
Large-Scale Data-Dependent Kernel Approximation

Catalin Ionescu3,2∗ Alin-Ionut Popa2∗ Cristian Sminchisescu1,2

Google DeepMind3

cdi@google.com

Institute of Mathematics
of the Romanian Academy2

alin.popa@imar.ro

Department of Mathematics
Faculty of Engineering, Lund University1

cristian.sminchisescu@math.lth.se

Abstract

Learning a computationally efficient kernel from
data is an important machine learning problem.
The majority of kernels in the literature do not
leverage the geometry of the data, and those that
do are computationally infeasible for contempo-
rary datasets. Recent advances in approximation
techniques have expanded the applicability of the
kernel methodology to scale linearly with the data
size. Data-dependent kernels, which could lever-
age this computational advantage, have however
not yet seen the benefit. Here we derive an approx-
imate large-scale learning procedure for data-
dependent kernels that is efficient and performs
well in practice. We provide a Lemma that can be
used to derive the asymptotic convergence of the
approximation in the limit of infinite random fea-
tures, and, under certain conditions, an estimate
of the convergence speed. We empirically prove
that our construction represents a valid, yet effi-
cient approximation of the data-dependent kernel.
For large-scale datasets of millions of datapoints,
where the proposed method is now applicable for
the first time, we notice a significant performance
boost over both baselines consisting of data inde-
pendent kernels and of kernel approximations, at
comparable computational cost.

1 Introduction
Kernel methods offer a rigorous methodology to construct
high performance learning machines with strong theoretical
guarantees. However, as the data size increases, limita-
tions become apparent. Scaling the kernel methods has
not been straightforward, but the machinery of reproducing
kernel Hilbert spaces offers a framework for approxima-
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tion. One scalable approach has been to ‘linearize’ the
kernel by designing explicit feature maps whose inner prod-
ucts can be shown to approximate the kernel everywhere
[1, 2, 3, 4, 5, 6]. The methods described in [1, 2, 3] give
approximations for different types of kernels, [4, 5] offer
theoretical convergence analysis for certain classes of ker-
nels and [6] proposes a linear approximation methodology
for kernel learning. This allows the application of fast lin-
ear learning algorithms while, at the same time, offering
the non-linear properties, and the asymptotic performance
guarantees that make kernel machines attractive.

The explicit feature map approach has shown its effective-
ness for a variety of practically useful kernels (e.g. the expo-
nentiated chi-square used to compare histograms [3, 7]), and
learning problems. However, it remains open how such a
methodology can be applied in a weakly or semi-supervised
setup. Such frameworks are appealing and could benefit
most from scalability, as unlabeled data is plentiful and easy
to collect. Many approaches [8, 9, 10, 11] use the data ge-
ometry to propagate information and improve performance,
by constructing data-dependent kernels. In many cases, data
can also be intrinsically low-dimensional, therefore signifi-
cant efforts were invested in discovering low-dimensional
representations that preserve relevant properties.

In this paper we present a scalable approach to learning
data-dependent kernels, which avoids dealing with Gram
(or kernel) matrices directly, in the way kernel methods do.
We show that the successful data-dependent kernel of [8] can
be approximated very efficiently using random Fourier fea-
tures. We propose an approximation for the data-dependent
kernel [8], in a formulation that multiplies the random fea-
tures of the data-independent kernel, obtained with [2], by
a weighted covariance matrix built using both labeled and
unlabeled data. This effectively warps the distances between
the Fourier features and therefore, we sometimes refer to it
as the ’warping’ matrix. Our resulting data-dependent ker-
nel approximation has the same properties as the one in [8],
but no longer suffers from the memory and time constraints
associated with building the Gram matrix linked with the
kernel function. The construction is made possible by an
astute application of a Woodbury identity which moves the
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learning problem from a reproducing kernel Hilbert space
(RKHS) to the Fourier space of the kernel, reducing the
computational load from O(N3) to O(N).

1.1 Related Work
The most successful applications of kernel methods [12, 13]
have been in the supervised case. As dependencies on matri-
ces of size N2 (with N the dataset size) makes the standard
methodology hard to apply for large datasets, scaling up
kernel methods is of great interest. Initial approximations
were based on Nyström schemes [14]. More recently it was
observed that data independent kernel approximations are
possible in certain cases. Rahimi and Recht [1] showed how
an approximation can be obtained in the case of Euclidean
translation-invariant kernels by exploiting Bochner’s theo-
rem [15]. This was extended by [2] to translation invariance
over general groups. Inspired by these ideas, different au-
thors developed approximations for other kernel classes, sup-
ported by additional theoretical results [3, 7, 16, 17, 18, 19].

