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Abstract

Markov chains and diffusion processes are
indispensable tools in machine learning and
statistics that are used for inference, sam-
pling, and modeling. With the growth of
large-scale datasets, the computational cost
associated with simulating these stochastic
processes can be considerable, and many al-
gorithms have been proposed to approxi-
mate the underlying Markov chain or dif-
fusion. A fundamental question is how the
computational savings trade off against the
statistical error incurred due to approxima-
tions. This paper develops general results
that address this question. We bound the
Wasserstein distance between the equilibrium
distributions of two diffusions as a func-
tion of their mixing rates and the devia-
tion in their drifts. We show that this er-
ror bound is tight in simple Gaussian set-
tings. Our general result on continuous dif-
fusions can be discretized to provide insights
into the computational–statistical trade-off of
Markov chains. As an illustration, we apply
our framework to derive finite-sample error
bounds of approximate unadjusted Langevin
dynamics. We characterize computation-
constrained settings where, by using fast-
to-compute approximate gradients in the
Langevin dynamics, we obtain more accurate
samples compared to using the exact gradi-
ents. Finally, as an additional application of
our approach, we quantify the accuracy of ap-
proximate zig-zag sampling. Our theoretical
analyses are supported by simulation experi-
ments.
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1 Introduction

Markov chains and their continuous-time counterpart,
diffusion processes, are ubiquitous in machine learn-
ing and statistics, forming a core component of the
inference and modeling toolkit. Since faster conver-
gence enables more efficient sampling and inference,
a large and fruitful literature has investigated how
quickly these stochastic processes converge to equi-
librium. However, the tremendous growth of large-
scale machine learning datasets – in areas such as so-
cial network analysis, vision, natural language process-
ing and bioinformatics – have created new inferential
challenges. The large-data setting highlights the need
for stochastic processes that are not only accurate (as
measured by fast convergence to the target distribu-
tion), but also computationally efficient to simulate.
These computational considerations have led to sub-
stantial research efforts into approximating the under-
lying stochastic processes with new processes that are
more computationally efficient [5, 21, 40].

As an example, consider using Markov chain Monte
Carlo (MCMC) to sample from a posterior distribu-
tion. In standard algorithms, each step of the Markov
chain involves calculating a statistic that depends on
all of the observed data (e.g. a likelihood ratio to set
the rejection rate in Metropolis-Hastings or a gradi-
ent of the log-likelihood as in Langevin dynamics).
As data sets grow larger, such calculations increas-
ingly become the computational bottleneck. The need
for more scalable sampling algorithms has led to the
development of Markov chains which only approxi-
mate the desired statistics at each step – for exam-
ple, by approximating the gradient or sub-sampling
the data – and hence are computationally more effi-
cient [4, 5, 13, 21, 26, 27, 33, 40]. The trade-off is that
the approximate chain often does not converge to the
desired equilibrium distribution, which, in many appli-
cations, could be the posterior distribution of some la-
tent parameters given all of the observed data. There-
fore, a central question of both theoretical and prac-
tical importance is how to quantify the deviation be-
tween the equilibrium distribution that the approxi-
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mate chain converges to and the desired distribution
targeted by the original chain. Moreover, we would
like to understand, given a fixed computational bud-
get, how to design approximate chains that generate
the most accurate samples.

Our contributions. In this paper, we develop gen-
eral results to quantify the accuracy of approximate
diffusions and Markov chains and apply these results to
characterize the computational–statistical trade-off in
specific algorithms. Our starting point is continuous-
time diffusion processes because these are the ob-
jects which are discretized to construct many sampling
algorithms, such as the unadjusted and Metropolis-
adjusted Langevin algorithms [34] and Hamiltonian
Monte Carlo [31]. Given two diffusion processes, we
bound the deviation in their equilibrium distributions
in terms of the deviation in their drifts and the rate at
which the diffusion mixes (Theorem 3.1). Moreover,
we show that this bound is tight for certain Gaus-
sian target distributions. These characterizations of
diffusions are novel and are likely of more general in-
terest beyond the inferential settings we consider. We
apply our general results to derive a finite-sample er-
ror bound on a specific unadjusted Langevin dynamics
algorithm (Theorem 5.1). Under computational con-
straint, the relevant trade-off here is between comput-
ing the exact log-likelihood gradient for few iterations
or computing an approximate gradient for more iter-
ations. We characterize settings where the approxi-
mate Langevin dynamics produce more accurate sam-
ples from the true posterior. We illustrate our anal-
yses with simulation results. In addition, we apply
our approach to quantify the accuracy of approxima-
tions to the zig-zag process, a recently-developed non-
reversible sampling scheme.

