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A Proofs of Lemmas in Section 4

In this section, we restate the Lemmas in Section 4 which were used to prove Theorem 3.2, and present their
proofs.

First, we prove lemmas which show a lower bound and a upper bound on the eigenvalues of the intermediate

matrices Uy in Algorithm 1. This shows Uy always stay away from the surface where unwanted stationary point

locate.

cmin (omm (Uo),/ amh,(M)/lO)
max ([ Uol3,(31M],)""*)

constant. Then, for every t € [T — 1], we have Uy be a PD matrix with

Omin (M)> )

Lemma A.1 (Restatement of Lemma 4.2). Suppose n < , where ¢ is a small enough

>\min (Ut) Z min (Unlin (UO) ) 10

Proof. We will prove the lemma by induction. The base case t = 0 holds trivially. Suppose the lemma holds for
some t. We will now prove that it holds for ¢t + 1. We have
Amin (Ug+1) =Amin (Ue =1 (Us” = M) Ug — Uy (Ug® — M)

3 1
ZAmin (4Ut - 277Ut3> + AInin <4Ut + U(MUt + UtM)>

3 1
=Amin (4Ut - 2nUt3) + Amin ((21 + nM) Ut ( I+ nM> - nQMUtM> 8)
< 1 i .
When n < 100 max([UelZ31MI,) using Lemma 4.3 we can bound the first term as
3 3 3 3
)\min zUt - 277Ut = zamin (Ut) - 2n0min (Ut) . (9)
To bound the second term, for any vector w € R" with ||w|l, = 1, let w = > a;v;, where v; is the i*!

eigenvector of M, and Y ; o7 = 1. Then:
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where ({1) is due to the fact that Uy is a PD matrix, 80 Amin (Ut) = omin (Ug) > 0, and ((2) is because since
min(am;n(Uo),\/nmin(M)/lO) 1 9 2 1
< ) < i1ng. .
n= max(||Ug\\S,(3|\M\|2)3/2) S 25T M), we have n°k (Uy) 0; (M)” < 2M03 (M)

Plugging Eq.(9) and Eq.(10) into Eq.(8), we have:

1
>\min (UtJrl) 2 Omin (Ut) (1 + §n0min (M) - 2770min (Ut)2)
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When opmin (Ug) < \/0min (M) /3, we obtain:

min M
)\min (Ut+1) Z Omin (Ut> Z max <Umin (UO> ) UH) )

10

and when omin (Ut) > v/0min (M)/3, we have:
)\min (Ut+1) Z Omin (Ut) (1 - 277Umin (Ut)z)

9 . Omin M
> Oin (Us) (1= 20 [Uel3) 2 10min (V) > min (ffmm (Uo). 10()> |

This concludes the proof. O

Lemma A.2 (Restatement of Lemma 4.3). Suppose n <

1 _— .
10 max(/[Uo]2,31M], ) For every t € [T — 1], we have:

[ULll, < max (||Uo||2 /3 |M||2) |

Proof. We will prove the lemma by induction. The base case t = 0 is trivially true. Supposing the statement is
true for Uy, we will prove it for Ugyq.

Using the update equation of Algorithm 1, we have:
[Ues1ll, = ||Us — 1 (Ug? = M) Uy — Uy (U® — M)
= ||(T-2nU?) Uy + nMU; + U M|,
< [[(T = 27U?) Ugl|,, + 20 M}, [ Ugll, - (11)

I

The singular values of the matrix (I - 277Ut2) Uy are exactly (1 — 2no?) - o where o is a singular value of Ug.

