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Abstract

We extend the Frank-Wolfe (FW) optimiza-
tion algorithm to solve constrained smooth
convex-concave saddle point (SP) problems.
Remarkably, the method only requires access
to linear minimization oracles. Leveraging re-
cent advances in FW optimization, we provide
the first proof of convergence of a FW-type
saddle point solver over polytopes, thereby
partially answering a 30 year-old conjecture.
We also survey other convergence results and
highlight gaps in the theoretical underpin-
nings of FW-style algorithms. Motivating
applications without known efficient alterna-
tives are explored through structured predic-
tion with combinatorial penalties as well as
games over matching polytopes involving an
exponential number of constraints.

1 Introduction

The Frank-Wolfe (FW) optimization algorithm (Frank
and Wolfe, 1956), also known as the conditional gra-
dient method (Demyanov and Rubinov, 1970), is a
first-order method for smooth constrained optimiza-
tion over a compact set. It has recently enjoyed a surge
in popularity thanks to its ability to cheaply exploit
the structured constraint sets appearing in machine
learning applications (Jaggi, 2013; Lacoste-Julien and
Jaggi, 2015). A known forte of FW is that it only
requires access to a linear minimization oracle (LMO)
over the constraint set, i.e., the ability to minimize
linear functions over the set, in contrast to projected
gradient methods which require the minimization of
quadratic functions or other nonlinear functions. In
this paper, we extend the applicability of the FW al-
gorithm to solve the following convex-concave saddle
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point problems:

i c 1
min max (z,v), (1)

with only access to LMO(r) € argmin (s, r),
seXxY
where £ is a smooth (with L-Lipschitz continuous gradi-
ent) convez-concave function, i.e., L(-,y) is convex for
all y € Y and L(x,-) is concave for all x € X. We also
assume that X' x ) is a convex compact set such that
its LMO is cheap to compute. A saddle point solution
to (1) is a pair (z*,y*) € X x ) (Hiriart-Urruty and
Lemaréchal, 1993, VII.4) such that: V& € X, Vy € Y,

Lz®,y) < L(z",y") < L(z,y"). (2)

Examples of saddle point problems. Taskar et al.
(2006) cast the maximum-margin estimation of struc-
tured output models as a bilinear saddle point problem
L(x,y) = " My, where X is the regularized set of
parameters and ) is an encoding of the set of possible
structured outputs. They considered settings where
the projection on X and ) was efficient, but one can
imagine many situations where only LMO’s are effi-
cient. For example, we could use a structured sparsity
inducing norm (Martins et al., 2011) for the parame-
ter x, such as the overlapping group lasso for which
the projection is expensive (Bach et al., 2012), while )
could be a combinatorial object such as a the ground
state of a planar Ising model (without external field)
which admits an efficient oracle (Barahona, 1982) but
has potentially intractable projection.

Similarly, two-player games (Von Neumann and Mor-
genstern, 1944) can often be solved as bilinear minimax
problems. When a strategy space involves a polynomial
number of constraints, the equilibria of such games can
be solved efficiently (Koller et al., 1994). However,
in situations such as the Colonel Blotto game or the
Matching Duel (Ahmadinejad et al., 2016), the strategy
space is intractably large and defined by an exponential
number of linear constraints. Fortunately, despite this
apparent prohibitive structure, some linear minimiza-
tion oracles such as the blossom algorithm (Edmonds,
1965) can efficiently optimize over the matching poly-
topes.
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Robust learning is also often cast as a saddle point
minimax problem (Kim et al., 2005). Once again,
a FW implementation could leverage fast linear ora-
cles while projection methods would be plagued by
slower or intractable sub-problems. For instance, if the
LMO is max-flow, it could have almost linear runtime
while the corresponding projection would require cubic
runtime quadratic programming (Kelner et al., 2014).
Finally, note that the popular generative adversarial
networks (Goodfellow et al., 2014) are formulated as a
(non-convex) saddle point optimization problem.

