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1 Proof of Lemma 2

Proof. To prove the result, we use brackets of the type [fθ−
εg/2, fθ + εg/2] for θ that ranging over a suitably chosen
subset of Θ and these brackets have L1-size ε‖g‖1. If ‖θ1−
θ2‖ ≤ ε/2, then by the Lipschitz condition that

|fθ1(ξ)− fθ2(ξ)| ≤ g(ξ)‖θ1 − θ2‖, (1)

we have fθ1 − εg/2 ≤ fθ2 ≤ fθ1 + εg/2. Therefore, the
brackets coverF if θ ranges over a grid of meshwidth ε/

√
p

over Θ. This grid has at most (
√
pDΘ/ε)

p grid points.
Therefore the bracketing number N[](ε‖g‖1,F , L1) can be
bounded by (

√
pDΘ/ε)

p.

2 Proof of Lemma 3

Proof. Consider the function class F = {f(·,x) | x ∈ P}
as defined in (SP1), that is f(i,x) = fi(x). Since fi(·)
each is assumed to be Lipschitz continuous with Lipschitz
constant Li, we must have |fi(x)− fi(y)| ≤ LF ‖x− y‖,
where LF ≡ max{L1, . . . , Ln}. Moreover, the index
set P ∈ Rp for the function class F is assume to be
bounded. Therefore all conditions for Lemma 2 are satis-
fied and hence the number of brackets of the type [f(·,x)−
εLF , f(·,x) + εLF ] satisfies

N[](εLF ,F , L1) ≤ KP(
D

ε
)p,

for every 0 < ε < D, whereD = sup{‖x−y‖ | x,y ∈ P}
and KP = (

√
p)p. Let Γ ⊂ P denote the set of indices of

the centers of these brackets and ξ1, . . . ξm(k) be the i.i.d.
samples drawn at the k-th iteration of the algorithm. Since
the brackets centered at Γ cover F , we must have

sup
x∈P
| 1

m(k)

m(k)∑
i=1

f(ξi,x)− Ef(ξi,x)|

≤ max{| 1

m(k)

m(k)∑
i=1

f(ξi,y)− Ef(ξi,y)| | y ∈ Γ}+ 2εLF .

Consequently, for every δ ≥ 0 and ε < min{δ/(2LF ), D},

P{sup
x∈P
| 1

m(k)

m(k)∑
i=1

f(ξi,x)− Ef(ξi,x)| ≥ δ}

≤ P{max{| 1

m(k)

m(k)∑
i=1

f(ξi,y)− Ef(ξi,y)| | y ∈ Γ}

+ 2εLF ≥ δ}

≤
∑
y∈Γ

P{| 1

m(k)

m(k)∑
i=1

f(ξi,y)− Ef(ξ1,y)| ≥ δ − 2εLF }

(union bound)

≤
∑
y∈Γ

2 exp{−2m(k)(δ − 2LF ε)
2

(uF − lF )2
}

(Hoeffding inequality)

≤ 2KP(
D

ε
)p exp{−2m(k)(δ − 2LF ε)

2

(uF − lF )2
}.

(|Γ| ≤ KP(Dε )p)

Since by definition, F (k)(x) = 1
m(k)

∑m(k)

i=1 f(ξi,x) and
F (x) = Ef(ξi,x), the desired result follows.

3 Proof of Corollary 1

Proof. First note that both F (k)(·) and F (·) are bounded by
lF and uF ; hence, supx∈P |F (k)(x) − F (x)| ≤ 2(|uF | +
|lF |). Then for every δ ≥ 0, we have

E sup
x∈P
|F (k)(x)− F (x)|

≤ 2(|uF |+ |lF |)P{sup
x∈P
|F (k)(x)− F (x)| ≥ δ}

+ δ P{sup
x∈P
|F (k)(x)− F (x)| < δ}

≤ 4(|uF |+ |lF |)KP(
D

ε
)p exp{−2m(k)(δ − 2LF ε)

2

(uF − lF )2
}+ δ

≤ 4(|uF |+ |lF |)KPDp exp{−2m(k)(δ − 2LF ε)
2

(uF − lF )2
+ p log

1

ε
}+ δ.
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Now let δ =
(uF−lF )

√
4(p+1) log

√
m(k)

√
m(k)

√
2

, ε = (uF−lF )

2LF
√
m(k)

√
2

.
Then

E sup
x∈P
|F (k)(x)− F (x)|

≤ 4(|uF |+ |lF |)KPDp exp{−(

√
4(p+ 1) log

√
m(k) − 1)2

− p(log
uF − lF
2
√

2LF
) + p log

√
m(k)}

+
(uF − lF )

√
4(p+ 1) log

√
m(k)

√
m(k)
√

2
.