Paper outline. We introduce the basics of diffusion
processes and other preliminaries in Section 2. Sec-
tion 3 discusses the main results on bounding the error
between an exact and perturbed diffusion. We describe
the main ideas behind our analyses in Section 4; all
the detailed proofs are deferred to the Supplementary
Material. Section 5 applies the main results to derive
finite sample error bounds for unadjusted Langevin
dynamics and illustrates the computational–statistical
trade-off. Section 6 extends our main results to quan-
tify the accuracy of approximate piecewise determin-
istic Markov processes, including the zig-zag process.
Numerical experiments to complement the theory are
provided in Section 7. We conclude with a discussion
of how our results connect to the relevant literature
and suggest directions for further research.

2 Diffusions and preliminaries

Let X = Rd be the parameter space and let π be a
probability density over Rd (e.g. it can be the posterior
distribution of some latent parameters given data). A
Langevin diffusion is characterized by the stochastic
differential equation

dXt = ∇ log π(Xt) dt+
√

2 dWt,

where Xt ∈ Rd and Wt is a standard Brownian mo-
tion. The intuition is that Xt undergoes a biased ran-
dom walk in which it is more likely to move in di-
rections that increase the density. Under appropriate
regularity conditions, as t → ∞, the distribution of
Xt converges to π. Thus, simulating the Langevin dif-
fusion provides a powerful framework to sample from
the target π. To implement such a simulation, we need
to discretize the continuous diffusion into finite-width
time steps. For our main results, we focus on analyzing
properties of the underlying diffusion processes. This
allows us to obtain general results which are indepen-
dent of any particular discretization scheme.

Beyond Langevin dynamics, more general diffusions
can take the form

dXt = b(Xt) dt+
√

2 dWt, (2.1)

where b : Rd → Rd is the drift and is not necessarily
the gradient of some log-density.1 Furthermore, we can
analyze other continuous-time Markov processes such
as piecewise deterministic Markov processes (PDMPs).
For example, Hamiltonian Monte Carlo [31] can be
viewed as approximating a PDMP and the zig-zag pro-
cess is a recently-developed non-reversible PDMP de-
signed for large Bayesian inference (see Section 6).

In many large-data settings, computing the drift b(Xt)
in Eq. (2.1) can be expensive; for example, computing
b(Xt) = ∇ log π(Xt) requires using all of the data and
may involve evaluating a complex function such as a
differential equation solver. Many recent algorithms
have been proposed where we replace b with an ap-
proximation b̃. Such an approximation changes the
underlying diffusion process to

dX̃t = b̃(X̃t) dt+
√

2 dW̃t, (2.2)

where W̃t is a standard Brownian motion. In order
to understand the quality of different approximations,
we need to quantify how the equilibrium distribution

1All of our results can be extended to more general diffu-
sions on a domain X ⊆ Rd, dXt = b(Xt)+Σ dWt−ntL(dt),
where Σ is the covariance of the Brownian motion, and ntL
captures the reflection forces at the boundary ∂X . To keep
the exposition simple, we focus on the simpler diffusion in
the main text.
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of Eq. (2.1) differs from the equilibrium distribution
of Eq. (2.2). We use the standard Wasserstein metric
to measure this distance.

Definition. The Wasserstein distance between distri-
butions π and π̃ is

dW(π, π̃) = sup
φ∈CL(Rd)

|Eπ[φ]− Eπ̃[φ]|,

where CL(Rd) is the set of continuous functions φ :
Rd → R with Lipschitz constant ‖φ‖L ≤ 1.2

The distance between π and π̃ should depend on how
good the drift approximation is, which can be quanti-
fied by ‖b− b̃‖2.3 It is also natural for the distance to
depend on how quickly the original diffusion with drift
b mixes, since the faster it mixes, the less time there is
for the error to accumulate. Geometric contractivity
is a useful property which quantifies fast-mixing dif-
fusions. For each x ∈ Rd, let µx,t denote the law of
Xt |X0 = x.

Assumption 2.A (Geometric contractivity).
There exist constants C > 0 and 0 < ρ < 1 such that
for all x, x′ ∈ Rd,

dW(µx,t, µx′,t) ≤ C‖x− x′‖2ρt.

Geometric contractivity holds in many natural set-
tings. Recall that a twice continuously-differentiable
function φ is k-strongly concave if for all x, x′ ∈ Rd

(∇φ(x)−∇φ(x′)) · (x− x′) ≤ −k‖x− x′‖22. (2.3)

When b = ∇ log π and log π is k-strongly concave,
the diffusion is exponentially ergodic with C = 1 and
ρ = e−k (this can be shown using standard coupling
arguments [10]). In fact, exponential contractivity also
follows if Eq. (2.3) is satisfied when x and x′ are far
apart and log π has “bounded convexity” when x and
x′ are close together [18]. Alternatively, Hairer et al.
[23] provides a Lyapunov function-based approach to
proving exponential contractivity.

