the
sample complexity grows as ⌦ (logm). In this regime,
our lower bound for learning sparse Bayesian networks
matches the analogous lower bound of O (logm) for
learning bounded degree Ising models as obtained by
Santhanam and Wainwright [13]. In general, how-
ever, R(m, k) = O (k log k); therefore the number
of samples necessary to learn sparse BNs grows as
⌦

�

k logm+

k

2

/m
�

.
Remark 5. Note that since the number of samples
required to learn both general essential DAGs (L(eG

m

))
and layered networks (L(Gl

m

)) grows as ⌦ (m). This,
combined with the fact that our lower bounds on the
number of DAG structures in the ensemble eG

m

was
tight, leads us to the conclusion that the ordering of
variables does not add much to the difficulty of learning
BNs in terms of sample complexity.

Theorem 2 provides a simple recipe for obtaining nec-
essary conditions on the sample complexity of learning
any exponential family BN, as we demonstrate in the
next section.

6 Implications for Commonly Used

Bayesian Networks

In this section, we instantiate Theorem 2 for specific
conditional distributions, to derive fundamental limits



Ghoshal, Honorio

Non-Sparse Sparse

CPT m

log(

1

/✓
min

)

k logm+

k2

/m

log(

1

/✓
min

)

Gaussian �

2

min

m

�

2

min

+2µ

2

max

(w

2

max

+1)

�

2

min

(k logm+

k2

/m)

�

2

min

+2(w

2

max

+1)w

2

max

Noisy-OR m

|log(ˆ✓/1�ˆ✓)|
k logm+

k2

/m

|log(ˆ✓/1�ˆ✓)|
Logistic m

w

1

max

k logm+

k2

/m

w

1

max

Table 1: Fundamental limits of learning the structure of
various types of BNs from Corollary 2, where the entries of
the tables are lower bounds, i.e., ⌦ (.). For CPT BNs, ✓

min

is the minimum entry in the conditional probability tables.
For Gaussian BNs, w

max

, µ
max

and �
min

are the maximum
`
2

norm of the weight vectors, maximum absolute mean
and minimum conditional variance respectively. For noisy-
OR networks, ✓̂ 2 (0, 1) is the failure probability. Lastly,
for logistic regression, w1

max

is the maximum `
1

norm of
the weight vectors.

of learning various widely used BNs. This also allows
us to highlight the role of parameters of the conditional
distributions in the sample complexity of learning the
DAG structure of BNs. Table 1 summarizes our results
for various commonly used BNs. Proofs of results de-
rived in this section can be found in Appendix C.

Conditional Probability Table BNs. CPT BNs
are perhaps the most widely used BNs, where the con-
ditional distribution of a node given its parents is de-
scribed by probability tables. As is typically the case,
we assume that the support of X

i

2 X = [v] for all
i. The conditional distribution of X

i

is given by the
following categorical distribution:

P
i

(x
i

;⇡
i

(G),⇥) =

v

Y

j=1

(✓
ij

(x))

1[Xi=j]

,

where ⇥(G) 2 '(G) are the set of conditional prob-
ability tables for the variables {X

1

, . . . , X
m

} com-
patible with the DAG structure G. Let us denote
⇥

G

def

= ⇥(G). The conditional probability table for
the i-th random variable ⇥

G

i

: [v]|⇡i| ! �

v

, maps
all possible assignments to the parent set X

⇡i to the
(v� 1)-dimensional probability simplex �

v

, and ✓G
ij

(.)
represents the j-th entry of the v-dimensional vector
⇥

G

i

(.). The following lemma gives the upper bound on
the mutual information I(S;G|⇥) for CPT BNs.
Lemma 7 (Mutual Information bound for CPT net-
works). For CPT BNs we have

�

max

 4 log(

1/✓
min

),

sup

⇥2'(G)
I(S;G|⇥)  4nm log(

1/✓
min

),

where ✓
min

> 0 is minimum probability value in a prob-
ability table across all node and parent set assignments

i.e.,

✓
min

def

= inf

⇥2'(G)
min

G2G

m

min

i=1

min

x2X|⇡i(G)|

v

min

j=1

✓G
ij

(x).