Related work. The standard approaches to solve
smooth constrained saddle point problems are
projection-type methods (surveyed in Xiu and Zhang
(2003)), with in particular variations of Korpele-
vich’s extragradient method (Korpelevich, 1976), such
as (Nesterov, 2007) which was used to solve the struc-
tured prediction problem (Taskar et al., 2006) men-
tioned above. There is surprisingly little work on FW-
type methods for saddle point problems, although they
were briefly considered for the more general variational
inequality problem (VIP):

find 2* € Z s.t. (r(2%),z—2%) >0, Vz€ Z, (3)

where r is a Lipschitz mapping from RP to itself
and Z C RP. By using £2 = X x Y and r(z) =
(VoL(z),—VyL(2)), the VIP (3) reduces to the equiv-
alent optimality conditions for the saddle point prob-
lem (1). Hammond (1984) showed that a FW algorithm
with a step size of O(1/t) converges for the VIP (3)
when the set Z is strongly convex, while FW with
a generalized line-search on a saddle point problem
is sometimes non-convergent when Z is a polytope
(see also (Patriksson, 1999, § 3.1.1)). She conjectured
though that using a step size of O(1/t) was also con-
vergent when Z is a polytope — a problem left open up
to this point. More recently, Juditsky and Nemirovski
(2016) (see also Cox et al. (2015)) proposed a method
to transform a VIP on Z where one has only access
to a LMO, to a “dual” VIP on which they can use a
projection-type method. Lan (2013) proposes to solve
the saddle point problem (1) by running FW on X on
the smoothed version of the problem maxycy L(x,y),
thus requiring a projection oracle on ). In contrast,
in this paper we study simple approaches that do not
require any transformations of the problem (1) nor any
projection oracle on X or ). Finally, He and Harchaoui
(2015) introduced an interesting extragradient-type
method to solve (3) by approximating the projections
using linear oracles. In contrast to our proposal, their
work does not cover the geometric convergence for the
strongly convex case.

Contributions. In § 2, we extend several variants
of the FW algorithm to solve the saddle point prob-
lem (1) that we think could be of interest to the machine

learning community. In § 3, we give a first proof of
(geometric) convergence for these methods over poly-
tope domains under the assumptions of sufficient strong
convex-concavity of L, giving a partial answer to the
conjecture from Hammond (1984). In § 4, we extend
and refine the previous convergence results when X
and ) are strongly convex sets and the gradient of L is
non-zero over X X ), while we survey the pure bilinear
case in § 5. We finally present illustrative experiments
for our theory in § 6, noticing that the convergence
theory is still incomplete for these methods.

2 Saddle point Frank-Wolfe (SP-FW)

The algorithms. This article will explore three SP
extensions of the classical Frank- Wolfe (FW) algorithm
(Alg. 1) which are summarized in Alg. 2, 3 and 4.
We denote by z®) := (x®, y®) the iterate computed
after t steps. We first obtain the saddle point FW
(SP-FW) algorithm (Alg. 2) by simultaneously doing
a FW update on both convex functions £(-,y®) and
—L(z®,.) with a properly chosen step size. As in
standard FW, the point z(*) has a sparse representation
as a convex combination of the points previously given
by the FW oracle, that is,

20 — Z Oy, Uy and y(t): Z Ay, Vy. (4)

vyest vyesit

These two sets Sg(gt), Sl(,t) of points are called the active
sets, and we can maintain them separately (thanks to
the product structure of X x )) to run the other two
FW variants that we describe below (see L13 of Alg. 3).

If we assume that X and Y are the convex hulls of two fi-
nite sets of points A and B, we can also extend the away-
step Frank-Wolfe (AFW) algorithm (Guélat and Mar-
cotte, 1986; Lacoste-Julien and Jaggi, 2015) to saddle
point problems. As for AFW, this new algorithm can
choose an away direction d 4 to remove mass from “bad”
atoms in the active set, i.e. to reduce a,, for some v (see
L9 of Alg. 3), thereby avoiding the zig-zagging prob-
lem that slows down standard FW (Lacoste-Julien and
Jaggi, 2015). Note that because of the special product
structure of the domain, we consider more away direc-
tions than proposed in (Lacoste-Julien and Jaggi, 2015)
for AFW (see Appendix A for more details). Finally,
a straightforward saddle point generalization for the
pairwise Frank-Wolfe (PFW) algorithm (Lacoste-Julien
and Jaggi, 2015) is given in Alg. 4. The proposed algo-
rithms all preserve several nice properties of previous
FW methods (in addition to only requiring LMO’s):
simplicity of implementation, affine invariance (Jaggi,
2013), gap certificates computed for free, sparse rep-
resentation of the iterates and the possibility to have

!Alg. 2 was already proposed by Hammond (1984) for
VIPs, while our step sizes and Alg. 3 & 4 are novel.
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Algorithm 1 Frank-Wolfe algorithm