To ensure that the diffusion and the approximate dif-
fusion are well-behaved, we impose some standard reg-
ularity properties.

Assumption 2.B (Regularity conditions). Let π
and π̃ denote the stationary distributions of the diffu-
sions in Eq. (2.1) and Eq. (2.2), respectively.

1. The target density satisfies π ∈ C2(Rd,R) and∫
x2π(dx) < ∞. The drift satisfies b ∈

C1(Rd,Rd) and ‖b‖L <∞.

2Recall that the Lipschitz constant of function φ : Rd →
R is ‖φ‖L , supx,y∈Rd

‖φ(x)−φ(y)‖2
‖x−y‖2

.
3For a function φ : Rn → Rm, define ‖φ‖2 ,

supx∈Rn ‖φ(x)‖2.

2. The approximate drift satisfies b̃ ∈ C1(Rd,Rd)
and ‖b̃‖L <∞.

3. If a function φ ∈ C(Rd,R) is π-integrable then it
is π̃-integrable.

Here Ck(Rm,Rn) denotes the set of k-times contin-
uously differentiable functions from Rm to Rn and
C(Rm,Rn) is the set of all Lebesgue-measurable func-
tion from Rm to Rn. The only notable regularity con-
dition is (3). In the Supplementary Material, we dis-
cuss how to verify it and why it can safely be treated
as a mild technical condition.

3 Main results

We can now state our main result, which quantifies the
deviation in the equilibrium distributions of the two
diffusions in terms of the mixing rate and the difference
between the diffusions’ drifts.

Theorem 3.1 (Error induced by approximate drift).
Let π and π̃ denote the invariant distributions of the
diffusions in Eq. (2.1) and Eq. (2.2), respectively. If
the diffusion Eq. (2.1) is exponentially ergodic with pa-
rameters C and ρ, the regularity conditions of Assump-
tion 2.B hold, and ‖b− b̃‖2 ≤ ε, then

dW(π, π̃) ≤ Cε

log(1/ρ)
. (3.1)

Remark 3.2 (Coherency of the error bound). To check
that the error bound of Eq. (3.1) has coherent de-
pendence on its parameters, consider the following
thought experiment. Suppose we change the time scale
of the diffusion from t to s = at for some a > 0. We are
simply speeding up or slowing down the diffusion pro-
cess depending on whether a > 1 or a < 1. Changing
the time scale does not affect the equilibrium distri-
bution and hence dW(π, π̃) remains unchanged. After
time s has passed, the exponential contraction is ρat

and hence the effective contraction constant is ρa in-
stead of ρ. Moreover, the drift at each location is also
scaled by a and hence the drift error is εa. The scaling
a thus cancels out in the error bound, which is desir-
able since the error should be independent of how we
set the time scale. �
Remark 3.3 (Tightness of the error bound). We can
choose b and b̃ such that the bound in Eq. (3.1) is
an equality, thus showing that, under the assump-
tions considered, Theorem 3.1 cannot be improved.
Let π(x) = N(x;µ, σ2I) be the Gaussian density with
mean µ ∈ Rd and covariance matrix σ2I and let π̃(x) =
N(x; µ̃, σ2I). The Wasserstein distance between two
Gaussians with the same covariance is the distance
between their means, so dW(π, π̃) = ‖µ − µ̃‖2. Con-
sider the corresponding diffusions where b = ∇ log π
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and b̃ = ∇ log π̃. We have that for any x ∈ Rd,
‖b(x) − b̃(x)‖2 = σ−2‖µ − µ̃‖2 =: ε. Furthermore,
the Hessian is H[log π] = −σ−2I, which implies that
b is σ−2-strongly concave. Therefore, per the discus-
sion in Section 2, exponential contractivity holds with
C = 1 and ρ = e−σ

−2

. We thus conclude that

Cε

log(1/ρ)
=
σ−2‖µ− µ̃‖2

σ−2
= ‖µ− µ̃‖2 = dW(π, π̃).

and hence the bound of Theorem 3.1 is tight in this
setting. �

Theorem 3.1 assumes that the approximate drift is a
deterministic function and that the error in the drift
is uniformly bounded. We can generalize the results of
Theorem 3.1 to allow for the approximate diffusion to
use stochastic drift with non-uniform drift error. We
will see that only the expected magnitude of the drift
bias affects the final error bound. Let b̃(X̃t, Ỹt) denote
the approximate drift, which is now a function of both
the current location X̃t and an independent diffusion
Ỹt ∈ R`:

dX̃t = (b̃(X̃t, Ỹt)) dt+
√

2 dW̃X
t (3.2)

dỸt = baux(Ỹt) dt+ Σ dW̃Y
t ,

where Σ is an `× ` matrix and the notation W̃X
t and

W̃Y
t highlights that the Brownian motions in X̃t and

Ỹt are independent. Let π̃Z denote the stationary dis-
tribution of Z̃t , (X̃t, Ỹt). For measure µ and function
f , we write µ(f) ,

∫
f(x)µ(dx) to reduce clutter. We

can now state a generalization of Theorem 3.1.