Note that (x−1)2 ≥ x2/4 when x ≥ 2. Thus, form(k) ≥ 3

and p ≥ 1,
√

4(p+ 1) log
√
m(k) ≥ 2. Therefore

E sup
x∈P
|F (k)(x)− F (x)|

≤ 4(|uF |+ |lF |)KPDp exp{−(p+ 1) log(
√
m(k))

+ p log
√
m(k) − p(log

uF − lF
2
√

2LF
)}

+
(uF − lF )

√
4(p+ 1) log

√
m(k)

√
m(k)
√

2

≤ C1

√
logm(k)

m(k)
,

where C1 = 4(|uF |+ |lF |)KPDp exp{−p(log uF−lF
2
√

2LF
)}+

(uF − lF )
√
p+ 1.

Next, we will obtain a bound for E|F (k)(x
(k)
∗ ) − F (x∗)|.

Lemma 3 implies both

F (x
(k)
∗ )− δ ≤ F (k)(x

(k)
∗ ) ≤ F (x

(k)
∗ ) + δ (2)

and

F (x∗)− δ ≤ F (k)(x∗) ≤ F (x∗) + δ (3)

happen with probability at least 1 −
2KP(Dε )p exp{−m

(k)(δ−2LF ε)
2

2(uF−lF )2 }. Consequently, on
one hand

F (k)(x
(k)
∗ ) ≥ F (x

(k)
∗ )− δ (by (2))

≥ F (x∗)− δ (optimality of x∗ for F (·))

On the other hand,

F (k)(x
(k)
∗ ) ≤ F (k)(x∗) (optimiality of x(k)

∗ for F (k)(·))
≤ F (x∗) + δ (by (3))

Therefore, we have

P{|F (k)(x
(k)
∗ )− F (x∗)| ≥ δ}

≤ 2KP(
D

ε
)p exp{−m

(k)(δ − 2LF ε)
2

2(uF − lF )2
},

and hence E|F (k)(x
(k)
∗ )− F (x∗)| = C1

√
logm(k)

m(k) .

4 Proof of Lemma 4

Proof. The right hand side of the stated result in Lemma
4 is obtained by setting bi = 1 for i ≤ m and bi = 0 for
i > m. We will show that this choice of {bi} maximizes∑n
k=1 a

∑n
j=k bjck. Consider an assignment of bi that there

is a br = 0 for r ≤ m and bs = 1 for s > m. Define a new
assignment b′i such that there is b′i = bi for i 6= r, s, b′r = 1
and b′s = 0. Then

n∑
k=1

a
∑n
j=k bjck

=

n∑
k=s+1

a
∑n
j=k bjck +

s∑
k=r

a
∑n
j=k bjck +

r−1∑
k=1

a
∑n
j=k bjck

=

n∑
k=s+1

a
∑n
j=k b

′
jck +

s∑
k=r+1

a
∑n
j=k bjck +

r∑
k=1

a
∑n
j=k b

′
jck

=

n∑
k=s+1

a
∑n
j=k b

′
jck + a

s∑
k=r+1

a
∑n
j=k b

′
jck +

r∑
k=1

a
∑n
j=k b

′
jck

≤
n∑

k=s+1

a
∑n
j=k b

′
jck +

s∑
k=r+1

a
∑n
j=k b

′
jck +

r∑
k=1

a
∑n
j=k b

′
jck

=

n∑
k=1

a
∑n
j=k b

′
jck.

Therefore, such interchanges will always increase the value
of

∑n
k=1 a

∑n
j=k bjck and hence setting bi = 1 for i ≤ m

and bi = 0 for i > m maximizes it.