Algorithm 2 Saddle point Frank-Wolfe algorithm: SP-FW

1: Let 29 e X

1: Let 200 = (2, yO) e x x Y

2: fort=0...T do 2: fort=0...7T do . .
3:  Compute r() = V f(x®) 3. Compute r(®) := ( V. L(x! 1)y( )tg )
4:  Compute s := argmin (s,7)) VL@, y)
seX 4:  Compute s ;= argmin (z,r®)

5. Co te x®) — st p®) ZEXXY

mpute g : < > 5.  Compute g; : <z(t) —s® T'(t)>
6: if g < e then return x(*) ) ®)

) ) 6: if g, < e then return z (v and C set as

7 Let v = 577 (or do line-search) 7. Let y =min (1, 25g:) or v = 52 case (1) in Thm, 1
8:  Update 2tV := (1 — y)z® + s 8:  Update 21 := (1 —4)z®) + s
9: end for 9: end for

Algorithm 3 Saddle point away-step Frank-Wolfe algorithm: SP-AFW (z(®), A x B, ¢)

1: Let 20 = (2©,y®) € A x B, 8 := {2
2: fort=0...T do

3. Let s := LMOaxp(r®") and dg\)}v = g(t) — z(®)
—0®
v

4. Let v® € argmax (r® v) and d(g) =2z
vest xsM

5 if gf W= (—r®), d(th,V < ¢ then return z®
6 if (—r®,d%) > (~r®,d) then

7 d®) .= dg\)]v, and Ymax := 1

8: else

9 d® = d(g), and Yimay = min {1(1:;?(:), :;(yt()t)
10 end if

11:  Let gf¥WV =
12:  Update z(t+D) = 2(H) 4 %d(t)

13:  Update S_q(c“r1
14: end for

)} and Sy

={yV}

(Y as defined in L3 in Algorithm 2)

(the away direction)

(FW gap is small enough, so return)

(choose the FW direction)

} (mazimum feasible step size; a drop step is when v+ = Ymax)

<—T( ) d( ) w Tt d(t)> and ~; = min {Vmam %QFFW} (v and C set as case (P) in Thm. 1)

(and accordingly for the weights "™V | see Lacoste-Julien and Jaggi (2015))
= {v, € A s.t. alitt) > 0} and Sytﬂ)

{v, € B s.t. oz(tJr1 > 0}

Algorithm 4 Saddle point pairwise Frank-Wolfe algorithm: SP-PFW (2(9), A x B, ¢)

1: In Alg. 3, replace L6 to 10 by: d® := dg%wzz s® — v and ymax := min {ozu(t),avm }

adaptive step sizes using the gap computation. We
next analyze the convergence of these algorithms.

The suboptimality error and the gap. To estab-
lish convergence, we first define several quantities of
interest. In classical convex optimization, the sub-
optimality error hy is well defined as hy := f(x®) —
minge v f(2). This quantity is clearly non-negative and
proving that h; goes to 0 is enough to establish conver-
gence. Unfortunately, in the saddle point setting the
quantity £(z®,y®) — £* is no longer non-negative
and can be equal to zero for an infinite number of
points (x,y) while (z,y) ¢ (X*,Y*). For instance, if
L(x,y) =« -y with X =Y = [-1,1], then L* =0
and (X*,V*) ={(0,0)}. But for all x € X and y € Y,
x-0=0-y = L* The saddle point literature thus
considers a non-negative gap function (also known as
a merit function (Larsson and Patriksson, 1994; Zhu
and Marcotte, 1998) and (Patriksson, 1999, Sec 4.4.1))

which is zero only for optimal points, in order to quan-
tify progress towards the saddle point. We can define
the following suboptimality error h; for our saddle point
problem:

= L@, §") - L@, y"),
where 2z := argmin £(z, y"), (5)
reX
and :/y\(t) (= arg max E(m(t)7y)
yey

This is an example of primal-dual gap function by
noticing that

he = L@ §0) = £+ £~ L@,y ")
= p(@?) = p(@) +9(y7) -9y, ()

where p(x) := maxycy L(,y) is the convex primal
function and g(y) := mingex L£(x,y) is the concave
dual function. By convex-concavity, h; can be upper-
bounded by the following FW linearization gap (Jaggi,
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2011, 2013; Larsson and Patriksson, 1994; Zhu and
Marcotte, 1998):

g = ma <$(t) _ sw’vwﬁ(m(t)7y(t))>}:: gt(w)

(7)
+ max <y(t) — 8y, —V, L(x®), y(t))>}:: gt(y).
sy €Y
This gap is easy to compute and gives a stopping crite-
rion since gtFW > hy.