Theorem 3.4 (Error induced by stochastic approxi-
mate drift). Let π and π̃ denote the invariant distribu-
tions of the diffusions in Eqs. (2.1) and (3.2), respec-
tively. Assume that there exists a measurable function
ε ∈ C(Rd,R+) such that for (X̃, Ỹ ) ∼ π̃Z and for all
x ∈ Rd,

‖b(x)− E[b̃(X̃, Ỹ ) | X̃ = x]‖2 ≤ ε(x).

If the diffusion Eq. (2.1) is exponentially ergodic and
the regularity conditions of Assumption 2.B hold, then

dW(π, π̃) ≤ C π̃(ε)

log(1/ρ)
.

Whereas the bound of Theorem 3.1 is proportional to
the deterministic drift error ε, the bound for the diffu-
sion with a stochastic approximate drift is proportional
to the expected drift error bound π̃(ε). The bound of
Theorem 3.4 thus takes into account how the drift er-
ror varies with the location of the drift. Our results
match the asymptotic behavior for stochastic gradient
Langevin dynamics documented in Teh et al. [38]: in
the limit of the step size going to zero, they show that
the stochastic gradient has no effect on the equilibrium
distribution.

Example. Suppose Ỹt is an Ornstein–Uhlenbeck pro-
cess with ` = d, the dimensionality of X̃t. That
is, for some α, v > 0, dỸt = −αỸtdt +

√
2v dW̃Y

t .
Then the equilibrium distribution of Ỹt is that of a
Gaussian with covariance σ2I, where σ2 , v/α. Let
b̃(x, y) = b(x) + y, so E[b̃(X̃, Ỹ ) | X̃ = x] = b(x) and
hence dW(π, π̃) = 0. �

While exponential contractivity is natural and applies
in many settings, it is useful to have bounds on the
Wasserstein distance of approximations when the dif-
fusion process mixes more slowly. We can prove the
analogous guarantee of Theorem 3.1 when a weaker,
polynomial contractivity condition is satisfied.

Assumption 3.C (Polynomial contractivity).
There exist constants C > 0, α > 1, and β > 0 such
that for all x, x′ ∈ Rd,

dW(µx,t, µx′,t) ≤ C‖x− y‖2(t+ β)−α.

The parameters α and β determines how quickly the
diffusion converges to equilibrium. Polynomial con-
tractivity can be certified using, for example, the tech-
niques from Butkovsky [12] (see also the references
therein).

Theorem 3.5 (Error induced by approximate drift,
polynomial contractivity). Let π and π̃ denote the in-
variant distributions of the diffusions in Eq. (2.1) and
Eq. (2.2), respectively. If the diffusion Eq. (2.1) is
polynomially ergodic with parameters C, α, and β,
the regularity conditions of Assumption 2.B hold, and
‖b− b̃‖2 ≤ ε, then

dW(π, π̃) ≤ Cε

(α− 1)βα−1
. (3.3)

Remark 3.6 (Coherency of the error bound). The error
bound of Eq. (3.3) has a coherent dependence on its
parameters, just like Eq. (3.1). If we change the time
scale of the diffusion from t to s = at for some a >
0, the polynomial contractivity constants C,α, and β
become, respectively, C/aα, α, and β/a. Making these
substitutions and replacing ε by εa, one can check that
the scaling a cancels out in the error bound, so the
error is independent of how we set the time scale. �

4 Overview of analysis techniques

We use Stein’s method [3, 35, 37] to bound the Wasser-
stein distance between π and π̃ as a function of a bound
on ‖b− b̃‖2 and the mixing time of π. We describe the
analysis ideas for the setting when ‖b− b̃‖2 < ε (The-
orem 3.1); the analysis with stochastic drift (Theo-
rem 3.4) or assuming polynomial contractivity (Theo-
rem 3.5) is similar. All of the details are in the Sup-
plementary Material.
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For a diffusion (Xt)t≥0 with drift b, the corresponding
infinitesimal generator satisfies

Abφ(x) = b(x) · ∇φ(x) + ∆φ(x)

for any function φ that is twice continuously differen-
tiable and vanishing at infinity. See, e.g., Ethier and
Kurtz [19] for an introduction to infinitesimal gener-
ators. Under quite general conditions, the invariant
measure π and the generator Ab satisfy

π(Abφ) = 0.

For any measure ν on Rd and set of test functions
F ⊆ C2(Rd,R), we can define the Stein discrepancy
as:

S(ν,Ab,F) , sup
φ∈F
|π(Abφ)− ν(Abφ)| = sup

φ∈F
|ν(Abφ)|.

