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7 Relation to Current Methods

The proposed method can be interpreted as a gen-
eralization of our previous method [1], which is the
first algorithm that uses the sparsest k-subgraph prob-
lem for different-feature selection. Unlike the proposed
method, the previous method has limited applicabil-
ity due to the Gaussian assumption. In the previous
method, we assumed Gaussian distributions on p and
q, and defined the matrix L̂ by L̂dd′ := |CP

dd′ − CQ
dd′ |,

where the matrices CP and CQ are the covariance or
precision matrices of the datasets P and Q, respec-
tively. The method is particularly relevant to the pro-
posed method when covariances are used as matrices
CP and CQ. Indeed, the previous method corresponds
to minimizing the lower bound of (3) in a specific case
described in the next proposition.

Proposition 1 Suppose p and q are Gaussian distri-
butions with the same mean µ ∈ RD: p(x) := N (µ,Σ)
and q(x) := N (µ,Γ). When both Σ and Γ are in-
vertible and have diagonal components equal to one,
|Σdd′ − Γdd′ | is a lower bound of the KL-divergence
KL[p(xd, xd′)||q(xd, xd′)] up to a constant term.

8 Baseline Methods

We present the detail of the baseline methods in Sec-
tion 5.

Notation: µP ,µQ ∈ Rd and ΣP ,ΣQ ∈ RD×D de-
note empirical averages and covariances of datasets
P and Q, respectively. ΛP ,ΛQ ∈ RD×D denote es-
timated precision matrices of datasets P and Q using
the Tikhonov-regularized method, respectively. That
is, we define ΛP := (ΣP + κID)−1 and ΛQ := (ΣQ +

κID)−1 with a regularization parameter κ. The value
of κ is chosen from 11 different parameter candidates
between 10−4 and 101 using 3-fold cross validation.
For a square matrix U ∈ RD×D and a set S ⊆ [D], we
denote the submatrix by US := {Udd′ | d, d′ ∈ S}.

[MT] [2] We adopted the simplified version of MT
for ease of computation. We used combinatorial opti-
mization instead of the F-test in the original MT. The
estimated feature set ŜMT is given by solving the next
problem:

ŜMT = argminS⊆[D]

∣∣D − α− tr
[
ΓScC−1

Sc

]∣∣ ,
subject to |S| = α,

(4)

where Γ := 1
M

∑M
m=1(y

(m) − µP)(y
(m) − µP)

⊤ and

C := Λ−1
P . Because the number α is unknown,

we used the greedy scoring method (Algorithm 1)
to solve the problem (4), where we defined f(S) :=∣∣|Sc| − tr

[
ΓScC−1

Sc

]∣∣.
[Idé’09] [3] In Idé’09, the score of the d-th feature
ŝd is given by

ŝd := max{ŝPQ
d , ŝQP

d },

ŝPQ
d :=w⊤

P (ℓQ − ℓP) +
1

2

{
ℓ⊤QWPℓQ

λQ
− ℓ⊤PWPℓP

λP

}

+
1

2

{
log

λP
λQ

+ σP(λP − λQ)

}
,

where the matrices are partitioned as

ΛP =

[
LP ℓP
ℓ⊤P λP

]
, Λ−1

P =

[
WP wP
w⊤

P σP

]
.

Here, we assume that the rows and columns of ΛP and
Λ−1
P are permuted so that their original d-th rows and
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columns are located at the last rows and columns of
the matrix. The matrices ΛQ and Λ−1

Q are partitioned
in the same manner.

[Hara’15] [1] Hara’15 uses the sparsest k-subgraph
problem (3) similar to the proposed method. The ma-
trix L̂ is given by L̂dd′ := |ΣP,dd′ − ΣQ,dd′ |. We used
the greedy scoring method (Algorithm 1) to solve the
problem.