Data-dependent kernels have a history going back at least
to the seminal paper of [20] as well as [21] who use confor-
mal maps to warp distances around support vectors. This
relies on two observations: (1) unlabeled data is cheaper
(and more readily available) than labeled data, and (2) with
enough unlabeled samples, the geometry of the data can be
recovered and used to propagate supervisory information.
A thorough review is beyond the scope of this paper, but an
excellent summary can be found in [22]. The understanding
is still incomplete but theoretical work [23] suggests that an
important factor associated with improved performance is
the sampling of unlabeled data which should be denser (in
terms of distances between points) than the margin. Scala-
bility is once again, key.

A more recent approach to obtaining data-dependent ker-
nels is based on manifold regularization – a semi-supervised
learning framework that performs well in practice [24]. The
idea is to augment a given learning algorithm with a reg-
ularization term based on the graph Laplacian computed
over the all data samples, both labeled and unlabeled. This
brings in information about data geometry and can offer
important performance gains. The work of [8] shows that
the geometric regularization term can be embedded in the
representation in order to obtain data-dependent kernels.
That methodology is promising, but as presented, does not
scale, as it requires inverting a large matrix of the size of
the labeled and unlabeled data – an O(N3) operation. An
attempt to overcome this difficulty was presented in [9],
where landmark points are used to approximate the geo-
metric component of the kernel in [8]. The authors demon-
strated practical applicability for up to 60,000 datapoints.

In this work we develop novel theoretical and practical
methodology in order to make data-dependent kernels ap-
plicable to large scale datasets. We show that by relying on
approximate kernel feature maps, we can effectively handle

sets of over a million datapoints.

1.2 Outline and Contributions

In the next section, §2.1, we briefly introduce the random
feature methodology to approximate a RKHS kernel func-
tion as the inner product of two non-linear feature maps. In
section §2.2, the data-dependent kernels introduced in [8]
are presented as a sum of an original (base) kernel term and
a warping term depending on a geometric operator, like the
graph Laplacian computed over all data. These two ingre-
dients are put together in the language of random matrices
in section §3, and this is one of our main contributions. In
particular, in section §3.1 we show that the kernel of [8]
can be approximated efficiently using random feature maps.
This is illustrated in Proposition 2 by using the Sherman-
Morrison-Woodbury (SMW) identity. Lemma 3 then shows
that the approximation error is bounded by the approxima-
tion error of the original kernel. In section §3.2 we review
computational complexity aspects that can improve the cal-
culation of locally weighted models like a Laplacian matrix.
In section §3.3 we provide an algorithmic representation
of the proposed method. In the experiments section §4, we
empirically validate the proof of Lemma 3 by showing that
the approximation is both valid and accurate. We give com-
petitive results in approximating data-dependent kernels [8]
and illustrate that our methodology scales to sets of millions
of unlabeled datapoints without difficulty.

2 Kernel Methods

In this section we briefly review the kernel approximation
methodology that we will rely upon when introducing our
contributions in §3.

2.1 Kernel Approximation with Fourier Bases

Many recent efforts have been concentrated on developing
feasible large-scale approximations for kernel methods. The
main idea is to approximate the non-linear kernel using a
feature map embedding. The feature map should be able to
support linear computations.

Some of the most popular approaches are based on ap-
proximations of the form k(x, y) = Eµφω(x)φω(y) =∫
ω
φω(x)φω(y)µ(ω)dω. A finite dimensional approxima-

tion can easily be obtained by Monte Carlo sampling. An
example of an approximation in this vein is proposed in
[1]. Let k ∈ H be a translation-invariant positive definite
kernel, where H is a unique RKHS of functions. Then,
Bochner’s theorem, a fundamental result from functional
analysis, states that there exists µ(ω), a positive measure,
that relates to k by means of the usual direct and inverse
Fourier operators. An immediate consequence is an explicit
embedding in Rd, whose inner product approximates the
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originalH inner product. The kernel can be written as

k(x, y) =
∫
ω
ejω(x−y)µ(ω)dω

=
∫
ω
φω(x)φω(y)µ(ω)dω

' 1
d

∑
i φωi(x)φωi(y)

' 1
dφ(x)φ(y)>

with ωi ∼ µ(ω) and some abuse of the previous no-
tation to write φ : X (⊂ Rp) → Rd with φω(x) =(
φω1 (x)√

d
, . . . ,

φωd (x)√
d

)>
= φ(x), where we make ω im-

plicit. The form of φ and µ are independent of the data
and only dependent on the kernel. We will denote the N ×p
data matrix as X = (x>1 , . . . , x

>
N ) and the N × d matrix

that encodes the kernel approximation features φ(X) =
(φ(xi)

>, . . . , φ(xN )>) = (φω1
(X), . . . , φωd(X)) = Φ,

where Φi = φωi(X), N is the number of data points and d
the number of random features used for the kernel approxi-
mation.