The Stein discrepancy quantifies the difference be-
tween ν and π in terms of the maximum difference
in the expected value of a function (belonging to the
transformed test class {Abφ |φ ∈ F}) under these two
distributions. We can analyze the Stein discrepancy
between π and π̃ as follows. Consider a test set F
such that ‖∇φ‖2 ≤ 1 for all φ ∈ F , which is equivalent
to having ‖φ‖L ≤ 1. We have that

S(π̃,Ab,F) = sup
φ∈F
|π̃(Abφ)| = sup

φ∈F
|π̃(Abφ−Ab̃φ)|

= sup
φ∈F
|π̃(∇φ · b−∇φ · b̃)|

≤ sup
φ∈F
|π̃(‖∇φ‖2‖b− b̃‖2)| ≤ ε,

where we have used the definition of Stein discrep-
ancy, that π̃(Ab̃φ) = 0, the definition of the genera-
tor, the Cauchy-Schwartz inequality, that ‖∇φ‖2 ≤ 1,
and the assumption ‖b − b̃‖2 ≤ ε. It remains to show
that the Wasserstein distance satisfies dW(π, π̃) ≤
CπS(π̃,Ab,F) for some constant Cπ that may depend
on π. This would then allow us to conclude that
dW(π, π̃) ≤ Cπε. To obtain Cπ, for each 1-Lipschitz
function h, we construct the solution uh to the differ-
ential equation

h− π(h) = Agu (4.1)

and show that ‖∇uh‖2 ≤ Cπ‖∇h‖2. 4.1

5 Application:
computational–statistical trade-offs

As an application of our results we analyze the behav-
ior of the unadjusted Langevin Monte Carlo algorithm
(ULA) [34] when approximate gradients of the log-
likelihood are used. ULA uses a discretization of the

continuous-time Langevin diffusion to approximately
sample from the invariant distribution of the diffusion.
We prove conditions under which we can obtain more
accurate samples by using an approximate drift de-
rived from a Taylor expansion of the exact drift.

For the diffusion (Xt)t≥0 driven by drift b as defined
in Eq. (2.1) and a non-increasing sequence of step sizes
(γi)i≥1, the associated ULA Markov chain is

X ′i+1 = X ′i + γi+1 b(X
′
i) +

√
2γi+1 ξi+1, (5.1)

where ξi+1
i.i.d.∼ N(0, 1). Recently, substantial progress

has been made in understanding the approximation
accuracy of ULA [11, 15, 17]. These analyses show,
as a function of the discretization step size γi, how
quickly the distribution of X ′i converges to the desired
target distribution.

In many big data settings, however, computing b(X ′i)
exactly at every step is computationally expensive.
Given a fixed computational budget, one option is to
compute b(X ′i) precisely and run the discretized dif-
fusion for a small number of steps to generate sam-
ples. Alternatively, we could replace b(X ′i) with an
approximate drift b̃(X ′i) which is cheaper to compute
and run the discretized approximate diffusion for a
larger number of steps to generate samples. While
approximating the drift can introduce error, running
for more steps can compensate by sampling from a
better mixed chain. Thus, our objective is to compare
the ULA chain using an exact drift initialized at some
point x? ∈ Rd to a ULA chain using an approximate
drift initialized at the same point. We denote the ex-
act and approximate drift chains by X ′x?,i and X̃ ′x?,i,
respectively, and denote laws of these chains by µ?i and
µ̃?i .

For concreteness, we analyze generalized linear models
with unnormalized log-densities of the form

L(x) , log π0(x) +

N∑
i=1

φi(x · yi),

where y1, . . . , yN ∈ Rd is the data and x is the parame-
ter. In this setting the drift is b(x) = ∇L(x). We take
x? = arg maxx L(x) and approximate the drift with a
Taylor expansion around x?:

b̃(x) , (H log π0)(x?)(x− x?)

+

N∑
i=1

φ′′i (x? · yi)yiy>i (x− x?),
(5.2)

where H is the Hessian operator. The quadratic ap-
proximation of Eq. (5.2) basically corresponds to tak-
ing a Laplace approximation of the log-likelihood. In
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practice, higher-order Taylor truncation or other ap-
proximations can be used, and our analysis can be ex-
tended to quantify the trade-offs in those cases as well.
Here we focus on the second-order approximation as
a simple illustration of the computational–statistical
trade-off.

In order for the Taylor approximation to be well-
behaved, we require the prior π0 and link functions
φi to satisfying some regularity conditions, which are
usually easy to check in practice.

Assumption 5.D (Concavity and Smoothness).