[SPARDA] [4] The solution of SPARDA β̂ can be
derived by solving the next max-min problem:

max
β∈B

min
U∈M

N∑
n=1

M∑
m=1

(β⊤x(n) − β⊤y(m))2Unm − λ∥β∥1,

where B := {β ∈ RD | ∥β∥ ≤ 1, β1 ≥ 0}
and M = {U ∈ RN×M

+ | ∀m,
∑N

n=1 Unm =

1/M and ∀n,
∑M

m=1 Unm = 1/N}. The minimiza-
tion term corresponds to computing the Wasserstein
distance between the distributions. We implemented
SPARDA using C++ based on the MATLAB code
fastSPARDA.m available on the author’s Website 1.
Because the relax and tighten procedure proposed by
[4] was too slow, we used the projected gradient as-
cent which runs in O(D(N + M) + logN + logM)
per iteration. In our preliminary experiment, we ob-
served that the projected gradient ascent ran more
than ten times faster than the relax and tighten pro-
cedure. Because the projected gradient ascent tends
to be trapped by local optima, we used five random
restarts. We set the parameter candidate for λ as
{0, 10−4, 10−3, 10−2, 10−1} and selected the optimal
one using 5-fold cross validation. After we derived the
solution β̂, we set the score of each feature as ŝd = |β̂d|.

9 Extra Results on UCI Datasets

Table 5, 6, and 7 show the results on the UCI datasets
for all five changes. These results are similar to Co-
variance Change (Table 3), and we can observe three
important results also, as discussed in Section 5.2.

1. The AUROC of the proposed method attained
the best average score among the five methods
or comparable scores with the best result for
many cases. Even in the complex data (Co-
variance Change (Conditional)), the proposed
method marked the top or top-tier AUROCs for
13 cases out of 15 cases.

2. The proposed method was faster than SPARDA.
In particular, the proposed method was from 3 to

1http://www.mit.edu/~jonasm/

more than 70 times faster than the entire runtime
of SPARDA.

3. The proposed method with the greedy scoring
method attained comparable results with the ex-
act solution on the sparsest k-subgraph problem
(3). That is, the greedy scoring method could find
a nearly global optima.

We note that the proposed method with the greedy
scoring method sometimes scored better AUROC than
the exact method. This is because the exact method
score each feature with 0 or 1. In the exact method, if
one feature is misspecified (i.e., scored as 0 instead of
1), that feature is ranked equally with the other fea-
tures with no distribution differences. This induces a
substantial decrease of AUROC because only the order
of the scores is important when computing AUROC.
By contrast, the greedy scoring method is less sensi-
tive to such a misspecification. Some features may be
scored lower than the ideal because of misspecifica-
tion, but the score on such a feature can still remain
a bit high and thus tends to remain in a higher or-
der than the other features with no distribution differ-
ences. Hence, the decrease of AUROC will be limited.

10 Quantum Data: Experimental
Setup

We experimentally obtained density matrices, for
which we use a two photon polarization entangled
state, |ψ(ϕ)⟩ = (|H;H⟩a,b + |V ;V ⟩a,b)/

√
2, where H

and V represent horizontally and vertically polarized
photon respectively, and a and b denote spatial modes.
In this physical experiment, 300 healthy density matri-
ces were derived each of which are 4×4 Hermitian ma-
trices. 50 anomalous matrices were also derived where
the effect of decoherence can be found in their (1, 4)-th
entry which is off diagonal term between |H;H⟩ and
|V ;V ⟩ of the density matrices. We note that the de-
tection of the change in (1, 4)-th entry is equivalent to
the detection of the change in the quantity of entan-
glement with the assumption that local polarization
does not flip between |H⟩ and |V ⟩.

11 Proof of Theorems

11.1 Preliminary

We first give two lemmas we use in the proof of Theo-
rem 2. Here, we define the solution to the problem (3)
under the true KL-divergence matrix as

S0 := argmin
S⊆[D]

∑
d,d′∈Sc

Ldd′ , s.t. |S| = α.
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Table 5: Results with UCI Datasets: Left – average AUROC ± standard deviation on 20 random data realiza-
tions. Proposed (exact) is a referential result with the exact solution of (3) derived using IBM ILOG CPLEX.
The highest AUROC among five methods is shown in bold letters. The best results and other results were
compared using a t-test (5%), and results that were not rejected are also highlighted; Right – average runtime ±
standard deviation of the proposed method and SPARDA with ten-thread parallelization. The smaller runtime
is highlighted.