Let the kernel matrix associated to the dataset X be
K(i, j) = k(xi, xj). Given this notation, we can define
the Fourier approximation K̂ of K

K̂ =

d∑
i

K̂i =

d∑
i

ΦiΦ
>
i = ΦΦ> (1)

We notice that because K̂i are i.i.d, matrix concentration
results like [25] apply.

The goal of this paper is to derive an approximation that is
‘data-aware’, yet scales favorably in the dataset size N and
the representation dimension d (in our methodology, d will
not depend on N ).

2.2 Data-Dependent Kernels
In [8], the authors propose a new kernel k̃ by modifying an
existing one, k, using a data-dependent norm. Let H be a
RKHS and V be a linear space with positive semidefinite
inner product (quadratic form). S : H → V is a bounded
linear operator. Let H̃ be the RKHS over X → R, with the
associated inner product defined as:

〈f, g〉H̃ , 〈f, g〉H + 〈Sf,Sg〉V (2)

The authors of [8] consider the case when S is a weighted
point cloud operator i.e. if f(X) = (f(x1), . . . , f(xN )),
then 〈Sf,Sf〉V = f(X)Mf(X)> with the condition that
Mi,j = M(xi, xj) is positive semidefinite due to [15]. Pos-
itive semidefiniteness is required for 〈Sf,Sf〉V to be a
(semi-)norm. This is interesting because the inner product
for H̃ depends on the data through M which is built using
the data points.

Proposition 1 Let H̃ be as above. Then

1. H̃ is a RKHS andH = H̃.

2. If k̃(x, y) is the reproducing kernel of H̃ with k>x =
(k(x, x1), . . . , k(x, xN )) then

k̃(x, y) = k(x, y)− k>x (I +MK)−1Mky, (3)

The proposition only assumes that M is positive semidefi-
nite, so we choose to use a Laplacian matrix in our experi-
ments. The choice of the Laplacian is popular in the semi-
supervised literature because of theoretical work connecting
it to the continuous Laplace-Beltrami operator representing
the manifold structure of the data. Our objective, described
in the next section, is to provide an efficient large-scale
approximation to k̃ based on (1). Note that in practice k̃
is a formulation of the data-dependent kernel. It uses the
original kernel formulation k, constructed from labeled data,
and the matrix M , which is constructed from both labeled
and unlabeled data. In matrix form, it can be written as

K̃ = K −K(I +MK)−1MK (4)

However, this is non-trivial, as directly implementing (3)
requires inverting an N ×N matrix, which is large for big
datasets.

3 Large-Scale Data-Dependent Kernel
Learning

In this section we describe our contributions to the large-
scale kernel learning methodology, including the derivation
of a novel Fourier approximation for the data-dependent
kernel (§3.1), as well as a locally weighted function con-
struction for efficient computation (§3.2). We prove that
our construction represents a valid approximation of the
data-dependent kernel (3). Our empirical evaluation from
§4.1 supports the claim of asymptotic convergence of the
approximation in the limit of infinite random features.

3.1 Data-Dependent Kernel Approximation

The Fourier approximationK of the original data-dependent
kernel (4) can be derived as

K = K̂ − K̂(I +MK̂)−1MK̂ (5)

Since K ' K̂, it is clear that K ' K̃, but computationally
there is no gain, as it still requires inverting a potentially
largeN×N matrix. Instead, we propose and focus on a new
efficient formulation K̆ so that only a lower-dimensional
d× d matrix inversion is necessary.

