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Analysis of Processes in Eq. (8) and Eq. (9)

For the nonlinear AR model in Eq. (9), quasi-
Gaussianity and uniform dependence are easy to see
(under the assumptions given in the main text) since

we have
∂2 log px,y(x,y)

∂x∂y = 2λr′(y). This implies uni-
form dependence by the strict monotonicity of r, and
non-quasi-Gaussianity by its functional form.

For the non-Gaussian AR model in Eq. (8) we proceed
as follows: First, we have

∂2 log px,y(x, y)

∂x∂y
= −ρG′′(x− ρy). (19)

This is always non-zero by the assumption on G′′, and
non-zero ρ, so uniform dependence holds. Assume a
factorization as in (4) holds:

−G′′(x− ρy) = cα(x)α(y). (20)

By assumption, −G′′ is always positive, so we can
take logarithms on both sides of (20), and again cross-

derivatives. We necessarily have ∂ log−G′′(x−ρy)
∂x∂y = 0,

since the RHS is separable. This can be evaluated as
(log−G′′)′′(x − ρy) = 0 which implies log−G′′(u) =
du+ b and

G′′(u) = − exp(du+ b) (21)

for some real parameters d, b. Now, if we have d = 0
and thus G′′(u) constant, we have a Gaussian process.
On the other hand, if we have d 6= 0, we can plug this
back in (20) and see that it cannot hold because the ex-
ponents for x and y would be different unless ρ = −1,
which was excluded by assumption (as is conventional
to ensure stability of the process). Thus, only a Gaus-
sian linear AR process can be quasi-Gaussian under
the given assumptions.

Proof of Theorem 1

Denote by g the (true) inverse function of f which
transforms x into s, i.e. s(t) = g(x(t)). We can easily
derive the log-pdf of an observed (x(t),x(t− 1)) as

log p(x(t),x(t−1)) =

n∑
i=1

log ps̃i (gi(x(t)), gi(x(t−1)))

+ log |Jg(x(t))|+ log |Jg(x(t− 1))| (22)

where ps̃i is the pdf of (si(t), si(t−1)), and Jg denotes
the Jacobian of g; its log-determinant appears twice

because the transformation is done twice, separately
for x(t) and x(t− 1).

On the other hand, according to well-known theory,
when training logistic regression we will asymptoti-
cally have

r(y) = log py(y)− log py∗(y) (23)

i.e. the regression function will asymptotically give the
difference of the log-probabilities in the two classes.
This holds in our case in the limit of an infinitely long
stochastic process due to the assumption of a station-
ary ergodic process (Assumption 1).

Now, based on (22), the probability in the real data
class is of the form

log py(y) =

n∑
i=1

Qi(gi(y
1), gi(y

2))

+ log |Jg(y1)|+ log |Jg(y2)| (24)

where we denote Qi(a, b) = log ps̃i (a, b), while in the
permuted (time-shuffled) data class the time points
are i.i.d., which means that the log-pdf is of the form

log py∗(y) =

n∑
i=1

Q̄i(gi(y
1)) + Q̄i(gi(y

2))

+ log |Jg(y1)|+ log |Jg(y2)| (25)

for some functions Q̄i which are simply the marginal
log-pdf’s.

The equality in (23) means the regression function (12)
is asymptotically equal to the difference of (24) and
(25), i.e.

n∑
i=1

Bi(hi(y
1), hi(y

2)) =

n∑
i=1

Qi(gi(y
1), gi(y

2))

− Q̄i(gi(y1))− Q̄i(gi(y2)) (26)

where we see that the Jacobian terms vanish because
we “contrast” two data sets with the same Jacobian
terms.

We easily notice that one solution to this is given by
hi(x) = gi(x), Bi(x, y) = Qi(x, y)− Q̄i(x)− Q̄i(y). In
fact, due to the assumption of the universal approxi-
mation capability of B and h, such a solution can be
reached by the learning process. Next we prove that
this is the only solution, up to permutation of the hi
and element-wise transformations.