Compensation phenomenon and difficulty for
SP. Even when equipped with a suboptimality er-
ror and a gap function (as in the convex case), we
still cannot apply the standard FW convergence analy-
sis. The usual FW proof sketch uses the fact that the
gradient of f is Lipschitz continuous to get

L d(t) 2
hipr < he —mge " + VEH

(8)
which then provides a rate of convergence. Roughly,
since g; > h; by convexity, if ; is small enough then
(hy) will decrease and converge. For simplicity, in the
main paper, || - || will refer to the ¢3 norm of R?. The
partial Lipschitz constants and the diameters of the
sets are defined with respect to this norm (see (40) in
Appendix B.1 for more general norms).

Using the L-Lipschitz continuity of £ and letting £; :=
L(xz® y®) as a shorthand, we get
Liv1 <Li+7 <d§f)7 vz£t> + 7t <d?(f)7 Vy£t>
d® H2 (9)

L
4oL

—2® and d}f = s{) — y®. Then

L||d®]2
o)+ o)

where dgf) = s§f)
_ R (=)
Lon=L" < L—L* =g}

Unfortunately, the quantity gf'"V does not appear above
and we therefore cannot control the oscillation of the
sequence (the quantity gt(m) — ggy) can make the sequence
increase or decrease). Instead, we must focus on more
specific SP optimization settings and introduce other
quantities of interest in order to establish convergence.

The asymmetry of the SP. Hammond (1984,
p. 165) showed the divergence of the SP-FW algorithm
with an extended line-search step-size on some bilinear
objectives. She mentioned that the difficulty for SP
optimization is contained in this bilinear coupling be-
tween x and y. More generally, most of the examples
of SP functions cited in the introduction can be written
in the form:

L(x,y) = f(a:)—|—:1:TMy—g(y)7 f and g convex. (11)

In this setting, the bilinear part M is the only term
preventing us to apply theorems on standard FW. Ham-
mond (1984, p. 175) also conjectured that the SP-FW
algorithm with ~; = 1/(t+1) performed on a uniformly
strongly convex-concave objective function (see (12))
over a polytope should converge. We give a partial
answer to this conjecture in the following section.

3 SP-FW for strongly convex
functions

Uniform strong convex-concavity. In this sec-
tion, we will assume that £ is uniformly (px,uy)-
strongly convex-concave, which means that the follow-
ing function is convex-concave:

Hx H
(@.y) = L@y) = S’ + Syl (12)

A new merit function. To prove our theorem, we
use a different quantity w; which is smaller than h;
but still a valid merit function in the case of strongly
convez-concave SPs (where (*,y*) is thus unique);
see (14) below. For (x*,y*) a solution of (1), we define
the non-negative quantity wy:

wy = L(xW,y*) — L+ L5 — Lz, yP).  (13)

(z) . (y)

=Wy =Wy

Notice that ng) and wt(y) are non-negative, and that
w; < hy since:

£z, ") — @, y") > £z, y*) - (=", y").

In general, w; can be zero even if we have not reached
a solution. For example, with L(z,y) = « -y and
X =Y =[-1,1], then * = y* = 0, implying w; =0
for any (2, y®). But for a uniformly strongly convex-
concave L, this cannot happen and we can prove that w;
has the following nice property (akin to ||& — x*|| <
Vu(f(x) — f(x*)) for a p-strongly convex function f;
see Proposition 15 in Appendix B.6):

hi < V2P \/wy, (14)

where
Pr <2 sup {HV“'C(Z)HX*, ||Vy£(z)|y*}. (15)
2EXXY Vibx iy

Pyramidal width and distance to the border.
We now provide a theorem that establishes conver-
gence in two situations: (I) when the SP belongs to the
interior of X x Y; (P) when the set is a polytope, i.e.
when there exist two finite sets such that X = conv(A)
and Y = conv(B)). Our convergence result holds when
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(roughly) the strong convex-concavity of £ is big enough
in comparison to the cross Lipschitz constants Lxy,
Ly x of VL (defined in (20) below) multiplied by geo-
metric “condition numbers” of each set. The condition
number of X (and similarly for V) is defined as the
ratio of its diameter Dy := sup, g cx ||x — || over
the following appropriate notions of “width”:

border distance: dx := min |l* — s|| for (I), (16)
s€oX

pyramidal width: §4 := PWidth(A)  for (P). (17)

The pyramidal width (17) is formally defined in Eq. 9
of Lacoste-Julien and Jaggi (2015) and in Appendix B.3.
Given the above constants, we can state below a non-
affine invariant version of our convergence theorem
(for simplicity). The affine invariant versions of this
theorem are given in Thm. 24 and 25 in Appendix D.2
(with proofs).