5 Proof of Theorem 1

Proof. At iteration k, let x(k) denote the current solution,
ξ1, . . . , ξm(k) denote the samples obtained in the algorithm,
d(k) denote the direction that the algorithm will take at this
step and γ(k) denote the step length. Define F (k)(x) =

1
m(k)

∑m(k)

i=1 f(ξi,x), x
(k)
∗ = arg minx∈P F

(k)(x) and

F
(k)
∗ = F (k)(x

(k)
∗ ). Note that F (k) is Lipschitz continu-

ous with Lipschitz constant L(k) = 1
m(k)

∑m(k)

i=1 Lξi and

strongly convex with constant σ(k) = 1
m(k)

∑m(k)

i=1 σξi . In
addition, the stochastic gradient g(k) = ∇F (k)(x). From
the choice of d(k) in the algorithm,

〈g(k),d(k)〉 ≤ 1

2
(〈g(k),p(k) − x(k)〉+ 〈g(k),x(k) − u(k)〉)

=
1

2
〈g(k),p(k) − u(k)〉 ≤ 0.
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Hence, we can lower bound 〈g(k),d(k)〉2 by

〈g(k),d(k)〉2 ≥ 1

4
〈g(k),u(k) − p(k)〉2

≥ 1

4
max

p∈V,u∈U(k)
〈g(k),u− p〉2

(definition of p(k) and u(k))

=
1

4
max

p∈V,u∈U(k)
〈∇F (k)(x(k)),u− p〉2

(g(k) = ∇F (k)(x(k)))

≥ 1

4

Ω2
P

|U (k)|2
〈∇F (k)(x(k)),x(k) − x

(k)
∗ 〉2

‖x(k) − x
(k)
∗ ‖2
(by Lemma 1)

≥ Ω2
P

4N2

{F (k)(x(k))− F (k)
∗ }2

‖x(k) − x
(k)
∗ ‖2

(Convexity of F (k)(·))

≥ Ω2
Pσ

(k)

8N2
{F (k)(x(k))− F (k)

∗ }
(by strong convexity of F (k)(·))

≥ Ω2
PσF

8N2
{F (k)(x(k))− F (k)

∗ }.

Similarly, we can upper bound 〈g(k),d(k)〉 by

〈g(k),d(k)〉 ≤ 1

2
〈g(k),p(k) − u(k)〉

≤ 1

2
〈g(k),x

(k)
∗ − x(k)〉

(definition of p(k) and u(k))

=
1

2
〈∇F (k)(x(k)),x

(k)
∗ − x(k)〉

(g(k) = ∇F (k)(x(k)))

≤ 1

2
{F (k)
∗ − F (k)(x(k))}.

(Convexity of F (·))

With the above bounds, we can separate our analysis into
the following four cases at iteration k

(A(k)) γ
(k)
max ≥ 1 and γ(k) ≤ 1 .

(B(k)) γ
(k)
max ≥ 1 and γ(k) ≥ 1.

(C(k)) γ
(k)
max < 1 and γ(k) < γ

(k)
max.

(D(k)) γ
(k)
max < 1 and γ(k) = γ

(k)
max.

By the descent lemma, we have

F (k)(x(k+1)) = F (k)(x(k) + γ(k)d(k)) (4)

≤ F (k)(x(k)) + γ(k)〈∇F (k)(x(k)),d(k)〉+
L(k)(γ(k))2

2
‖d(k)‖2

= F (k)(x(k)) + γ(k)〈g(k),d(k)〉+
L(k)(γ(k))2

2
‖d(k)‖2. (5)

In case (A(k)), let δA(k) denote the indicator function for
this case. Then

δA(k){F (k)(x(k+1))− F (k)
∗ }

≤ δA(k){F (k)(x(k))− F (k)
∗ + γ(k)〈g(k),d(k)〉+

L(k)(γ(k))2

2
‖d(k)‖2}

= δA(k){F (k)(x(k))− F (k)
∗ − 〈g

(k),d(k)〉2

2L(k)‖d(k)‖2
}

(definition of γ(k) in case A(k))

≤ δA(k){(1−
Ω2
PσF

16N2L(k)D2
)(F (k)(x(k))− F (k)

∗ )}

≤ δA(k){(1−
Ω2
PσF

16N2LFD2
)(F (k)(x(k))− F (k)

∗ )}

In case (B(k)), since γ(k) > 1, we have

− 〈g(k),d(k)〉 > L(k)‖d(k)‖2 and (6)

γ(k)〈g(k),d(k)〉+
L(k)(γ(k))2

2
‖d(k)‖2 (7)

≤ 〈g(k),d(k)〉+
L(k)

2
‖d(k)‖2. (8)

Use δB(k) to denote the indicator function for this case.
Then,

δB(k){F (k)(x(k+1))− F (k)
∗ }

≤ δB(k){F (k)(x(k))− F (k)
∗ +

γ(k)〈∇F (k)(x(k)),d(k)〉+
L(k)(γ(k))2

2
‖d(k)‖2}

= δB(k){F (k)(x(k))− F (k)
∗ + γ(k)〈g(k),d(k)〉

+
L(k)(γ(k))2

2
‖d(k)‖2

≤ δB(k){F (k)(x(k))− F (k)
∗ + 〈g(k),d(k)〉+

L(k)