[Mean Shift]
AUROC Runtime (sec)

c

Proposed

(exact) Proposed MT [2] Idé’09 [3] Hara’15 [1] SPARDA [4] Proposed SPARDA

C
A
S
P .1 .89± .16 .89± .16 .50± .21 .46± .22 .48± .24 .63± .19 0.37± 0.05 13.4± 7.32

.3 .99± .05 .93± .09 .56± .23 .46± .22 .48± .24 .86± .20 0.38± 0.05 5.13± 2.39

.5 1.0± .00 .97± .07 .60± .21 .46± .22 .48± .24 .96± .08 0.34± 0.07 2.31± 0.78

C
B
M

.1 .97± .08 .93± .13 .42± .12 .51± .19 .50± .21 .66± .33 0.40± 0.06 25.8± 11.7

.3 1.0± .00 .93± .12 .52± .06 .51± .19 .50± .21 .93± .19 0.41± 0.06 5.24± 1.87

.5 1.0± .00 .95± .10 .49± .07 .51± .19 .50± .21 1.0± .00 0.42± 0.07 2.03± 0.51

D
ia
g

n
o
si
s .1 .87± .12 .87± .13 .41± .14 .47± .17 .50± .18 .49± .18 1.34± 0.08 29.5± 48.2

.3 .96± .07 .97± .06 .43± .14 .47± .17 .50± .18 .60± .26 1.35± 0.08 28.3± 49.6

.5 .96± .07 .99± .03 .47± .12 .47± .17 .50± .18 .68± .29 1.37± 0.11 26.8± 49.5

M
in
i

B
o
o
N
E .1 .96± .09 .97± .06 .17± .03 .47± .15 .43± .16 .60± .32 1.61± 0.07 127± 57.1

.3 .98± .05 1.0± .00 .17± .08 .47± .15 .43± .16 .73± .32 1.62± 0.10 126± 55.7

.5 1.0± .00 1.0± .00 .25± .13 .47± .15 .43± .16 .74± .36 1.63± 0.11 123± 55.6

S
ta
t

lo
g

.1 1.0± .00 1.0± .00 .28± .09 .51± .15 .52± .17 .66± .27 0.68± 0.07 12.9± 6.03

.3 1.0± .00 1.0± .00 .43± .10 .51± .15 .52± .17 .91± .24 0.67± 0.06 4.62± 1.34

.5 1.0± .00 1.0± .00 .49± .04 .51± .15 .52± .17 1.0± .00 0.67± 0.08 2.02± 0.45

[Variance Change]
AUROC Runtime (sec)

c

Proposed

(exact) Proposed MT [2] Idé’09 [3] Hara’15 [1] SPARDA [4] Proposed SPARDA

C
A
S
P .1 .76± .15 .83± .19 .48± .18 .50± .20 .56± .24 .62± .17 0.38± 0.06 13.9± 7.08

.3 .96± .09 .93± .09 .58± .25 .75± .17 .82± .13 .67± .21 0.35± 0.08 14.4± 8.23

.5 .98± .07 .95± .08 .67± .21 .77± .17 .93± .07 .70± .22 0.37± 0.06 13.5± 6.21

C
B
M

.1 1.0± .00 .97± .06 .37± .11 .88± .07 .85± .07 .30± .15 0.43± 0.06 43.1± 12.9

.3 1.0± .00 .97± .07 .51± .09 .92± .12 .94± .07 .26± .18 0.40± 0.06 36.1± 11.0

.5 1.0± .00 .97± .08 .61± .14 .86± .18 .99± .03 .62± .33 0.41± 0.06 21.4± 7.19

D
ia
g

n
o
si
s .1 .73± .17 .79± .16 .40± .13 .56± .15 .52± .19 .41± .11 1.37± 0.08 27.8± 45.8

.3 .87± .12 .90± .11 .41± .17 .77± .22 .61± .16 .47± .12 1.35± 0.08 29.6± 46.5

.5 .90± .12 .93± .10 .49± .18 .79± .23 .70± .14 .48± .14 1.36± 0.08 31.1± 50.2

M
in
i

B
o
o
N
E .1 .94± .10 .98± .03 .14± .04 .73± .26 .80± .13 .42± .23 1.62± 0.12 128± 70.6

.3 .94± .10 1.0± .00 .17± .20 .84± .32 .86± .16 .34± .23 1.63± 0.11 131± 79.0

.5 .96± .08 1.0± .00 .41± .17 .84± .34 .92± .17 .35± .27 1.61± 0.12 129± 78.5

S
ta
t

lo
g

.1 1.0± .00 1.0± .00 .26± .12 .66± .12 .55± .18 .58± .20 0.71± 0.05 14.9± 6.39

.3 1.0± .00 1.0± .00 .56± .08 1.0± .00 .89± .12 .56± .21 0.70± 0.08 14.0± 5.77

.5 1.0± .00 1.0± .00 .46± .04 1.0± .00 1.0± .00 .63± .24 0.68± 0.07 16.2± 8.04

Lemma 1 S = S0 holds if one of (S1) and (S2) holds
for d ∈ [D].