Theorem 1. Let L be a convex-concave function and
X XY a convex and compact set. Assume that the gradi-
ent of L is L-Lipschitz continuous, that L is (px, py)-
strongly convex-concave, and that we are in one of the
two following situations:

The SP belongs to the interior of X x Y. In this
case, set gr = gf vV (as in L5 of Alg. 3), 6, :=

M \/min(,uxégg, pyd3) and a = 1. “Algorithm”
then refers to SP-FW.

The sets X and Y are polytopes. In this case,
set g = gf¥W (as in L11 of Alg. 3), 6, =
(P)  /min(pxd%, pyd3) and a == 1. “Algorithm”
then refers to SP-AFW. Here 0, needs to use
the Fuclidean norm for its defining constants.

- R _ ﬁ DXLXY DyLYX
In both cases, if v :=a 5, Mmax |\ T T

is positive, then the errors hy (5) of the iterates of the
algorithm with step size v; = min{Ymax, 559} decrease
geometrically as

()

ol % and k(t) is the
number of mon-drop step after t steps (see L9 in
Alg. 3). In case (I) we have k(t) =t and in case (P)
we have k(t) > t/3. For both algorithms, if §, >

DyL , -
2max{%, %}, we also obtain a sublinear

rate with the universal choice vy = min{~ymax, %k(t)}
This yields the rates:

1
min h, < mingfV =0 <> . (18)
s<t s<t t

52
where p == V254, C =

Clearly, the sublinear rate seems less interesting than
the linear one but has the added convenience that
the step size can be set without knowledge of various
constants that characterize £. Moreover, it provides a

partial answer to the conjecture from Hammond (1984).

Proof sketch. Strong convexity is an essential as-
sumption in our proof; it allows us to relate w; to how
close we are to the optimum. Actually, by py-strong
concavity of L(x*,-), we have

2 2
[y @ —y* | <[ (Lx—L(z*y®))=, | —w?. (19)
wy 12

Now, recall that we assumed that VL is Lipschitz
continuous. In the following, we will call L the Lipschitz
continuity constant of VL and Lxy and Ly x its (cross)
partial Lipschitz constants. For all z, ' € X, y, ¢y’ €
Y, these constants satisfy

IVaL(®,y) — Vo L(z,y' )2+ < Lxvlly —y'lly,
IVyL(z,y) =V, L(x',y)|
Note that Lxy, Lyx < Lif [(z,y)[ := [[z]x + [lylly-
Then, using Lipschitz continuity of the gradient,
L, y*) < L@, y*) + (dY, VL=, y")
2 L]lds|2
5
Furthermore, setting (x,y) = (z(*),y*) and y' = y®
in Equation (20), we have

w <wl” — g + yDaLxylly® —y*||

,LD% (22)
5
Finally, combining (22) and (19), we get

x x x 2
wt(+)1 < wi® — g +7DxLxy | iy w? )
23

LD}
23

A similar argument on —£(z*,y**) gives a bound

20
v+ < Lyx|z — 2|« 20)

+ v (21)

+7

+7

on wt(y) much like (23). Summing both yields:

w1 < wg — g + 27max{Df/%Y7 D%X } Vwe
2 LD% + LD%, .
2

We now apply recent developments in the convergence

theory of FW methods for strongly convex objectives.

Lacoste-Julien and Jaggi (2015) crucially upper bound

the square root of the suboptimality error on a convex

function with the FW gap if the optimum is in the

interior, or with the PFW gap if the set is a polytope

(Lemma 18 in Appendix C.2). We continue our proof
sketch for case (I) only:?