K̆ = Φ(I + Φ>MΦ)−1Φ> (6)

Proposition 2 With the above definitions

K = K̆ (7)
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Proof

K = K̂ − K̂(I +MK̂)−1MK̂ (8)

= ΦΦ> − ΦΦ>(I +MΦΦ>)−1MΦΦ> by (1) (9)

= Φ(I − Φ>(I +MΦΦ>)−1MΦ)Φ> (10)

= Φ(I + Φ>MΦ)−1Φ> (11)

= K̆ (12)

where (11) comes by applying the Sherman-Morrison-
Woodbury (SMW) identity

(I +AB>)−1 = I −A(I +B>A)−1B> (13)

with A = Φ> and B = Φ>M and using the symmetry
of M . SMW requires that I + Φ>MΦ is invertible. This
is true since Φ>MΦ is positive semidefinite. Adding the
identity term guarantees positive definiteness, therefore also
invertibility.

This result allows us to use the efficient K̆ in our exper-
iments, but study it using K, the Fourier approximation
of the original data-dependent kernel K̃. The form of K
makes it easier to relate to K̃. The efficient K̆ suggests the
following random feature approximation for K̃

Φ̃ = Φ(I + Φ>MΦ)−1/2 (14)

In order to obtain a linear approximation of a kernel method
using (4), all we need is to calculate (14) and use the cor-
responding linear method. We do not need to compute the
Gram matrix associated with the kernel. Also, this alone
implies very significant computational gains in both learn-
ing and testing if d � N , since we need to compute the
inverse of I + Φ>MΦ (see (6)) which is d× d, instead of
the inverse of I +MK̂ (see (5)) which is N ×N .

We should note that SMW is often used as a method to
perform low-rank updates of matrix inverses in iterative
methods, sometimes leading to numerical inaccuracy. This
is not the way we use SMW. Here, its use has the effect of
transferring the learning problem from the warped RKHS to
the warped random feature space, while preserving the effect
of warping. A main insight of our paper is that this process
is as simple as (14). Also, please note that the implication
of SMW in our problem is of great impact in applications,
especially in large-scale problems. The original method [8]
is a reinterpretation of manifold regularization which works
for the out-of-sample case: since the kernel approximation
works everywhere [1], the out-of-sample properties should
hold. Notice that (7) holds for any pair of points since the
proof is independent of the outer Φ.

Knowing that the mapping is simple and K = K̆, we can
bridge the gap between K and K̃. The following Lemma
bounds the deviation between the two using the deviation
between K̂ and K.

Lemma 3 Let K and K̃ defined as above and denoting
E‖K̂M(I + K̂M)−1‖ ≤ R and E‖(I +MK)−1MK‖ ≤
T , with R, T constants we have that

E‖K − K̃‖ ≤ E‖K − K̂‖(1 + T +RT +R) (15)

In the Appendix we provide a detailed proof.

In [25] it is shown that E‖K̂ − K‖ ≤ C
d , where C is a

constant. This has as consequence the convergence of K̂ to
K in the limit of infinite samples. Using our Lemma above,
in conjunction with this result, we can obtain an asymptotic
convergence guarantee for K to K̃. Also, given the quanti-
tative nature of both results and using a finite sample bound
on E‖K̂M(I + K̂M)−1‖ we can immediately obtain the
convergence rate.

This theoretical upper bound is supported by extensive em-
pirical results, as we try to focus on the practical aspects
of this data-dependent kernel approximation. More details
can be seen in section §4.1, with direct reference to fig. 1
(middle), where we provide an empirical convergence guar-
antee for K to K̃. Also, in §4.3 we want to emphasize the
scalability of the method by applying it on Human3.6M [26]
which contains millions of data points.

3.2 Local Weighting Function for Efficient
Computation

As stated in section §3.1 we choose to use the Laplacian
matrix for M , as it better captures the data geometry. This
gives us a similarity measure between all data points defin-
ing the input space, both labeled and unlabeled. We consider
M = αLc where L is the symmetric normalized Laplacian
matrix i.e. L = I − D−1/2WD1/2 with D and W being
the degree and the adjacency matrices, respectively. This
fulfills the positive semidefiniteness requirement and has the
additional computational benefit that L can be viewed as a
local weighting function. α and c are additional parameters
representing the Laplacian regularizer and the Laplacian
degree, respectively.

Due to our approximation choice in eq. (6), we only
need to compute a ‘warping’ matrix, which modifies the
distance associated to the Fourier embedding, i.e. U =
φ(X)>M φ(X), and invert it. This is a square d×dmatrix
of the same dimensionality as the Fourier approximation i.e.
d. The small size of the matrix makes the inversion easy to
perform but computing the matrix remains difficult if M is
dense.