Remark 6. The necessary number of samples required
to learn dense and sparse CPT BNs is ⌦

⇣

m

log(

1

/✓
min

)

⌘

and ⌦

⇣

k logm+

k2

/m

log(

1

/✓
min

)

⌘

, respectively. In the regime
that ✓

min

� exp(�1/m), the sample complexity
for learning dense and sparse BNs is ⌦

�

m2

�

and
⌦

�

km logm+ k2
�

, respectively.
Remark 7. The sample complexity of SparsityBoost
algorithm by Brenner and Sontag [4] for recovering the
structure of binary-valued, sparse, CPT BNs grows as
O �max((logm)µ,m2

bµ2

P

)

�

, where µ is defined in [4] as
“the maximum inverse probability of an assignment to
a separating set over all pairs of nodes”, and is 1/✓

min

for the ensembles we consider. The parameter bµ2

P

is
also defined as the maximum inverse probability of an
assignment to a separating set but relates to the true
graph, G, that generated the data and can be ⌧ 1/✓

min

.
If SparsityBoost operates in the regime where the sec-
ond term inside the max function dominates, which
the authors believe to be the case, then that leads to a
sufficient condition of O �(1/✓

min

)m2

�

, which is quite
far from the information-theoretic limit.

Gaussian BNs. In this case, we assume that the
support X

i

2 X = R for all i, the parameters of the i-
th node ⇥

i

(G) = (w

G

i

, µ,�2

), and the conditional dis-
tributions are described by the following linear Gaus-
sian model:

P
i

(⇡
i

(G),⇥) = N (µ
i

, �
2

/2), (11)

µ
i

=

⇢

(w

G

i

)

TX
⇡i ⇡

i

(G) 6= ?,
µ otherwise , (12)

where t
G

: [m] ! [m] is a function that maps a node
to its “topological order” as defined by the graph G.
We assume that

w

G

i

2 BG

i

def

= {w 2 R|⇡i(G)|| kwk
2

 1/
p

2(tG(i)�1)},
µ 2 [µ

a

, µ
b

], � 2 [�
min

,�
max

], and

⇥(G) 2 �⇥m

i=1

BG

i

�⇥ [µ
a

, µ
b

]⇥ [�
min

,�
max

],

where �1 < µ
a

 µ
b

< 1, 0 < �
min

 �
max

< 1.
Accordingly, we have that Q

0

= P
i

(?,⇥) = N (µ, �

2

2

),
and µ

i

 µ
�

�

w

G

i

�

�

2

. Once again, we first bound the
mutual information I(S;G|⇥) in the following lemma
which we then plugin in Theorem 2 to obtain the nec-
essary conditions for learning Gaussian BNs.
Lemma 8 (Mutual Information bound for Gaussian
networks). For Gaussian BNs we have:

�

max

 1 +

2µ2

max

(w2

max

+ 1)

�2

min

,
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sup

⇥2'(G)
I(S;G|⇥)  nm

 

1 +

2µ2

max

(w2

max

+ 1)

�2

min

!

,

where µ
max

def

= max(|µ
a

| , |µ
b

|) and w
max

is the maxi-
mum `

2

norm of the weight vectors, i.e.

w
max

def

= sup

⇥2'(G)
max

G2G

m

max

i=1

�

�

w

G

i

�

�

2

.

Remark 8. Invoking Theorem 2 for a two layer or-
dering of nodes, where there are m � 1 nodes in the
top layer and 1 node in the bottom layer, we recover
the information-theoretic limits of linear regression.
Specifically, we have that the necessary number of sam-
ples for linear regression and sparse linear regression
scale as ⌦

⇣

�

2

min

m

�

2

min

+2µ

2

max

w

2

max

⌘

and ⌦

⇣

�

2

min

k logm

�

2

min

+2µ

2

max

w

2

max

⌘

respectively.
Remark 9. The sample complexity of learning the
structure of degree bounded Gaussian MRFs scales as
⌦ (

k log(

m
/k)/log(1+k�)) [14], where � is the minimum

correlation between pairs of nodes that are connected
by an edge. The corresponding result for sparse BNs is
⌦

⇣

�

2

min

(k logm+

k2

/m)

�

2

min

+2µ

2

max

w

2

max

⌘

, which is slightly stronger than
the corresponding lower bound for learning Gaussian
MRFs, with respect to sparsity index k.