1. The function log π0 ∈ C3(Rd,R) is strongly con-
cave, ‖∇ log π0‖L <∞, and ‖H[∂j log π0]‖∗ <∞
for j = 1, . . . , d.

2. For i = 1, . . . , N , the function φi ∈ C3(R,R) is
strongly concave, ‖φ′i‖L <∞, and ‖φ′′′i ‖∞ <∞.

We measure computational cost by the number of d-
dimensional inner products performed. Running ULA
with the original drift b for T steps costs TN because
each step needs to compute x · yi for each of the N
yi’s. Running ULA with the Taylor approximation
b̃, we need to compute

∑N
i=1 φ

′′
i (x? · yi)yiy>i once up

front, which costs Nd, and then for each step we just
multiply this d-by-d matrix with x − x?, which costs
d. So the total cost of running approximate ULA for
T̃ steps is (T̃ +N)d.

Theorem 5.1 (Computational–statistical trade-off
for ULA). Set the step size γi = γ1i

−α for fixed
α ∈ (0, 1) and suppose the ULA of Eq. (5.1) is run for
T > d steps. If Assumption 5.D holds and T̃ is chosen
such that the computational cost of the second-order
approximate ULA using drift Eq. (5.2) equals that of
the exact ULA, then γ1 may be chosen such that

d2W(µ?T , π) = Õ

(
d

TN

)
and

d2W(µ̃?
T̃
, π) = Õ

(
d2

N2T
+

d3

N2

)
.

The ULA procedure of Eq. (5.1) has Wasserstein er-
ror decreasing like 1/N for data size N . Because ap-
proximate ULA can be run for more steps at the same
computational cost, its error decreases as 1/N2. Thus,
for large N and fixed T and d, approximate ULA with
drift b̃ achieves more accurate sampling than ULA with
b. A conceptual benefit of our results is that we can
cleanly decompose the final error into the discretiza-
tion error and the equilibrium bias due to approximate
drift. Our theorems in Section 3 quantifies the equi-
librium bias, and we can apply existing techniques to
bound the discretization error.

6 Extension: piecewise deterministic
Markov processes

We next demonstrate the generality of our techniques
by providing a perturbation analysis of piecewise de-
terministic Markov processes (PDMPs), which are
continuous-time processes that are deterministic ex-
cept at random jump times. Originating with the work
of Davis [16], there is now a rich literature on the er-
godic and convergence properties of PDMPs [2, 6, 14,
20, 29]. They have been used to model a range of
phenomena including communication networks, neu-
ronal activity, and biologic population models (see [2]
and references therein). Recently, PDMPs have also
been used to design novel MCMC inference schemes.
zig-zag processes (ZZPs) [7–9] are a class of PDMPs
that are particularly promising for inference. ZZPs
can be simulated exactly (making Metropolis-Hastings
corrections unnecessary) and are non-reversible, which
can potentially lead to more efficient sampling [28, 30].

Our techniques can be readily applied to analyze the
accuracy of approximate PDMPs. For concreteness we
demonstrate the results for ZZPs in detail and defer
the general treatment of PDMPs, which includes an
idealized version of Hamiltonian Monte Carlo, to the
Supplementary Material. The ZZP is defined on the
space E = Rd × B, where B , {−1,+1}d. Densities
on B are with respect to the counting measure.

Informally, the behavior of a ZZP can be described as
follows. The trajectory is Xt and its velocity is Θt, so
d
dtXt = Θt. At random times, a single coordinate of
Θt flips signs. In between these flips, the velocity is
a constant and the trajectory is a straight line (hence
the name “zig-zag”). The rate at which Θt flips a
coordinate is time inhomogeneous. The i-th compo-
nent of Θ switches at rate λi(Xt,Θt). By choosing the
switching rates appropriately, the ZZP can be made to
sample from the desired distribution. More precisely,
the ZZP (Xt,Θt)t≥0 is determined by the switching
rate λ ∈ C0(E,Rd+) and has generator

Aλφ(x, θ) = θ · ∇xφ(x, θ) + λ(x, θ) · ∇θφ(x, θ) (6.1)

for any sufficiently regular φ : E → R. Here ∇xφ de-
notes the gradient of φ with respect to x and∇θφ is the
discrete differential operator.4 Let (a)+ , max(0, a)
denote the positive part of a ∈ R and ∂iφ ,

∂φ
∂xi

. The
following result shows how to construct a ZZP with
invariant distribution π.