21262 (ﬁ(w(t),y(ﬂ) _ C(w*’y(t))) < (gt(z))Q

where

(24)

' i (25)
ox = Srgé%Hm — sl

2The idea is similar for case (P), but with the additional
complication of possible drop steps.
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We can also get the respective equation on y with
dy 1= mingepy ||ly* — y|| and sum it with the previous
one (25) to get:

0,V 2w, < g4 where §, = \/min(u;g(;?‘f,,uy(%). (26)

Plugging this last equation into (23) gives us

LD%+LD3,
2
DxLxy DyLyx }
VRy T Vex
The recurrence (27) is typical in the FW literature. We
can re-apply standard techniques on the sequence w; to
get a sublinear rate with 7, = 3%, or a linear rate with
Y = min {Ymax, 5% } (which minimizes the RHS of (27)
and actually guarantees that w; will be decreasing).
Finally, thanks to strong convexity, a rate on w; gives
us a rate on h; (by (14)). O

w1 <wy —vyg; +72C where C:=

V2

(27)
and V::lfﬁmax{

4 SP-FW with strongly convex sets

Strongly convex set. One can (roughly) define
strongly convex sets as sublevel sets of strongly convex
functions (Vial, 1983, Prop. 4.14). In this section, we
replace the strong convex-concavity assumption on £
with the assumption that X and ) are S-strongly con-
vex sets.

Definition 2 (Vial (1983); Polyak (1966)). A con-
ver set X is said to be B-strongly conver with re-
spect to ||.|| if for any x,y € X and any v € [0,1],
Bs(v,z,y) C X where Bg(y,z,y) is the ||.||-ball of
radius (1 — 7)%”:}3 —y||? centered at yx + (1 —7)y.

Frank-Wolfe for convex optimization over strongly con-
vex sets has been studied by Levitin and Polyak (1966);
Demyanov and Rubinov (1970) and Dunn (1979),
amongst others. They all obtained a linear rate for
the FW algorithm if the norm of the gradient is lower
bounded by a constant. More recently, Garber and
Hazan (2015) proved a sublinear rate O(1/t?) by re-
placing the lower bound on the gradient by a strong
convexity assumption on the function. In the VIP
setting (3), the linear convergence has been proved if
the optimization is done under a strongly convex set
but this assumption does not extend to X x Y which
cannot be strongly convex if X or Y is not reduced to
a single element. In order to prove the convergence, we
first prove the Lipschitz continuity of the FW-corner
function s(-) defined below. A proof of this theorem is
given in Appendix E.

Theorem 3. Let X and Y be B-strongly convez sets.
If min(|VoL(2)||x, [|VyL(2)|ly<) = & > 0 for all
z € X x Y, then the oracle function z — s(z) :=
argmingexyxy (s,7(2)) is well defined and is %—
Lipschitz continuous (using the norm ||(x,y)||xxy =
lzllx + llylly), where 7(2) := (Vo L(2), =V L(2)).

Convergence rate. When the FW-corner func-
tion s(-) is Lipschitz continuous (by Theorem 3), we
can actually show that the FW gap is decreasing in
the FW direction and get a similar inequality as the
standard FW one (8), but, in this case, on the gaps:
gir1 < ge(1— ) +~21s® — 2 ||2C5. Moreover, one
can show that the FW gap on a strongly convex set X
can be lower-bounded by ||s{” — (|2 (Lemma 27 in
Appendix E), by using the fact that X' contains a ball
of sufficient radius around the midpoint between 355)
and =®. From these two facts, we can prove the fol-
lowing linear rate of convergence (not requiring any
strong convex-concavity of L).

Theorem 4. Let L be a convex-concave function
and X and Y two compact [B-strongly convexr sets.
Assume that the gradient of L is L-Lipschitz con-
tinuous and that there exists § > 0 such that
min(||VaL(2) ||+, |VyL(2)]|+) > § V2 € X x Y. Set
Cs :=2L + %. Then the gap gf" (7) of the SP-FW

FW

algorithm with step size v = converges

9y
s —=M2C,
linearly as gf™V < go (1 — p)t, where p = 1525 .