(Proof of Lemma 1) Let A := Sc \ Sc
0, B := Sc

0 \ Sc,
and C := Sc ∩ Sc

0. When |A| = |B| > 0, we have∑
d,d′∈Sc

0

Ldd′ =
∑

d,d′∈Sc

Ldd′ + 2
∑

d∈C,d′∈B

Ldd′ +
∑

d,d′∈B

Ldd′

− 2
∑

d∈C,d′∈A

Ldd′ −
∑

d,d′∈A

Ldd′

︸ ︷︷ ︸
=0 (∵ ∀d,d′∈Sc, Ldd′=0)

>
∑

d,d′∈Sc

Ldd′ .

In the inequality, we used (S1) and (S2) that Ldd′ > 0
holds when at least one of d and d′ is involved in S.
This result contradicts the definition of S0, and we
thus have S = S0. □

Lemma 2 ([1], Theorem 1) Let η :=
minS′⊆[D],S′ ̸=S

∑
d,d′∈S′c Ldd′ , s.t. |S′| = α. We

have Ŝ = S0 when |||L̂ − L|||∞ < η/((D − α)2 + D2),
where ||| · |||∞ denotes an element-wise infinity norm
|||U |||∞ := maxi,j |Uij |.
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Table 6: Results with UCI Datasets: Left – average AUROC ± standard deviation on 20 random data realiza-
tions. Proposed (exact) is a referential result with the exact solution of (3) derived using IBM ILOG CPLEX.
The highest AUROC among five methods is shown in bold letters. The best results and other results were
compared using a t-test (5%), and results that were not rejected are also highlighted; Right – average runtime ±
standard deviation of the proposed method and SPARDA with ten-thread parallelization. The smaller runtime
is highlighted.

[Covariance Change]
AUROC Runtime (sec)

c

Proposed

(exact) Proposed MT [2] Idé’09 [3] Hara’15 [1] SPARDA [4] Proposed SPARDA

C
A
S
P .1 .80± .19 .79± .15 .49± .22 .68± .12 .62± .23 .63± .18 0.35± 0.07 13.6± 7.73

.3 .92± .11 .93± .07 .61± .20 .86± .10 .84± .14 .75± .18 0.37± 0.07 8.51± 4.93

.5 .98± .07 .98± .03 .66± .18 .90± .06 .92± .11 .77± .19 0.36± 0.08 4.98± 3.77

C
B
M

.1 .84± .13 .87± .12 .43± .18 .70± .12 .69± .14 .48± .11 0.38± 0.07 36.2± 11.2

.3 .95± .09 .96± .07 .41± .15 .81± .15 .82± .11 .62± .15 0.41± 0.06 19.3± 9.74

.5 .96± .09 .98± .04 .45± .18 .82± .14 .84± .11 .70± .13 0.41± 0.04 12.7± 10.5

D
ia
g

n
o
si
s .1 .80± .14 .82± .15 .55± .15 .71± .16 .58± .19 .41± .14 1.32± 0.06 36.7± 68.8

.3 .90± .09 .94± .06 .45± .16 .82± .13 .79± .13 .47± .14 1.35± 0.08 31.1± 54.5

.5 .95± .08 .97± .04 .50± .11 .87± .11 .87± .12 .62± .24 1.33± 0.07 24.3± 40.2

M
in
i

B
o
o
N
E .1 .64± .13 .73± .16 .48± .15 .53± .13 .49± .13 .51± .18 1.61± 0.10 133± 58.6

.3 .74± .14 .94± .05 .45± .13 .60± .16 .54± .13 .55± .19 1.64± 0.12 153± 58.8

.5 .88± .12 .98± .02 .44± .13 .65± .19 .58± .15 .56± .20 1.68± 0.10 138± 57.0

S
ta
t

lo
g

.1 .95± .08 .94± .12 .66± .17 .96± .06 .70± .19 .56± .27 0.71± 0.08 13.4± 5.39

.3 1.0± .00 1.0± .00 .42± .18 1.0± .00 .95± .07 .67± .26 0.67± 0.06 10.4± 4.32

.5 .98± .05 .98± .07 .27± .09 1.0± .00 .99± .03 .82± .21 0.68± 0.07 6.60± 5.07

[Covariance Change (Conditional)]
AUROC Runtime (sec)