Theorem 6.1 (Bierkens et al. [9, Theorem 2.2,
Proposition 2.3]). Suppose log π ∈ C1(Rd) and γ ∈

4∇θφ , (∂θ,1φ, . . . , ∂θ,dφ), where ∂θ,iφ(x, θ) ,
φ(x,Riθ) − φ(x, θ) and for i ∈ [d], the reversal function

Ri : B → B is given by (Riθ)j ,

{
−θj j = i

θj j 6= i.
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(a) (b)

Figure 1: (a) Gradient error ε versus the Wasserstein distance between πδ and π̃δ,ε, the stationary distribution of

the diffusion with approximate drift b̃δ,ε(x) = ∇ log πδ(x) + ε. The solid lines are the simulation results and the
dotted lines are the theoretical upper bounds obtained from Theorem 3.1. The simulation results closely match
the theoretical bounds and show linear growth in ε, as predicted by the theory. Due to Monte Carlo error the
simulation estimates sometimes slightly exceed the theoretical bounds. (b) The y-axis measures the Wasserstein
distance between the true posterior distribution and the finite-time distribution of the exact gradient ULA (ULA)
and the approximate gradient ULA (AGULA). Except for when the number of data points N < 100, AGULA
shows superior performance, in agreement with the analysis of Theorem 5.1. For all experiments the Wasserstein
distance was estimated 10 times, each time using 1,000 samples from each distribution.

C0(E,Rd+) satisfies γi(x, θ) = γi(x,Riθ). Let

λi(x, θ) = (−θi∂i log π(x))+ + γi(x, θ).

Then the Markov process with generator Aλ has in-
variant distribution πE(dx, θ) = 2−dπ(dx).

Analogously to the approximate diffusion setting,
we compare (Xt,Θt)t≥0 to an approximating ZZP

(X̃t, Θ̃t)t≥0 with switching rate λ̃ ∈ C0(E,Rd+). For
example, if π̃ is an approximating density, the approx-
imate switching rate could be chosen as

λ̃i(x, θ) = (−θi∂i log π̃(x))+ + γi(x, θ). (6.2)

To relate the errors in the switching rates to the
Wasserstein distance in the final distributions, we use
the same strategy as before: apply Stein’s method to
the ZZP generator in Eq. (6.1). We rely on ergodicity
and regularity conditions that are analogous to those
for diffusions. We write (Xx,θ,t,Θx,θ,t) to denote the
version of the ZZP satisfying (Xx,θ,0,Θx,θ,0) = (x, θ)
and denote its law by µx,θ,t.

Assumption 6.E (ZZP polynomial ergodicity).
There exist constants C > 0, α > 1, and β > 0 such
that for all x ∈ Rd, θ ∈ B, and i ∈ [d],

dW(µx,θ,t, µx,Riθ,t) ≤ C(t+ β)−α.

The ZZP polynomial ergodicity condition is looser
than that used for diffusions. Indeed, we only need
a quantitative bound on the ergodicity constant when
the chains are started with the same x value. Together
with the fact that B is compact, this simplifies verifi-
cation of the condition, which can be done using well-

developed coupling techniques from the PDMP liter-
ature [2, 6, 20, 29] as well as more general Lyapunov
function-based approaches [23].

Our main result of this section bounds the error in
the invariant distributions due to errors in the ZZP
switching rates. It is more natural to measure the
error between λ and λ̃ in terms of the `1 norm.

Theorem 6.2 (ZZP error induced by approximate
switching rate). Assume the ZZP with switching rate λ
(respectively λ̃) has invariant distribution π (resp. π̃).
Also assume that

∫
E
x2π(dx, dθ) <∞ and if a function

φ ∈ C(E,R) is π-integrable then it is π̃-integrable. If
the ZZP with switching rate λ is polynomially ergodic
with constants C, α, and β and ‖λ− λ̃‖1 ≤ ε, then

dW(π, π̃) ≤ Cε

(α− 1)βα−1
.

Remark 6.3. If the approximate switching rate takes
the form of Eq. (6.2), then ‖∇ log π − ∇ log π̃‖1 ≤ ε
implies ‖λ− λ̃‖1 ≤ ε. �

7 Experiments

We used numerical experiments to investigate whether
our bounds capture the true behavior of approximate
diffusions and their discretizations.

Approximate Diffusions. For our theoretical re-
sults to be a useful guide in practice, we would like
the Wasserstein bounds to be reasonably tight and
have the correct scaling in the problem parameters
(e.g., in ‖b − b̃‖2). To test our main result concern-
ing the error induced from using an approximate drift
(Theorem 3.1), we consider mixtures of two Gaussian
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densities of the form

πδ(x) =
1

2(2π)d/2

(
e−‖x−δ/2‖

2
2/2 + e−‖x+δ/2‖

2
2/2
)
,

where δ ∈ Rd parameterizes the difference between
the means of the Gaussians. If ‖δ‖2 < 2, then πδ is
(1 − ‖δ‖2/4)-strongly log-concave; if ‖δ‖2 = 2, then
πδ is log-concave; and if ‖δ‖2 > 2, then πδ is not
log-concave, but is log-concave in the tails. Thus,
for all choices of δ, the diffusion with drift bδ(x) ,
∇ log πδ(x) is exponentially ergodic. Importantly, this
class of Gaussian mixtures allows us to investigate a
range of practical regimes, from strongly unimodal to
highly multi-modal distributions. For d = 1 and a
variety of choices of δ, we generated 1,000 samples
from the target distribution πδ (which is the station-
ary distribution of a diffusion with drift bδ(x)) and
from π̃δ,ε (which is the stationary distribution of the

