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Appendix A Detailed Proofs

Proof of Proposition 1. Let |NE⇤| > 2

n�1. Then by the pigeon hole principle there are at least two joint actions
x and x0 in NE⇤ such that x = �x0. Since the payoff is strictly positive, it follows that the bias b

i

for each player
must be 0. If the bias for all players is 0, then for each x 2 NE⇤, �x 2 NE⇤. Therefore, |NE⇤| = 2

n. Since we
have assumed that the game is non-trivial, we get a contradiction.

Proof of Lemma 5. Define �

def

=

bv � v⇤. Also for any vector y let the notation y
S

denote the vector y with the
entries not in the support, S, set to zero, i.e.

[y
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]

i

=

⇢

y
i

if i 2 S,
0 otherwise.

Similarly, let the notation y
S

c

denote the vector y with the entries not in Sc set to zero, where Sc is the
complement of S. Having introduced our notation and since, S is the support of the true vector v⇤, we have by
definition that v⇤

= v⇤
S

. We then have, using the reverse triangle inequality,
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Also, from the optimality of bv for the `
1

-regularized problem we have that
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Next, from convexity of `(.) and using the Cauchy-Schwartz inequality we have that
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in the last line we used the fact that � � kr`(v⇤
)k1. Thus, we have from (19), (20) and (21) that
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Finally, from (22) and Lemma 4 we have that
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Proof of Theorem 2. First, we construct a restricted ensemble of games eG ⇢ G as follows. Each game G 2 eG
contains k, randomly chosen, influential players. The game graph for G is then chosen to be a complete directed
bipartite graph from the set of k influential players to the set of n� k non-influential players. The edge weights
are all set to �1, the bias for the k influential players is set to +1, while the bias for the remaining n� k players
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is set to 0. Then it is clear that each game in eG induces a distinct size-one PSNE set. Specifically, for a game
G 2 eG, a joint action x 2 NE(G) is such that x

i

= �1 if player i is influential in G, otherwise x
i

= +1. Also,
note that the minimum payoff in the PSNE set of each game in eG is strictly positive, and is precisely 1. Finally,
we assume that the data set is drawn according to the global noise model (3), with q =

1/n. Now let G 2 eG be a
uniformly-distributed random variable corresponding to the game that was picked by nature. From the Fano’s
inequality, we have that:

p
err

� 1� I(D;G) + log 2

H(G) , (23)

where I(.) denotes mutual information and H(.) denotes entropy. Since, G is uniformly distributed, we have that
H(G) = log

�

�

eG
�

�

= log

�

n

k

� � k(log n� log k). Let PD|G=G
1

be the conditional distribution of the data set given a
game G

1

2 eG. We bound the mutual information I(D;G) by a pairwise KL-based bound from [16] as follows:
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Now from the fact that data are sampled i.i.d , we get:
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where the last line comes from the fact that q =

1/n. Putting together (23), (24) and (25), and setting p
err

=

1/2,
we get

m  k log n� k log k � 2 log 2

2 log 2

.

By observing that learning the ensemble G is at least as hard as learning a subset of the ensemble eG, we prove
our main claim.

Appendix B Experiments

In order to verify that our results and assumptions indeed hold in practice, we performed various simulation
experiments. We generated random LIGs for n players and exactly k neighbors by first creating a matrix W
of all zeros and then setting k off-diagonal entries of each row, chosen uniformly at random, to �1. We set the
bias for all players to 0. We found that any odd value of k produces games with strictly positive payoff in the
PSNE set. Therefore, for each value of k in {1, 3, 5}, and n in {10, 12, 15, 20}, we generated 40 random LIGs.
For experiments involving the local noise model, we only used n 2 {10, 12, 15}. The parameter � was set to the
constant value of 0.01. For the global noise model, the parameters q

g

was set to 0.01, while for the local noise
model we used q

1

= . . . = q
n

= 0.6. The regularization parameter � was set according to Theorem 1 as some
constant multiple of

p

(

2/m) log(2n/�). Figure 1 shows the probability of successful recovery of the PSNE, for
various combinations of (n, k), where the probability was computed as the fraction of the 40 randomly sampled
LIGs for which the learned PSNE set matched the true PSNE set exactly. For each experiment, the number
of samples was computed as: b(C)(10

c

)(k2 log(6n
2

/�))c, where c is the control parameter and the constant C is
10000 for k = 1 and 1000 for k = 3 and 5. Thus, from Figure 1 we see that, the sample complexity of O �

k2 log n
�

as given by Theorem 1 indeed holds in practice, i.e., there exists constants c and c0 such that if the number of
samples is less than ck2 log n, we fail to recover the PSNE set exactly with high probability, while if the number
of samples is greater than c0k2 log n then we are able to recover the PSNE set exactly, with high probability.
Further, the scaling remains consistent as the number of players n is changed from 10 to 20.
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Figure 1: The probability of exact recovery of the PSNE set computed across 40 randomly sampled LIGs,
using the global noise model (TOP) and local noise model (BOTTOM), as the number of samples is scaled as
b(C)(10

c

)(k2 log(6n
2

/�))c, where c is the control parameter and the constant C is 10000 for the k = 1 case and
1000 for the remaining two case. For the global noise model we set q

g

= 0.001, while for the local noise model
we used q

1

= . . . = q
n

= 0.6.
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