2
‖d(k)‖2}

(by (8))

≤ δB(k){F (k)(x(k))− F (k)
∗ +

1

2
〈g(k),d(k)〉} (by (6))

≤ δB(k){
1

2
(F (k)(x(k))− F (k)

∗ )}

In case (C(k)), let δC(k) be the indicator function for this
case and we can use exactly the same argument as in case
(A) to obtain the following inequality

δC(k){F (k)(x(k+1))− F (k)
∗ }

≤ δC(k){F (k)(x(k))− F (k)
∗ − 〈g

(k),d(k)〉2

2L(k)‖d(k)‖2
}

≤ δC(k){(1−
Ω2
PσF

16N2LFD2
)(F (k)(x(k))− F (k)

∗ )}

Case (D(k)) is the so called “drop step” in the conditional
gradient algorithm with away-steps. Use δD(k) to denote
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the indicator function for this case. Note that γ(k) =

γ
(k)
max ≤ −〈g(k),d(k)〉/(L(k)‖d(k)‖2) in this case. Hence,

we have

δD(k){(F (k)(x(k+1))− F (k)
∗ )}

≤ δD(k){F (k)(x(k))− F (k)
∗ + γ(k)〈∇F (k)(x(k)),d(k)〉

+
L(k)(γ(k))2

2
‖d(k)‖2}

= δD(k){F (k)(x(k))− F (k)
∗ + γ(k)〈g(k),d(k)〉+

L(k)(γ(k))2

2
‖d(k)‖2}

≤ δD(k){F (k)(x(k))− F (k)
∗ +

γ(k)

2
〈g(k),d(k)〉}

≤ δD(k){F (k)(x(k))− F (k)
∗ }.

Define ρ = min{ 1
2 ,

Ω2
PσF

16N2LFD2 }. Note that ρ is a determin-
istic constant between 0 and 1. Therefore we have

F (k)(x(k+1))− F (k)
∗

≤ ({1− ρ){1−δD(k)}(F (k)(x(k))− F (k)
∗ )

= (1− ρ){1−δD(k)}(F (k−1)(x(k))− F (k−1)
∗ )

+ (1− ρ){1−δD(k)}{F (k)(x(k))− F (k)
∗

− F (k−1)(x(k)) + F
(k−1)
∗ }

= (1− ρ){1−δD(k)}(F (k−1)(x(k))− F (k−1)
∗ )

+ (1− ρ){1−δD(k)}{F (k)(x(k))− F (x(k)) + F (x(k))

− F (k−1)(x(k)) + F ∗ − F (k)
∗ + F

(k−1)
∗ − F ∗}

≤ (1− ρ){1−δD(k)}(F (k−1)(x(k))− F (k−1)
∗ )

+ (1− ρ){1−δD(k)}{|F (k)(x(k))− F (x(k))|

+ |F (k−1)(x(k))− F (x(k))|+ |F (k)
∗ − F ∗|

+ |F (k−1)
∗ − F ∗|}

≤ (1− ρ)
∑k
i=1{1−δD(i)}(F (0)(x(1))− F (0)

∗ )+

k∑
i=1

(1− ρ)
∑k
j=i{1−δD(j)}{|F (i)(x(i))− F (x(i))|

+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|

+ |F (i−1)
∗ − F ∗|}.

At iteration k, there are at most (k + 1)/2 drop steps, i.e.,
at most (k + 1)/2 δD(i) ’s equal to 1. Then by Lemma ??,

we have

k∑
i=1

(1− ρ)
∑k
j=i{1−δD(j)}{|F (i)(x(i))− F (x(i))|

+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}

≤
k∑

i=k/2

{|F (i)(x(i))− F (x(i))|+ |F (i−1)(x(i))− F (x(i))|

+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}

+

k/2−1∑
i=1

(1− ρ)k/2−i{|F (i)(x(i))− F (x(i))|

+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}.

Therefore

F (k)(x(k+1))− F (k)
∗

≤ (1− ρ)
k−1
2 (uF − lF ) +

k∑
i=k/2

{|F (i)(x(i))− F (x(i))|

+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}

+

k/2−1∑
i=1

(1− ρ)k/2−i{|F (i)(x(i))− F (x(i))|

+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}.