We can leverage the sparsity of M computationally, in the
following way. If Xi is the set of nearest neighbors of
datapoint xi and Mi the Laplacian matrix around xi, U can
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be written as

Φ>MΦ ' Φ>
∑
i

MiΦ (16)

=
∑
i

φ(Xi)
> Mi φ(Xi) = U (17)

The locality (block diagonal structure) of M thus turns the
problem of computing U into a local procedure which can
be scaled up reliably. Obtaining U , once M is computed, re-
quires O(Nd2) operations. When M is modeled as a Lapla-
cian matrix, standard practice [27] requires O(Nk) space
complexity for a sparse encoding. Computing it exactly can
be expensive for large datasets as it scales at O(N2 logN),
due to N logN steps required for exact nearest neighbor
calculations. However, more efficient approximate nearest
neighbor (ANN) techniques like locality sensitive hashing
(LSH) can be employed without adverse effects provided
they have high recall. Precision is not critical: if ANN
returns points that are far away (not neighbors) they will
get weighted down by M when computing U . With ANN,
considering the access O(1), the overall complexity of com-
puting M also becomes O(Nr), where r is the number of
retrieved items. In practice r should be more than k but with
a good hashing function k � N .

3.3 Data-Dependent Kernel Approximation
Algorithm

As we mentioned previously, we aim to shift the focus
towards the practical aspect of the kernel approximation
methodology. Thus, we provide an algorithmic approach
in order to obtain the kernel approximation. The steps of
our proposed method are given in Algorithm 1. Given a
data matrix X of size N × p, which corresponds to N data
points in Rp, we construct a Fourier approximation for the
data-dependent kernel Φ̃. First, we build the random Fourier
approximation Φ for X using (1). Second, we compute
the Laplacian matrix L by building the adjacency matrix
W ∈ RN×N and the degree matrix D ∈ RN×N (which
is diagonal) associated to the data matrix X . Nodes i and
j, corresponding to data points xi and xj , are connected
by an edge if i is among the q nearest neighbors of j, or
j is among the q nearest neighbors of i. Parameters q, α,
c and σ, as well as the number of Random Features (RF)
dimensions used for kernel approximation, are determined
by validation. Finally, we construct the data-dependent ker-
nel approximation Φ̃ using (14). We obtain a mapping of
our data into a data-dependent kernel feature space where
feature learning is performed using matrix inversion. The
obtained features can be incorporated within any desired
learning model, e.g. SVM, KRR.

4 Experiments
We performe a diverse set of experiments in order to validate
our models. We consider two learning methods: support

Algorithm 1 Calculate Φ̃ (Data-Dependent Kernel Approx-
imation)

Require:
X ∈ RN×p - data matrix corresponding to N data points
in Rp
α ∈ R - Laplacian regularizer
c ∈ N - Laplacian degree
q ∈ N - number of neighbors required for Laplacian
graph

Ensure: Φ̃
K̂ = φ(X)φ(X)> = ΦΦ>

L = I − D−1/2WD−1/2 with W,D ∈ RN×N where

Wij =

e−
‖xi−xj‖

2

2σ2 if xi ∈ q-NN(xj,X)
0 otherwise

Dii =
∑
jWij

M = αLc

U = Φ>MΦ
Φ̃ = Φ(I + U)−1/2

vector machines (SVM) and kernel ridge regression (KRR).
For the classification task, the KRR model is used by pre-
dicting the score of each class and selecting the one with the
highest score as output. For these models, we consider both
the kernel (SVM and KRR) and the Random Features (RF)
approximation variants (RFSVM and RFKRR) as purely
supervised baselines. Their exact semi-supervised exten-
sions, LapKRR and LapSVM, serve as baselines for our
proposed models, LapRFSVM and LapRFKRR. The kernel
function used is radial basis function (RBF). We use the
RBF kernel as it is standard for Euclidean spaces. Other
types of kernel functions can be used with the proposed
method, according to the nature of the tackled problem. In
all our semi-supervised models we use the symmetric nor-
malized graph Laplacian with a Gaussian kernel. We first
analyze a toy dataset in section §4.1 to check that basic
intuitions are correct. In §4.2 we experiment with a number
of medium size datasets to compare the performance of our
models to the ones of [8] and [9]. We then move to larger
datasets (see §4.3), where the kernel versions are no longer
applicable, and evaluate the accuracy and the computational
and performance aspects. In order to assess the performance
of our method, we follow the experimental procedure of [8],
so we make 10 different splits of the data into train/test and
report the average performance. Finally, in §4.4 we study
the dimensionality reduction component of our framework,
and assess its impact on performance and computation time.