c

Proposed

(exact) Proposed MT [2] Idé’09 [3] Hara’15 [1] SPARDA [4] Proposed SPARDA

C
A
S
P .1 .61± .17 .66± .22 .50± .25 .53± .20 .53± .24 .63± .15 0.34± 0.08 14.3± 8.52

.3 .71± .14 .79± .18 .50± .24 .65± .16 .63± .22 .67± .19 0.36± 0.06 10.5± 5.25

.5 .86± .14 .89± .10 .50± .20 .69± .13 .69± .22 .63± .16 0.34± 0.05 7.72± 5.35

C
B
M

.1 .63± .17 .68± .18 .46± .17 .59± .13 .57± .19 .51± .09 0.39± 0.07 40.5± 13.2

.3 .78± .15 .86± .14 .40± .17 .69± .14 .66± .16 .55± .14 0.41± 0.06 32.3± 9.06

.5 .86± .12 .94± .06 .39± .16 .74± .13 .73± .15 .57± .17 0.41± 0.06 23.9± 10.5

D
ia
g

n
o
si
s .1 .58± .12 .66± .19 .54± .13 .58± .13 .55± .19 .42± .14 1.32± 0.06 30.9± 48.1

.3 .67± .15 .78± .15 .46± .16 .75± .20 .68± .17 .47± .15 1.35± 0.07 26.6± 40.4

.5 .74± .15 .86± .10 .42± .15 .79± .19 .77± .14 .50± .17 1.39± 0.08 25.2± 42.3

M
in
i

B
o
o
N
E .1 .54± .09 .65± .17 .49± .14 .51± .13 .48± .13 .53± .17 1.64± 0.09 128± 60.3

.3 .61± .11 .72± .16 .46± .13 .53± .15 .53± .13 .51± .15 1.62± 0.08 150± 60.4

.5 .63± .10 .79± .13 .43± .12 .57± .18 .55± .13 .48± .16 1.62± 0.10 148± 52.1

S
ta
t

lo
g

.1 .55± .12 .31± .27 .51± .17 .67± .19 .52± .21 .58± .23 0.68± 0.06 14.3± 6.02

.3 .67± .19 .66± .28 .43± .17 .87± .12 .68± .17 .62± .22 0.66± 0.08 12.8± 5.80

.5 .87± .14 .89± .17 .40± .15 .93± .10 .76± .16 .64± .23 0.66± 0.09 9.56± 6.03

11.2 Proofs

Proof of Theorem 1: Suppose there exists δ ∈ S
such that (N1′) and (N2′) holds:

(N1′) Lδδ = 0,

(N2′) ∀d ∈ [D] \ {δ}, Lδd = 0.

Then, for any δ′ ∈ Sc,

0 =
∑

d,d′∈Sc

Ldd′

=
∑

d,d′∈(Sc∪{δ})\{δ′}

Ldd′ + 2
∑

d∈Sc\{δ′}

Lδ′d + Lδ′δ′︸ ︷︷ ︸
=0 (∵ ∀d,d′∈Sc, Ldd′=0)

− 2
∑

d∈Sc\{δ′}

Lδd − Lδδ︸ ︷︷ ︸
=0 (∵N1′,N2′)

=
∑

d,d′∈(Sc∪{δ})\{δ′}

Ldd′
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Table 7: Results with UCI Datasets: Left – average AUROC ± standard deviation on 20 random data realiza-
tions. Proposed (exact) is a referential result with the exact solution of (3) derived using IBM ILOG CPLEX.
The highest AUROC among five methods is shown in bold letters. The best results and other results were
compared using a t-test (5%), and results that were not rejected are also highlighted; Right – average runtime ±
standard deviation of the proposed method and SPARDA with ten-thread parallelization. The smaller runtime
is highlighted.

[Covariance Change (No Variance Change)]
AUROC Runtime (sec)

c

Proposed

(exact) Proposed MT [2] Idé’09 [3] Hara’15 [1] SPARDA [4] Proposed SPARDA

C
A
S
P .1 .71± .19 .76± .22 .51± .21 .68± .12 .62± .23 .59± .17 0.35± 0.08 13.4± 7.79

.3 .90± .12 .92± .09 .62± .19 .86± .10 .84± .14 .69± .17 0.36± 0.06 11.3± 6.10

.5 .98± .07 .96± .05 .68± .20 .90± .06 .92± .11 .72± .14 0.36± 0.06 4.71± 3.45

C
B
M

.1 .83± .13 .87± .13 .54± .14 .70± .12 .69± .14 .51± .15 0.41± 0.07 41.3± 13.7

.3 .96± .09 .97± .06 .57± .16 .81± .15 .82± .11 .58± .14 0.40± 0.05 20.3± 9.74

.5 .96± .09 .98± .05 .54± .17 .82± .14 .84± .11 .73± .12 0.41± 0.07 12.0± 10.0

D
ia
g

n
o
si
s .1 .72± .16 .75± .19 .43± .11 .71± .16 .58± .19 .43± .13 1.33± 0.07 32.7± 60.6