In addition, F (k)(x(k+1)) − F
(k)
∗ = F (x(k+1)) − F ∗ +

(F (k)(x(k+1))− F (x(k+1))) + (F ∗ − F (k)
∗ ). Thus

F (x(k+1))− F ∗

≤ (1− ρ)
k−1
2 (uF − lF ) +

k+1∑
i=k/2

{|F (i)(x(i))− F (x(i))|

+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}

+

k/2−1∑
i=1

(1− ρ)k/2−i{|F (i)(x(i))− F (x(i))|

+ |F (i−1)(x(i))− F (x(i))|+ |F (i)
∗ − F ∗|+ |F (i−1)

∗ − F ∗|}.

Note that for any deterministic x ∈ P , we have
EF (k)(x) = F (x). In addition, by Corollary ??, the fol-
lowing bound holds for every iteration k

E|F (k)(x(k))− F (x(k))|

≤ E sup
x∈P
|F (k)(x)− F (x)| ≤ C1

√
logm(k)

m(k)

and

E|F (k)
∗ − F ∗| ≤ C1

√
logm(k)

m(k)
.
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Combining all above bounds and use m(i) = d1/(1 −
ρ)2i+2e, we have

E{F (x(k+1))− F ∗}

≤ (1− ρ)
k−1
2 (uF − lF )

+ 2C1{
k+1∑
i=k/2

(

√
logm(i)

m(i)
+

√
logm(i−1)

m(i−1)
)

+

k/2−1∑
i=1

(1− ρ)k/2−i(

√
logm(i)

m(i)
+

√
logm(i−1)

m(i−1)
)}

≤ (1− ρ)
k−1
2 (uF − lF ) + 4C1{

k+1∑
i=k/2

√
logm(i−1)

m(i−1)

+

k/2−1∑
i=1

(1− ρ)k/2−i
√

logm(i−1)

m(i−1)
}

( log x
x decreases for x > e)

≤ (1− ρ)
k−1
2 (uF − lF )

+ 4C1

√
2 log

1

1− ρ
{
k+1∑
i=k/2

(1− ρ)i
√
i

+

k/2−1∑
i=1

(1− ρ)k/2
√
i}

≤ C2(1− β)
k−1
2

for some constant C2 and 0 < β < ρ < 1.

6 Proof of Corollary 3

Proof. Let k be the total number of iterations performed
by Algorithm 2 so that an ε-accurate solution is obtained
for the first time. Theorem 1 implies C2(1 − β)

k−1
2 < ε

and hence k ≥ 1 + 2 log ε/ log(1 − β). In iteration i of
Algorithm 2, m(i) = 1/(1 − ρ)2i+2 of stochastic gradi-
ent evaluations are performed. Thus, the total number of
stochastic gradient evaluations until iteration k is

k∑
i=1

m(i) =

k∑
i=1

1

(1− ρ)(2i+2)

=
1

(1− ρ)2

1/(1− ρ)2 − 1/(1− ρ)2k+2

1− 1/(1− ρ)2

≤ 2

(1− ρ)2k+4
≤ 2

(1− ρ)4
exp{−2k log(1− ρ)}

≤ 2

(1− ρ)4
exp{−2 log(1− ρ)− 4

log ε log(1− ρ)

log(1− β)
}

= O((
1

ε
)

4 log(1−ρ)
log(1−β) )

= O((
1

ε
)4η).

7 Proof of Theorem 2

Proof. Since d(k) = p(k) − u(k), similar to the proof of
Theorem 1, we have

〈g(k),d(k)〉2 ≥ Ω2
PσF

4N2
{F (k)(x(k))− F (k)

∗ }

〈g(k),d(k)〉 ≤ 1

2
(F

(k)
∗ − F (k)(x(k))).

The remaining proof for Theorem 1 could also apply here
except that the case D(k) can be either a ‘drop step’ or a
so-called ‘swap step’. A swap step moves the weight of
a active vertex to another active vertex. There are at most
(1 − 1

3|V |!+1 )k drop steps and swap steps after k iteration.
The same argument as in Theorem 1 implies

E{F (x(k+1))− F ∗} ≤ C3(1− φ)k/(3|V |!+1)

for a deterministic constant C3 and 0 < φ < κ ≤ 1/2.

8 More Figures for Million Song Dataset
Experiment

We tested the algorithms on the Million Song Dataset for
different choices of µ and α. The performances of the algo-
rithms follow the same pattern as we described in the paper.
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