Make the change of variables

z1 = g(y1), z2 = g(y2) (27)

and denote the compound function

k = h ◦ f = h ◦ g−1 (28)
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This is the compound transformation of the attempted
demixing by h and the original mixing by f . Such a
compound function is of main interest in the theory of
ICA, since it tells how well the original sources were
separated. Our goal here is really to show that this
function is a permutation with component-wise non-
linearities. So, we consider the transformed version of
(26) given by

n∑
i=1

Bi(ki(z
1), ki(z

2))

=

n∑
i=1

Qi(z
1
i , z

2
i )− Q̄i(z1i )− Q̄i(z2i ) (29)

Take cross-derivatives of both sides of (29) with respect
to z1j and z2k. This gives

n∑
i=1

∂2Bi(ki(z
1), ki(z

2))

∂z1j ∂z
2
k

=

n∑
i=1

∂2Qi(z
1
i , z

2
i )

∂z1j ∂z
2
k

. (30)

Denoting cross-derivatives as

bi(a, b) :=
∂2Bi(a, b)

∂a∂b
, qi(a, b) :=

∂2Qi(a, b)

∂a∂b
(31)

this gives further

n∑
i=1

bi(ki(z
1), ki(z

2))
∂ki
∂z1j

(z1)
∂ki
∂z2k

(z2)

=

n∑
i=1

qi(z
1
i , z

2
i )δijδik

which must hold for all j, k. We can collect these equa-
tions in a matrix form as

Jk(z1)Tdiagi[bi(ki(z
1), ki(z

2))]Jk(z2)

= diagi[qi(z
1
i , z

2
i )] (32)

Now, the qi are non-zero for all z1, z2 by assumption
of uniform dependence. Since the RHS of (32) is in-
vertible at any point, also Jk must be invertible at any
point. We can thus obtain

[Jk(z1)−1]Tdiagi[qi(z
1
i , z

2
i )]Jk(z2)−1

= diagi[bi(ki(z
1), ki(z

2))] (33)

Next, we use the assumption of non-quasi-Gaussianity,
in the form of the following Lemma (proven below):

Lemma 2 Assume the continuous functions qi(a, b)
are non-zero everywhere, and not factorizable as in
Eq. (4) in the definition of quasi-Gaussianity.5 As-
sume M is any continuous matrix-valued function

5In this lemma, the qi need not have anything to do
with pdf’s, so we do not directly use the assumption of
quasi-Gaussianity, but the conditions on q are identical.

Rn → Rn×n, such that the matrix M(u) is non-
singular for any u. Assume we have

M(u1)T diagi[qi(u
1
i , u

2
i )] M(u2) = D(u1,u2) (34)

for any u1,u2 in Rn, and for some unknown matrix-
valued function D which takes only diagonal values.
Then, the function M(u) is such that every row and
column has exactly one non-zero entry, and the loca-
tions and signs of the non-zero entries are the same
for all u.

We apply this Lemma on Eq. (33) with M(z) =
Jk(z)−1. The assumptions of the Lemma are included
in the assumptions of the Theorem, except for the non-
singularity of M which was just proven above, and the
continuity of M. If Jk(z)−1 were not continuous, the
fact that the diagonal matrix on the LHS of (33) is
continuous would imply that the diagonal matrix on
the RHS is discontinuous, and this contradicts the as-
sumptions on smoothness of h, g and Bi.

Thus the Lemma shows that Jk(z)−1 must be a
rescaled permutation matrix for all z, with the same
locations of the non-zero elements; the same applies
to Jk(z). Thus, by (28), g and h must be equal up
to a permutation and element-wise functions, plus a
constant offset which can be absorbed in the element-
wise functions. The fact that the signs of the elements
in M stay the same implies the transformations are
strictly monotonic, which proves the Theorem.