5 SP-FW in the bilinear setting

Fictitious play. In her thesis, Hammond (1984,
§ 4.3.1) pointed out that for the bilinear setting:

. T
M 28
Join max My (28)

where A, is the probability simplex on p elements, the
SP-FW algorithm with step size v, = 1/ (1 + t) is equiv-
alent to the fictitious play (FP) algorithm introduced
by Brown (1951). The FP algorithm has been widely
studied in the game literature. Its convergence has
been proved by Robinson (1951), while Shapiro (1958)
showed that one can deduce from Robinson’s proof a
O(t=/(P+a=2)) rate. Around the same time, Karlin
(1960) conjectured that the FP algorithm converged
at the better rate of O(t~1/2), though this conjecture
is still open and Shapiro’s rate is the only one we are
aware of. Interestingly, Daskalakis and Pan (2014) re-
cently showed that Shapiro’s rate is also a lower bound
if the tie breaking rule gets the worst pick an infinite
number of times. Nevertheless, this kind of adversarial
tie breaking rule does not seems realistic since this rule
is a priori defined by the programmer. In practical
cases (by setting a fixed prior order for ties or picking
randomly for example), Karlin’s Conjecture (Karlin,
1960) is still open. Moreover, we always observed an
empirical rate of at least O(¢t~'/2?) during our exper-
iments, we thus believe the conjecture to be true for
realistic tie breaking rules.
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Rate for SP-FW. Via the affine invariance of the
FW algorithm and the fact that every polytope with
p vertices is the affine transformation of a probability
simplex of dimension p, any rate for the fictitious play
algorithm implies a rate for SP-F'W.

Corollary 5. For polytopes X and Y with p and q
vertices respectively and L(xz,y) = ' My, the SP-FW
algorithm with step size v = = converges at the rate

o1
hy =0 (t_m%ﬂ .

This (very slow) convergence rate is mainly of theoreti-
cal interest, providing a safety check that the algorithm
actually converges. Moreover, if Karlin’s strong con-
jecture is true, we can get a O(1/+/t) worst case rate
which is confirmed by our experiments.

6 Experiments

Toy experiments. First, we test the empirical con-
vergence of our algorithms on a simple saddle point
problem over the unit cube in dimension d (whose pyra-
midal width has the explicit value 1/ Vd by Lemma 4
from Lacoste-Julien and Jaggi (2015)). Thus X =
Y :=[0,1]¢ and the linear minimization oracle is sim-
ply LMO(-) = —0.5 - (sign(-) — 1). We consider the
following objective function:

/’L * * * /’L *
Lla—a" 3 +(@—2") T M(y—y") -5 ly—y" I3 (29)

for which we can control the location of the saddle
point (z*,y*) € X x ). We generate a matrix M
randomly as M ~ U([—0.1,0.1]%4) and keep it fixed
for all experiments. For the interior point setup (I),
we set (z*,y*) ~ U([0.25,0.75]2?), while we set =* and
y* to some fixed random vertex of the unit cube for
the setup (P). With all these parameters fixed, the
constant v is a function of y only. We thus vary the
strong convexity parameter p to test various v’s.

We verify the linear convergence expected for the SP-
FW algorithm for case (I) in Figure la, and for the
SP-AFW algorithm for case (P) in Figure 1b. As the
adaptive step size (and rate) depends linearly on v,
the linear rate becomes quite slow for small v. In this
regime (in red), the step size 2/(2 + k(t)) (in orange)
can actually perform better, despite its theoretical
sublinear rate.

Finally, figure 1c shows that we can observe a linear
convergence of SP-AFW even if v is negative by using
a different step size. In this case, we use the heuristic
adaptive step size v := g/ C where C := LD% +
LD%, + LxyLyx (Dgf/,u;( + D%,/uy). Here C takes
into account the coupling between the concave and
the convex variable and is motivated from a different
proof of convergence that we were not able to complete.

The empirical linear convergence in this case is not
yet supported by a complete analysis, highlighting the
need for more sophisticated arguments.

Graphical games. We now consider a bilinear ob-
jective L(x,y) = =" My where exact projections on
the sets is intractable, but we have a tractable LMO.
The problem is motivated from the following setup.
We consider a game between two universities (A and
B) that are admitting s students and have to assign
pairs of students into dorms. If students are unhappy
with their dorm assignments, they will go to the other
university. The game has a payoff matrix M belong-
ing to RCGC=1/2" where M;; 1, is the expected tuition
that B gets (or A gives up) if A pairs student ¢ with
7 and B pairs student k with [. Here the actions x
and y are both in the marginal polytope of all per-
fect unipartite matchings. Assume that we are given
a graph G = (V, E) with vertices V and edges F. For
a subset of nodes S C V, let the induced subgraph
G(S) = (S, E(S)). Edmonds (1965) showed that any
subgraph forming a triangle can contain at most one
edge of any perfect matching. This forms an exponen-
tial set of linear equalities which define the matching
polytope P(G) C RF as