approximate diffusion with drift b̃δ,ε(x) , bδ(x)+ε) for
ε = 0.05, 0.1, 0.25, 0.5. We then calculated the Wasser-
stein distance between the empirical distribution of the
target and the empirical distribution of each approxi-
mation. Fig. 1a shows the empirical Wasserstein dis-
tance (solid lines) for δ = 0.25, 0.5, 1.0 along with the
corresponding theoretical bounds from Theorem 3.1
(dotted lines). The two are in close agreement. We
also investigated larger distances for δ = 1.0, 2.0, 3.0.
Here the exponential contractivity constants that can
be derived from Eberle [18] are rather loose. Impor-
tantly, however, for all values of δ considered, the
Wasserstein distance grows linearly in ε, as predicted
by our theory. Results for d > 1 show similar linear
behavior in ε, though we omit the plots.

Computational–statistical trade-off. We illus-
trate the computational–statistical trade-off of The-
orem 5.1 in the case of logistic regression. This corre-
sponds to φi(t) = φlr(t) , − log(1+e−t). We generate
data y1, y2, . . . according to the following process:

zi ∼ Bern(.5), ζi ∼ N(µzi , I), yi = (2zi − 1)ζi,

where µ0 = (0, 0, 1, 1) and µ1 = (1, 1, 0, 0). We re-
strict the domain X to a ball of radius 3, X = {x ∈
R4 | ‖x‖2 ≤ 3}, and add a projection step to the ULA
algorithm [11], replacing Z ′i with arg minz∈X ‖Z ′i−z‖2.
While Theorem 5.1 assumes X = R4, the numerical re-
sults here on the bounded domain still illustrate our
key point: for the same computational budget, com-
puting fast approximate gradients and running the
ULA chain for longer can produce a better sampler.
Fig. 1b shows that except for very small N , the ap-
proximate gradient ULA (AGULA), which uses the
approximation in Eq. (5.2), produces better perfor-
mance than exact gradient ULA (ULA) with the same
budget. For each data-set size (N), the true poste-
rior distribution was estimated by running an adaptive

Metropolis-Hastings (MH) sampler for 100,000 itera-
tions. ULA and AGULA were each run 1,000 times to
empirically estimate the approximate posteriors. We
then calculated the Wasserstein distance between the
ULA and AGULA empirical distributions and the em-
pirical distribution obtained from the MH sampler.

8 Discussion

Related Work. Recent theoretical work on scalable
MCMC algorithms has yielded numerous insights into
the regimes in which such methods produce computa-
tional gains [1, 24, 25, 32, 36]. Many of these works fo-
cused on approximate Metropolis-Hastings algorithms,
rather than gradient-based MCMC. Moreover, the re-
sults in these papers are for discrete chains, whereas
our results also apply to continuous diffusions as well
as other continuous-time Markov processes such as the
zig-zag process. Perhaps the closest to our work is
that of Rudolf and Schweizer [36] and Gorham et al.
[22]. The former studies general perturbations of
Markov chains and includes an application to stochas-
tic Langevin dynamics. They also rely on a Wasser-
stein contraction condition, like our Assumption 2.A,
in conjunction with a Lyapunov condition on the per-
turbed chain. However, our more specialized analysis
is particularly transparent and leads to tighter bounds
in terms of the contraction constant ρ: the bound of
Rudolf and Schweizer [36] is proportional to (1− ρ)−1

whereas our bound is proportional to −(log ρ)−1. An-
other advantage of our approach is that our results are
more straightforward to apply since we do not need to
directly analyze the Lyapunov potential and the per-
turbation ratios as in Rudolf and Schweizer [36]. Our
techniques also apply to the weaker polynomial con-
traction setting. Gorham et al. [22] have results of
similar flavor to ours and also rely on Stein’s method,
but their assumptions and target use cases differ from
ours. Our results in Section 5, which apply when ULA
is used with a deterministic approximation to the drift,
complement the work of Teh et al. [38] and Vollmer
et al. [39], which provides (non-)asymptotic analysis
when the drift is approximated stochastically at each
iteration.

Conclusion. We have established general results on
the accuracy of diffusions with approximate drifts. As
an application, we show how this framework can quan-
tify the computational–statistical trade-off in approx-
imate gradient ULA. The example in Section 7 illus-
trates how the log-concavity constant can be estimated
in practice and how theory provides reasonably pre-
cise error bounds. We expect our general framework
to have many further applications. In particular, an
interesting direction is to extend our framework to an-
alyze the trade-offs in subsampling Hamiltonian Monte
Carlo algorithms and stochastic Langevin dynamics.
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