Proof of Lemma 2

Consider (34) for two different points ū1 and ū2 in Rn.
Denote for simplicity

Mp = M(ūp), Dpq = diagi[qi(ū
p
i , ū

q
i )] (35)

with p, q ∈ {1, 2}. Evaluating (34) with all the possible
combinations of setting u1 and u2 to ū1 and ū2, that
is the four combinations u1 := ū1,u2 := ū2; u1 :=
ū2,u2 := ū1; u1 := ū1,u2 := ū1; and u1 := ū2,u2 :=
ū2, we have three different equations (the first one
being obtained twice):

MT
1 D12M2 = D (36)

MT
2 D22M2 = D′ (37)

MT
1 D11M1 = D′′ (38)

for some diagonal matrices D,D′,D′′.

We will show that for any given ū1, it is always possible
to find a ū2 such that the conditions (36–38) lead to
an eigenvalue problem which has only a trivial solution
consisting of a scaled permutation matrix.

By the assumption that qi is non-zero, D12 is invert-
ible, which also implies D is invertible. By elementary
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linear algebra, we can thus solve from the first equa-
tion (36)

M2 = D−112 M−T
1 D (39)

and plugging this into the second equation (37) we
have

M−1
1 D22D

−2
12 M−T

1 = D−1D′D−1 (40)

Next we multiply both sides of (38) by the respec-
tive sides of (40) from the left, and denoting D′′′ =
D−1D′D−1D′′ we have

M−1
1 [D11D

−2
12 D22]M1 = D′′′ (41)

Here, we see a kind of eigenvalue decomposition.

The rest of the proof of this lemma is based on the
uniqueness of the eigenvalue decomposition, which re-
quires that the eigenvalues are distinct (i.e. no two of
them are equal). So, next we show that the assump-
tion of non-factorizability of qi implies that for any
given ū1 we can find a ū2 such that the diagonal en-
tries in D11D

−2
12 D22 are distinct. The diagonal entries

are given by the function ψ defined as

ψ(ū1i , ū
2
i ) =

qi(ū
1
i , ū

1
i )qi(ū

2
i , ū

2
i )

q2i (ū1i , ū
2
i )

. (42)

For simplicity of notation, drop the index i and denote
a := ū1i , b = ū2i . The diagonal entries in D11D

−2
12 D22

can be chosen distinct if ψ is not a function of a alone
(which was fixed above since ū1 was fixed). Suppose
ψ is a function of a alone: Then we would have

q(a, a)q(b, b)

q2(a, b)
= f(a) (43)

for some function f . Since this holds for any b, we can
set b = a, we see that f must be identically equal to
one. So, we would have

q2(a, b) = q(a, a)q(b, b) (44)

or
q(a, b) = c

√
|q(a, a)|

√
|q(b, b)| (45)

with the constant c = ±1. But a factorizable form
in (45) with α(y) =

√
|q(y, y)| is exactly the same as

in (4) in the definition of quasi-Gaussianity, or, equiv-
alently, in the assumptions of the Lemma, and thus
excluded by assumption.

Thus, we have proven by contradiction that ψ cannot
be a function of a alone. The functions involved are
continuous by assumption, so since ψ takes more than
one value for any given a, it takes an infinity of val-
ues for any given a. Thus, it is possible to choose ū2

(corresponding to n choices of b for given n values of
a) so that the diagonal entries in D11D

−2
12 D22 are all

distinct, for any given ū1.

Since the entries in D11D
−2
12 D22 can be assumed to

be distinct, the eigenvectors of the (product) matrix
on the LHS of (41) are equal to the columns of M−1

1 ,
and uniquely defined up to a multiplication by a scalar
constant which is always indetermined for eigenvec-
tors. The diagonal entries on both sides are equal to
the eigenvalues of the corresponding matrices, because
eigenvalues are invariant to change of basis by M1, so
we have d′′′i = d11i d

22
i /(d

12
i )2, up to permutation. On

the other hand, the eigenvectors on the RHS of (41) are
equal to the canonical basis vectors, and they are also
uniquely defined (up to scalar multiplication) since the
d′′′i are also distinct. The eigenvectors on both sides
must be equal, and thus, M(ū1) must be equal to a
permutation matrix, up to multiplication of each row
by a scalar which depends on ū1.