For o < /2[[M],, we clearly have (1 — 2no?)o < /2 [M][,. On the other hand, for o > /2| M||,, we have
(1—2no?)o < (1 —4n||M||,)o. Plugging this observation into Eq.(11), we obtain:

[Ugta]l, < max (\/2 My, (1 — 4n [[M]]5) ||Ut||2> + 21 [ M|, [[U¢ll

1
< e (2 IMI, + 15 10y [0l ) < ma ([0l /3N, ).

where we used the inductive hypothesis in the last step. This proves the lemma. O

Finally, we prove the smoothness and gradient dominance in above regions.
Lemma A.3 (Restatement of Lemma 4.4). For any U1,Uy € {U]| ||U||§ < T}, we have function f(U) =
HM — UQH? satisfying:

[Vf(U1) = Vf(Usz)|[r < 8max{I, | M],}[[Uy — Uz| r (12)

Proof. By expanding gradient V f(U), and reordering terms, we have:

[Vf(U1) = Vf(U2)llr
=[|(2U1® — MU; — U; M) — (2U3* — MU, — UsM)||»
=)2(U1* - U2%) = M(Uy — Uz) — (Uy — Ug)M||p
<2|M|2]|Us — Uz|lr +2|Us° = U2?||p
=2|M||2[|U1 - Usg||r +2|U1*(Us = Uz) + U1 (U — Uz)Uz + (Uy — Uz)Us”|
<2[|[M||2[|Uy — Uz||r + 6T'[|Ur — Uz||r
<8max{I', [M|[,}| U1 — Uz|r
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Lemma A.4 (Restatement of Lemma 4.5). For any U € {Ulom (U)* > 7}, we have function f(U) =
||M — U2Hi satisfying:
IV£(U)|IF = 47£(U) (13)

Proof. By expanding gradient V f(U), we have:

V(U = [I(U? = M)U + U(U? - M|
=((U%? -M)U + U(U? - M), (U? - M)U + U(U? - M))
>405,:,(U)[U? = M||% = 47/(U)

min

B Proof of Theorem 3.4

In this section, we will prove Theorem 3.4. We first state a useful lemma which is a stronger version of Lemma
4.2

Lemma B.1. Suppose U is a PD matriz with ||[Ug, < max(||[Uelly,/3[M],), and owmin (Us) >

. ) 1 X cmin(omin(Uo),%Q\/am;n(M)) .
min(omin (Uo) , 151/ Tmin (M)). Suppose further that n < ([ Ul /31N, )72 where ¢ is a small enough

constant and denote Ugyq 2 Uy —7n (Ut2 — M) U, —nU, (Ut2 — M) Then, Uty1 is a PD matrix with:

1

7170 Omin (M))

in (M
i (Ur1) = (14 2722880 ) i, (V)

Indeed, our proof of Lemma 4.2 already proves this stronger result. Now we are ready to prove Theorem 3.4.

Proof of Theorem 8.4. The proof of the theorem is a fairly straight forward modification of the proof of Theo-
rem 3.2. We will be terse since for most part we will use the arguments employed in the proofs of Theorem 3.2
and Lemmas 4.3 and 4.2.

We have the following two claims, which are robust versions of Lemmas 4.3 and 4.2, bounding the spectral norm
and smallest eigenvalue of intermediate iterates. The proofs will be provided after the proof of the theorem.

Claim B.2. For every t € [T — 1], we have:
U], < max([[Uolly, /3 [M]],).
Claim B.3. For every t € [T — 1], we have Uy be a PD matriz with

Omin (M)

Omin (Ut) 2 min(gmin (UO) 5 10 )

We prove the theorem by induction. The base case ¢t = 0 holds trivially. Assuming the theorem is true for ¢, we
will show it for ¢+ 1. Denoting Uy 1 = Uy — 1 (Uy® — M) Uy — Uy (Ug2 — M), we have

’

< Bt 2 O+ 1541 m

IM = Uea?|, = [|M = T2y = Tiadoe = 80040 - A

Using Claims B.2 and B.3, Lemma 4.3 tells us that

|Teia|, < max(ally /3 M),
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and Theorem 3.2 tells us that
HM . fﬁHHF < exp (—Enmin(amm (Uo)?, 0min (M))) IM-U2,.
Plugging the above two conclusions into (14), tells us that
M = U]

< exp (—2nmin(on (Uo)? , omin (VD) ) [M = U + 2max(([Uol , /3 IMI) 8

1 . e,
+ %ngmin (M) mln(gmin (UO) ) Omin (M)) ||At HF

< exp <751] min(omin (Uo)2 , Omin (M))) ||M - U02||F

t
+4max([Uolly ,/3[M]l,) 3= exp (~2nmin(omsn (Uo)®, gin (M)t~ 5)) A
s=0

where we used the induction hypothesis in the last step. O
We now prove Claim B.2.