Noisy-OR BNs. Noisy-OR BNs are another widely
used class of BNs — a popular example being the two-
layer QMR-DT network [15]. They are usually pa-
rameterized by failure probabilities ✓

ij

, which in the
context of the QMR-DT network of diseases and symp-
toms can be interpreted as the probability of not ob-
serving the i-th symptom given that the j-th disease
is present. More formally, we have binary valued ran-
dom variables, i.e., X

i

2 X = {0, 1} for all i, the i-th
conditional distribution is given by the Bernoulli dis-
tribution (B) with parameter ⇥

i

= ✓ 2 (0, 1):

P
i

(⇡
i

(G),⇥
i

) = B(1� ✓
i

) P
i

(?,⇥
i

) = B(✓), (13)

where ✓
i

= ✓
⇣

Q

j2⇡i
✓Xj

⌘

1

/|⇡i|
. The following lemma

bounds the mutual information for noisy-OR networks.
Lemma 9 (Mutual Information bound for Noisy-OR).
For Noisy-OR BNs we have:

�

max

 2

�

�

log(

ˆ

✓/(1�ˆ

✓))

�

�

sup

⇥2'(G)
I(S;G|⇥)  2nm

�

�

log(

ˆ

✓/(1�ˆ

✓))

�

� ,

where ˆ✓
def

= argmax

✓2'(G) |log(✓/(1�✓))|.
Remark 10. From the above lemma we notice that
recovering the structure of noisy-OR networks becomes
more difficult as the failure probability ✓ moves farther
away from 1/2. That is because as ✓ ! 1, the noisy-OR

network becomes more “noisy”. While, as ✓ ! 0, the
top level nodes (nodes with no parents) take the value
1 with low probability, in which case the child nodes
take values 0 with high probability.

Logistic Regression BNs. For logistic regression
BNs, the nodes are assumed to be binary valued, i.e.,
X

i

2 X = {0, 1} for all i. Each node in the net-
work can be thought of as being classified as “0” or
“1” depending on some linear combination of the val-
ues of its parents. The parameters for the i-th con-
ditional distribution are ⇥

i

= w

i

, where the vec-
tors w

i

are assumed to have bounded `
1

norm, i.e.,
w

i

2 R|⇡i| ^ kw
i

k
1

 w1

max

, for some constant w1

max

.
The conditional distribution of the nodes are given as:

P
i

(⇡
i

(G),⇥
i

) = B (� (hX
⇡i ,wi

i)) , P
i

(?,⇥
i

) = B(1/2),
(14)

where B is the Bernoulli distribution and �(x) =

(1 + e�x

)

�1 is the sigmoid function. The following
lemma upper bounds the mutual information for lo-
gistic regression BNs.
Lemma 10 (Mutual Information bound for Logistic
regression networks). For Logistic regression BNs we
have:

�

max

 w

1

max/2, sup

⇥2'(G)
I(S, G|⇥)  (nmw

1

max

)/2,

where w1

max

def

= sup

⇥2'(G) max

i2[m]

k⇥
i

(G)k
1

.
Remark 11. Once again, we can instantiate The-
orem 2 for the two-layer case and obtain necessary
number of samples for support recovery in logistic re-
gression. We have that the number of samples needed
for support recovery in logistic regression scales as
⌦ (

k log(m)/w1

max

). In the regime that w1

max

 1/k, the
necessary number of samples scales as ⌦

�

k2 logm
�

.
Ravikumar et al. [3] studied support recovery in lo-
gistic regression in the context of learning sparse Ising
models. The upper bound of O �k2 logm� in Proposi-
tion 1 in [3], is thus information-theoretically optimal.

Concluding Remarks An important direction for
future work is to study the information-theoretic lim-
its of both structure and parameter recovery of BNs.
However, the analysis for that situation is complicated
by the fact that one has to come up with an appropri-
ate joint distribution on the structures and parameters
of the ensembles. While it is possible to do so for BNs
with specific conditional distributions, we anticipate
that coming up with general results for BNs would be
hard, if at all possible. Also of complimentary interest
is the problem of obtaining sharp thresholds for struc-
ture learning of Bayesian networks. However, such
analysis might also need to be done on a case-by-case
basis for specific BNs.
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