Since ū1 could be freely chosen, M(u) is equal to such
a rescaled permutation matrix everywhere. By conti-
nuity the non-zero entries in M(u) must be in the same
locations everywhere; if they switched locations, M(u)
would have to be singular at one point at least, which
is excluded by assumption. With the same logic, we
see the signs of the entries cannot change. Thus the
Lemma is proven.

Proof of Theorem 2

First, since we have a restricted form of regression
function, we have to prove that it can actually con-
verge to the optimal theoretical regression function in
(23). This is true because the regression function in
(13) can still approximate all quasi-Gaussian densities
which have uniform dependence, after suitable trans-
formation. Namely, uniform dependence together with
quasi-Gaussianity implies that ᾱ must be monotonic.
Thus, by a pointwise transformation inverting such
monotonic ᾱ, we can transform the data so that ᾱ
is linear, and the regression function in the Theorem
can be learned to be optimal.

The proof of Theorem 1 is then valid all the way until
(33), since we didn’t use non-quasi-Gaussianity up to
that point. We have from (33), (13), and the definition
of quasi-Gaussianity

[Jk(z1)−1]Tdiagi[αi(z
1
i )]diagi[ci]diagi[αi(z

2
i )]Jk(z2)−1

= diagi[ai] (46)

which must hold for any z1, z2. The matrices in this
equation are invertible by the proof of Theorem 1.
Now, define

V(z) = diagi[αi(zi)]Jk(z)−1 (47)

so the condition above takes the form

V(z1)Tdiagi[ci]V(z2) = diagi[ai]. (48)
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Setting z2 = z1, we can solve

V(z1)T = diagi[ai]V(z1)−1diagi[1/ci]. (49)

Plugging this back into (48), we have

diagi[ai]V(z1)−1diagi[1/ci]diagi[ci]V(z2) = diagi[ai]
(50)

which gives equivalently

V(z1) = V(z2). (51)

That is, V(z) does not depend on z. Denote its con-
stant value by V.

Solving for Jk(z) in (47) with such a constant V, we
have

Jk(z) = V−1diagi[αi(zi)]. (52)

Now, substitute, by (28), J(h ◦ f)(z) for the LHS, and
change the dummy variable z to s. Then we can inte-
grate both sides to obtain

(h ◦ f)(s) = h(x) = V−1


ᾱ1(s1)
ᾱ2(s2)

...
ᾱn(sn)

+ d (53)

for some integration constant vector d. Thus we get
the form given in the Theorem, with B = V−1.

Theory and Proof for Multiple Time Lags

In the case of multiple lags, the assumptions in a theo-
rem corresponding to Theorem 1 are apparently iden-
tical to those in Theorem 1, but we use the general
definition of quasi-Gaussianity in Definition 3, and the
general definition of uniform dependence, which is that
the cross-derivative qj,k(x) is non-zero for any j, k and
any x. We further define the discrimination problem
using (18) and use the obvious generalization of the
regression function given by

r(y) =

m∑
i=1

Bi(hi(y
1), hi(y

2), . . . , hi(y
m)). (54)

We can then use the proof of Theorem 1 with mini-
mal changes. Non-quasi-Gaussianity implies that for
some j, k, factorizability is impossible. Fix j, k to those
values. Fix yp for p 6= j, k to any arbitrary values.
The proof proceeds in the same way, largely ignoring
any yp with p not equal to j or k. In particular, the
derivative in (30) is taken with respect to those j, k.
Furthermore, (33) has the form

[Jk(zj)−1]Tdiagi[qi(z
1
i , . . . , z

m
i ))]Jk(zk)−1

= diagi[bi(ki(z
1), . . . , ki(z

m))] (55)

where both qi and bi are functions of zj and zk (or,
equivalently, of yj and yk) only, since all the other zp

(or yp) are fixed.

A version of Theorem 2 for multiple time lags is left
as a question for future research.