Proof of Claim B.2. Just as in the proof of Lemma 4.3, we will use induction. Assuming the claim is true for
U, by update equation

Ut+1 =U; — n (Ut2 - M) Ug — 77Ut (Ut2 — M) + A\
We can write out:

Ul < [[(T—20U¢%) Ut [, + 0 M, [[Uell, + 0 [[Uelly Ml + [ A¢ll, - (15)

I

Since n < and ||Ugll, < max(||Uoll5,+/3]|M]||,), note that the singular values of the matrix

1
10 max([[Uoll3, [M]l,)
(I—2nU¢%) Uy are exactly (1 — 2no?) - o where o is a singular value of Uy. For o < /2[[M],, we clearly
have (1 —2no?)o < 1/2[|[M[],. On the other hand, for o > \/2[[M],, we have (1 — 2no?)o < (1 — 4n |M||,)o.
Plugging this observation into (15), we obtain:

[Uetall, < max (\/2 My, (1 — 4n [|M]],) ||Ut||2) + 20 [[M]l [[Uslly + [ A¢ll,

< max(|[Uolly , /3 [IM][5),

proving the claim. O
We now prove Claim B.3.

Proof of Claim B.3. We will use induction, with the proof following fairly easily using Lemma B.1. Suppose
Omin (Ut) = min(omin (Uo) , 75 v/0min (M)). Denoting

-~ A

Ugy1 = Ug — 9 (U? — M) U — U, (Uy> — M),

Lemma B.1 tells us that

e Omin M . 1
Omin (Ut+1) Z (1 + 7715()) mln(omin (UO) ) TO Omin (M)),

which then implies the claim, since

. 1
Omin (Ut+1) Z Omin (Ut+1) - ||AtH2 Z mln(Umirl (UO) ) E Omin (M))
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C Proof of Theorem 3.5
In this section, we will prove Theorem 3.5.
Proof. Consider two-dimensional case, where

M|, 0
0 Omin (M)

M =

We will prove Theorem 3.5 by considering two cases of step size (where n > W orn < M) separately.
2 2

Case 1 : For step size n > . Let B = 5= + 1, and consider following initialization Ul:
4HMH 2n[[M],

AlIM, 0
0 Omin (M)

Uy =

Since 7 > W, we know § < 3, which satisfies our assumption about Ug and M. By calculation, we have:
25— /FIMEE 0
Uo(Uo® ~ M) + (Ug? - M)Up = [ 2 )0 Ml 0

and since 2n(8 — 1) |[M||, = 1, we have:

3
U1 _ UO . n[UO(U02 . M) + (U02 . M)Ug] _ \V B ||M |2 - 277(6 - 1) \/ fB ||MH2 0 _ 00

0 1 0 1

Then, by induction we can easily show for all ¢ > 1, Uy = Uy, thus HUt2 - MHF > M|, > omin (M) .

Case 2 : For step size n < 4HMH , consider following initialization Ug:
M 0
o v,
0 % Omin (M)

According to the update rule in Algorithm 1, we can easily show by induction that: for any ¢t > 0, Uy is of form:

M 0
e (V™I

0 at\/Tmin (M)

where a; is a factor that depends on ¢, satisfying 0 < oy < 1 and:

1

aryr = [l 4+ 1omin (M) (1 - o), ag = 3
Since n < 4HMH , we know: ) )
arp1 < ol + (1= of)] < o + P

Therefore, for all ¢t < x, we have a; < 2, and thus ||U'G — M||F 4amm (M). O