4.1 Two Moons Dataset
This dataset for semi-supervised problems consists of un-
labeled datapoints (500 in our case) as well as 2 labeled
ones. Figure 1 (left) shows this data: labeled points (larger
filled dots) and unlabeled points (light blue are from the
positive class and yellow from the negative class), and the
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test data (darker blue for the positive class and orange for
the negative class).

Empirical Approximation of K by K̃: We first look into
the accuracy of the approximation. In the first experiment
we measure the empirical approximation of K̂ by K (origi-
nal kernel) as well as the approximation of K by K̃ (data-
dependent or warped kernel). We vary the dimensionality of
the Fourier approximation and take 1000 samples for K̂ and
K. We measure the average and max values for ‖K̂ −K‖
and ‖K − K̃‖ for each dimensionality (figure 1 middle). It
can be seen that as we increase the dimensionality of the
Fourier approximation, the bound becomes tighter. Also,
note that the max value of the approximation error is not
much larger than the average error. Thus, we are able to
obtain an empirical guarantee for the convergence of K by
K̃. The second plot (fig. 1 right) accentuates the trade-off
between the number of random features used for the kernel
approximation and the accuracy of the model. Notice that
not only the warping works very well on this dataset, achiev-
ing near perfect performance, but the approximate model
converges well to it. It also provides a regularization that
the standard RFKRR model does not achieve.

Approximation of the Warping Matrix U : Since this data
is 2 dimensional, it is easy to visualize the landscape of
the different classifiers (fig. 2). The second and third plots
(b & c) show the landscapes of the LapKRR and its corre-
sponding RF approximation. LapKRR (b) looks somewhat
fainter because of the normalization of the scale of the color
plots. Note that the approximate model is much more dif-
fuse than LapKRR especially at the borders. The fourth plot
(d) shows the low-dimensional approximation of the warp-
ing. Although the low rank approximation generates some
artifacts in the shape of the border, it also renders it much
sharper. The rightmost plot (e) shows the landscapes of the
LapKRR model obtained using the kernel approximation
of [9]. You can notice that the landscape of this method is
more sharp around the two clusters defined by the dataset.

4.2 Small Scale Experiments

Next, we tested our models on a number of standard small
datasets, where in some cases both exact and approximation
methods can be obtained. TEXT is a simple text classifi-
cation dataset, which contains 1,946 data samples. USPS
(test) is a digit recognition dataset (10 classes) with 1,607
data samples. These two experiments are performed in a
transductive setting similar to the one used in [24]. We sam-
ple 50 labeled examples from the training set (the rest being
unlabeled) for each of the 10 runs. USPS (out-of-sample)
is the separate test set for the USPS dataset with 400 data
samples.

Please notice (table 1) that the performance of the kernel and
the approximated methods, respectively, are on par on each
of these experiments. The small datasets reveal how well

Model MNIST CIFAR10
Tasks Feature/ Training Feature/ Training

Kernel Kernel
SVM 7.03 381.04 30.2 1600.87
KRR 7.03 440.75 30.2 1843.07
RFSVM 16.68 331.95 21.31 2306.43
RFKRR 16.68 212.42 21.31 477.33
LapRFSVM 769.89 382.03 770.50 1220.03
LapRFKRR 769.89 208.19 770.50 394.30

Table 2: Computation time in seconds on MNIST and CIFAR10,
for RF approximations with d = 10, 000 on a system with Intel
Xeon (3.2 GHz) and 32 GB of RAM memory. Training time in-
cludes all 10 classifiers. For kernel methods, computation includes
the kernel matrix. For semi-supervised models the Laplacian is
considered precomputed. Feature computation for LapRFSVM and
LapRFKRR includes the inversion which dominates the computa-
tion time. Without it, the computation time is similar to RFSVM
and RFKRR.

the approximation works, which we found to be satisfactory
when the dimensionality of the RF features is large enough.
Also, please note the additional performance gained by the
methods that use unlabeled data.

4.3 Large-Scale Experiments
For large-scale experiments we consider datasets from com-
puter vision: MNIST (60,000 examples), CIFAR10 (50,000
examples) and Human3.6M (1,055,424 examples).

MNIST contains 60,000 training examples and 10,000 test-
ing examples for digit recognition. CIFAR10 contains
50,000 training and 10,000 testing examples (32x32 pixel
RGB images) grouped in 10 classes. For this data we
extract GIST features [28], instead of using directly raw
pixel values. For MNIST, we sample 10,000/50,000 la-
beled/unlabeled examples from the training set for each
of the 10 runs. For CIFAR10, we use 20,000/30,000 la-
beled/unlabeled examples as the dataset is more challeng-
ing.