{z]2.>0,) . <k VSCV,|S|=2k+1VecE}. (30)
e€E(S)

While this strategy space seems daunting, the LMO
can be solved in O(s?) time using the blossom algo-
rithm (Edmonds, 1965). We run the SP-FW algorithm
with 74 = 2/¢t+2) on this problem with s = 2/ stu-
dents for j = 3,...,8 with results given in Figure 1d
(d = s(s —1)/2 in the legend represents the dimen-
sionality of the  and y variables). The order of the
complexity of the LMO is then O(d*/?). In Figure 1d,
the observed empirical rate of the SP-FW algorithm
(using ¢ = 2/(¢+2)) is O(1/t?). Empirically, faster rates
seem to arise if the solution is at a corner (a pure equi-
librium, to be expected for random payoff matrices in
light of (Bérdny et al., 2007)).

Sparse structured SVM. We finally consider a
challenging optimization problem arising from struc-
tured prediction. We consider the saddle point for-
mulation (Taskar et al., 2006) for a ¢;-regularized
structured SVM objective that minimizes the primal
cost function p(w) := 1 3" | H;(w), where H;(w) =
maxycy, Li(y) — (w, ¥;(y)) is the structured hinge loss
(using the notation from Lacoste-Julien et al. (2013)).
We only assume access to the linear oracle computing

H;(w). Let M; have (wi(y))yey- as columns. We can

rewrite the minimization problem as a bilinear saddle
point problem:
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Figure 1: On Figures la, 1b and 1lc, we plot on a semilog scale the best gap observed mins< 9"V as a function of ¢. For
experiments 1d, le and 1f, the objective function is bilinear and the convergence is sublinear. An effective pass is one
iteration for SP-FW or the subgradient method and n iterations for SP-BCFW or SSG. We give more details about these

experiments in Appendix F.

1
n_— Ly, —w'M; z)

HﬁﬁanZQ??ﬁ i Yimw My
' (31)

. 1
= min — ( max LiTai—wTMiai).
lwli <R 1N =\ a;€A(|Vi])

Projecting onto A(|Y;|) is normally intractable as
the size of |);| is exponential, but the linear ora-
cle is tractable by assumption. We performed ex-
periments with 100 examples from the OCR dataset
(d, = 4028) (Taskar et al., 2003). We encoded the
structure Y; of the i** word with a Markov model: its
kth character yi(’“) only depends on yf—l and yf“.
In this case, the oracle function is simply the Viterbi
algorithm Viterbi (1967). The average length of a
word is approximately 8, hence the dimension of Y
is dy, ~ 262 - 8 = 5408 leading to a large dimension
for Y, dy = Y7 ,dy, = 5-10°. We run the SP-
FW algorithm with step size v, = 1/(1 + t) for which
we have a convergence proof (Corollary 5), and with
v = 2/(2 + t), which normally gives better results for
FW optimization. We compare with the projected sub-
gradient method (projecting on the ¢;-ball is tractable
here) with step size O(1/+/1) (the subgradient of H;(w)
is —p;(y;)). Following Lacoste-Julien et al. (2013), we
also implement a block-coordinate (SP-BCFW) version
of SP-FW and compare it with the stochastic projected
subgradient method (SSG). As some of the algorithms

only work on the primal and to make our result com-
parable to Lacoste-Julien et al. (2013), we choose to
plot the primal suboptimality error p(w,;) — p* for the
different algorithms in Figure le and 1f (the o iterates
for the SP approaches are thus ignored in this error).
The performance of SP-BCFW is similar to SSG when
we regularize the learning problem heavily (Figure le).
However, under lower regularization (Figure 1f), SSG
(with the correct step size scaling) is faster. This is
consistent with the fact that oy # a* implies larger
errors on the primal suboptimality for the SP methods,
but we note that an advantage of the SP-FW approach
is that the scale of the step size is automatically chosen.

Conclusion. We proposed FW-style algorithms for
saddle-point optimization with the same attractive
properties as FW, in particular only requiring access
to a LMO. We gave the first convergence result for a
FW-style algorithm towards a saddle point over poly-
topes by building on the recent developments on the
linear convergence analysis of AFW. However, our ex-
periments let us believe that the condition v > 0 is not
required for the convergence of FW-style algorithms.
We thus conjecture that a refined analysis could yield
a linear rate for the general uniformly strongly convex-
concave functions in both cases (I) and (P), paving the
way for further theoretical work.
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