.3 .82± .13 .85± .14 .39± .14 .82± .13 .79± .13 .47± .16 1.33± 0.07 29.0± 42.7

.5 .88± .13 .91± .12 .49± .18 .87± .11 .87± .12 .61± .18 1.37± 0.08 29.1± 49.8

M
in
i

B
o
o
N
E .1 .63± .14 .72± .17 .48± .15 .53± .13 .49± .13 .52± .17 1.59± 0.11 134± 60.2

.3 .73± .14 .93± .06 .45± .14 .60± .16 .54± .13 .53± .20 1.62± 0.09 147± 56.6

.5 .88± .13 .98± .03 .44± .14 .65± .19 .58± .15 .56± .19 1.60± 0.10 137± 50.8

S
ta
t

lo
g

.1 .92± .11 .92± .16 .52± .22 .96± .06 .70± .19 .58± .22 0.69± 0.06 13.8± 5.90

.3 1.0± .00 1.0± .00 .48± .18 1.0± .00 .95± .07 .66± .26 0.69± 0.07 11.4± 4.81

.5 1.0± .00 1.0± .00 .41± .17 1.0± .00 .99± .03 .82± .19 0.66± 0.07 5.98± 5.58

holds. This shows that both S and (S ∪ {δ}) \ {δ′}
can be the optimal solutions, which contradicts the
consistency of Ŝ. □

Proof of Theorem 2: Let η be a parameter defined
in Lemma 2. From Theorem 2 of Wang et al. [5],

for any ζ > 0 there exists Qζ
dd′ > 0 such that for all

N,M > Qζ
dd′ ,

P

(
|L̂dd′ − Ldd′ | ≥ η

(D − α)2 +D2

)
<

ζ

D2
,

holds. Hence, we have

P (S = Ŝ) = P (S0 = Ŝ)

≥ P

(
|||L̂− L|||∞ <

η

(D − α)2 +D2

)
≥ 1−

∑
d,d′

P

(
|L̂dd′ − Ldd′ | ≥ η

(D − α)2 +D2

)
≥ 1− ζ,

for all N,M > Qζ := maxd,d′ Qζ
dd′ , where we used

Lemma 1 for the equality in the first line and Lemma 2
for the inequality in the second line. □

Proof of Theorem 3: Let p(x) := N (µ,Σ) and
q(x) := N (ν,Γ). Suppose there exists δ ∈ S such
that both (N1’) and (N2’) hold. Condition (N1′) is
equivalent to p(xδ) = q(xδ) which implies

µδ = νδ, Σδδ = Γδδ.

Similarly, Condition (N2′) is equivalent to p(xδ, xd) =
q(xδ, xd) for any d ∈ [D] \ {δ} which implies

Σδd = Γδd.

From these results, we have

p(x(S\{δ})c) = q(x(S\{δ})c),

which contradicts with Condition (2). Hence, there
exists no δ ∈ S that satisfies Conditions (N1’) and
(N2’). □

Proof of Proposition 1: For the bivariate KL-
divergence, when the specified condition

KL[p(xd, xd′)||q(xd, xd′)]

=
1

2

{
2− 2Σdd′Γdd′

1− Γ2
dd′

− log
1− Σ2

dd′

1− Γ2
dd′

− 2

}
=

1

2

{
(Σdd′ − Γdd′)2

1− Γ2
dd′

+
1− Σ2

dd′

1− Γ2
dd′

− log
1− Σ2

dd′

1− Γ2
dd′

− 1

}
≥ 1

2

(Σdd′ − Γdd′)2

1− Γ2
dd′

≥ 1

2
|Σdd′ − Γdd′ | − 1

8
,

holds, where we used the assumption that Σ and Γ are
invertible which implies Σ2

dd′ ,Γ2
dd′ < 1, and t−log t ≥ 1

for t > 0. □
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