Unlike the small-scale experiment setup where we used the
transductive setting, in this test setup we used the separate
test set provided. For computational considerations, we are
not able to compute the exact LapSVM or LapKRR on the
larger datasets. The classical kernel approach is no longer
applicable in these model setups due to the size of the kernel
matrices.

We also compare our method with the one proposed in [9]
whenever possible. They build the Laplacian regularizer
component for the data-dependent kernel out of a small
subsample of landmark points, formed from both labeled
and unlabeled data. The comparison can only be performed
for datasets of up to 64,000 examples, as [9] requires to build
the kernel matrix, thus we are not able to compare it on the
Human 3.6M test case. The results can be visualized in
table 1. We note that our approximation to the original data-
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Figure 1: (Left) ‘Two moons” dataset. (Middle) kernel approximation errors (max and average absolute error) for the original kernel, K,
and warped (data-dependent) kernel, K̃. (Right) classification performance on the two moons dataset, with 1 example per class, plotted
against the dimensionality of the Fourier features. Note that the semi-supervised extension delivers some performance boost even with a
very poor approximation (500 dimensions). With 2,000 RF features the performance is the same as the exact LapKRR model. We also
include a comparison with the method of [9]. For their approximation method we use 500 landmark points.

(a) (b) (c)

RF LapKRR

(d) (e)

Figure 2: Two moons dataset classifier landscape (same color scale). The labels are shown with square and rhombus. (a) Simple
classification model, without warping, approximated with random Fourier features; (b) LapKRR model from [8]; (c) our RF approximation
with full warping matrix; (d) approximate model with low rank warping obtained by spectral decomposition (rank 10); (e) LapKRR with
kernel approximated by [9].

Model TEXT USPS (t) USPS (oos) MNIST CIFAR10
SVM 19.24 (6.08) 23.78 (2.88) 24.90 (2.90) 3.99 (0.09) 48.11 (0.41)
RFSVM 24.32 (2.93) 23.91 (2.87) 24.75 (3.02) 3.89 (0.08) 48.17 (0.25)
LapSVM 10.40 (1.06) 13.26 (2.76) 15.27 (2.67) N/A N/A
[9] 21.72 (7.00) 18.23 (3.14) 19.95 (4.10) 3.03 (0.06) 38.49 (0.18)
LapRFSVM 9.96 (1.24) 13.42 (2.91) 15.60 (2.69) 2.93 (0.04) 37.34 (0.21)
KRR 19.22 (6.06) 24.29 (2.68) 25.07 (2.54) 6.43 (0.29) 47.64 (0.13)
RFKRR 24.28 (3.09) 24.52 (2.86) 25.82 (2.65) 8.78 (0.27) 47.84 (0.15)
LapKRR 10.01 (1.26) 13.49 (2.76) 14.55 (2.82) N/A N/A
[9] 21.99 (4.58) 17.70 (2.96) 19.25 (3.09) 3.54 (0.07) 35.49 (0.17)
LapRFKRR 10.32 (1.08) 13.46 (2.79) 15.52 (2.93) 3.13 (0.05) 35.25 (0.28)

Table 1: Average classification error on several datasets comparing the approximated (LapRFKRR, LapRFSVM) and non-approximated
versions of the model (LapKRR, LapSVM), as well as non semi-supervised baselines (KRR, SVM) and their approximated counterparts
(RFKRR, RFSVM) trained with the same labeled data. Also shown is the performance of [9]. We use the kernel matrices approximated
by [9] and introduce them in our framework, reproducing the same experiments. The comparison can only be performed for datasets
of up to 64,000 examples, as [9] requires to build the kernel matrix. The RF features for TEXT and USPS have 4,000 dimensions and
10,000 dimensions for MNIST and CIFAR10. The training data is randomly sampled and results are averages over 10 runs (variance in
parentheses).

Figure 3: Dimensionality reduction (left and middle) performed on Human3.6M makes us gain an order of magnitude in computation
time (up) while maintaining good performance (down). Thus we can efficiently handle very large datasets. In the right most plot we
measure the trade-off between the number of labeled data and the number of used RF dimensions for kernel approximation on USPS (t).
As the number of RF dimensions becomes larger than 2,000, the performance of the model becomes stable and it improves only if the size
of the label set is increased. The size of the labeled set has a larger impact on performance than the number of RF dimensions.
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Pose error (mm) Labeled vs. unlabeled split
RFKRR LapRFKRR # of Labeled # of Unlabeled

57.83 57.72 105,543 949,881
61.6 60.83 10,555 1,044,869
77.99 71.95 1,056 1,054,368
87.41 79.81 528 1,054,896
89.48 84.85 352 1,055,072
94.88 91.68 264 1,055,160
97.37 93.2 212 1,055,212

Table 3: Performance evaluation for Human3.6M, with different
splits of labeled and unlabeled data. The RFKRR column gives
the performance of models trained using only labeled data while
LapRFKRR uses both labeled and unlabeled data within the data-
dependent kernel approximation setup. As the size of labeled data
decreases, the performance of RFKRR decreases as well. However,
we obtain improvements in the semi-supervised learning setting,
thus demonstrating both the scalability and the advantage of using
data-dependent kernel approximations.

dependent kernel achieves very high performance and seems
to outperform the approximation of [9] in most situations.
Our intuition is that [9] performs better when the unlabeled
data characterizes well the input space.

We study the computational times of our different models
on these datasets (table 2). Note that the supervised kernel
models, SVM and KRR, can be applied since the kernel ma-
trices for training are 10,000 and 20,000 for these datasets.
But LapSVM and LapKRR require the full 60,000 dataset
which is infeasible. Our proposed method however has no
problem scaling to 60,000 and beyond.

We also consider a 3D human pose estimation problem
based on 2D image information. We run our experiments on
the very large Human 3.6M dataset [26], where we sample
a subset of 1,055,424 poses for training and 56,860 poses
for testing. We examine the following learning task: given
the 2D pose, learn a model which is able to estimate the
corresponding 3D pose. Thus, our input data consists of 2D
human body joint positions and the target data of the corre-
sponding 3D joint positions. We normalize the 2D pose data
by setting the origin of the coordinate system in the pelvis
joint. Also, we rotate each 2D pose such that the neck pelvis
axis would align with the OY axis and scale it such that the
average limb size would be 1. Our learning model is kernel
ridge regression as it is simple and demonstrates the use of
kernel methods. We choose the radial basis function kernel
approximation for our problem due to the nature of the data.
The random features approximation is based on d = 4, 000
dimensions. By default, the entire dataset is fully labeled
with both 2D and 3D information. For the semi-supervised
problem, we consider 3D pose to be missing for some of
the data, according to different splits. The performance of
the model is illustrated in table 3. Please note, that during
this experiment we varied the ratio between labeled and
unlabeled data, keeping the total number of data points used.

The reason behind this is that we want to see the impact of
the labeled data, given that the quantity of unlabeled data
is dense (' 1, 000, 000). The purpose of this experiment is
to empirically illustrate that the proposed data-dependent
kernel approximation improves 3D pose estimation in a non-
trivial, semi supervised learning scenario, where we work
with large-scale datasets of over 1 million elements.

4.4 Dimensionality Reduction

In this section we study the effect of the dimensionality
reduction on the warping U . In a classification problem we
have seen this to beneficially make the separation sharper.
We performed a similar analysis on the sampled data from
Human3.6M [26], as shown in figure 3. We use 1, 055, 424
data points with a split of 528 labeled data and 1, 054, 896
unlabeled data. The Fourier approximation has d = 4, 000
dimensions. Following the eigen-decomposition of the warp-
ing matrix we choose 20 subsets of dimensions (with linear
spacing between 100 and 4, 000 for the dimension of the
subset), with the highest corresponding eigenvalues. The
subset of 100 dimensions contains the most significant eigen-
vectors and we increase the size of the subset by adding the
remaining dimensions based on the value of their corre-
sponding eigenvalues (the higher ones). We observe that
with a subset of nearly 1, 000 most significant dimensions
we obtain a performance similar with the one of the model
containing all dimensions.

5 Conclusions

In this paper we derive an approximate learning procedure
for data-dependent kernels, that performs well in practice.
Our methodology relies on low-dimensional kernel approxi-
mations, thus overcoming the computational challenges of
applying semi-supervised frameworks like manifold regu-
larization to large datasets. We prove that our construction
represents a valid approximation of the data-dependent
kernel and provide a Lemma for asymptotic convergence.
Our experiments show that the method performs on par
with exact kernel based equivalents in small datasets. For
large datasets, we show that our methodology can now
take full advantage of unlabeled data, being superior to
kernel approximations that use only labeled data, at com-
parable computational cost. The method is demonstrated
to effectively handle datasets of millions of items in practice.
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