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Abstract

Modern topic models typically have a probabilis-
tic formulation, and derive their inference al-
gorithms based on Latent Dirichlet Allocation
(LDA) and its variants. In contrast, we approach
topic modeling via combinatorial optimization,
and take a small-variance limit of LDA to de-
rive a new objective function. We minimize this
objective by using ideas from combinatorial opti-
mization, obtaining a new, fast, and high-quality
topic modeling algorithm. In particular, we show
that our results are not only significantly better
than traditional SVA algorithms, but also truly
competitive with popular LDA-based approaches;
we also discuss the (dis)similarities between our
approach and its probabilistic counterparts.

1 Introduction

Topic modeling has become a cornerstone of unsupervised
learning on large document collections. While the roots of
topic modeling date back to latent semantic indexing (Deer-
wester et al., 1990) and probabilistic latent semantic in-
dexing (Hofmann, 1999), the arrival of Latent Dirichlet
Allocation (LDA) (Blei ef al., 2003) was a turning point that
transformed the community’s thinking about topic modeling.
LDA led to several followups that address some limitations
of the original model (Blei and Lafferty, 2006; Wang and
Grimson, 2007), while paving the way for subsequent ad-
vances in Bayesian learning, including variational inference
methods (Teh ez al., 2006b), nonparametric Bayesian mod-
els (Blei et al., 2004; Teh et al., 2006a), among others.

The LDA family of topic models are almost exclusively cast
as probabilistic models. Consequently, the vast majority of
techniques developed for topic modeling—collapsed Gibbs
sampling (Griffiths and Steyvers, 2004), variational meth-
ods (Blei et al., 2003; Teh et al., 2006b), and “factorization”
approaches with theoretical guarantees (Anandkumar et al.,
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2012)—are centered around performing inference for under-
lying probabilistic models. By limiting ourselves to a purely
probabilistic viewpoint, we may be missing opportunities
arising from combinatorial thinking. This observation un-
derlies our central question: Can one obtain a combinatorial
topic model that competes with LDA?

We answer this question positively by proposing a new com-
binatorial formulation obtained via small-variance asymp-
totics (SVA) on the LDA model. SVA produces limiting
versions of several probabilistic learning models, which can
then be solved as combinatorial optimization problems. (A
helpful analogy here is the relation between k-means and
Gaussian mixtures as variance goes to zero.) Indeed, SVA
techniques have been quite fruitful recently (Campbell et
al., 2013; Broderick et al., 2013; Wang and Zhu, 2014),
and a common theme is that computational gains and good
empirical performance of k-means carry over to richer SVA
based models.

But merely using SVA to obtain a combinatorial topic model
is insufficient: we also need effective algorithms to optimize
the model. A direct application of the popular greedy com-
binatorial procedures on the LDA-based SVA model fails
to compete with the main probabilistic LDA methods. This
setback necessitates a new idea. Surprisingly, as we will
see, an improved word assignment technique combined with
an incremental refinement procedure transforms the SVA
approach into a competitive topic modeling algorithm.

Contributions. The main contributions of our paper are:

— We perform SVA on the standard LDA model to obtain a
new combinatorial topic model.

— We develop algorithms for optimizing this combinatorial
model by using ideas from facility location and incremen-
tal refinement. Moreover, we show how our procedure
can be implemented to take just O(N K)) time per itera-
tion to assign words to topics, where NV is the total number
of words and K the number of topics.

We demonstrate that our approach not only improves signif-
icantly over the traditional SVA algorithms, but also com-
petes favorably with existing state-of-the-art topic modeling
algorithms; in particular, our approach is orders of mag-
nitude faster than sampling-based approaches, with com-
parable accuracy. Moreover, we show that the sampler’s
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mixing time improves substantially when initialized using
our combinatorial method for just a few iterations. We also
compare against several recent theoretically-motivated al-
gorithms (Anandkumar et al., 2012; Podosinnikova et al.,
2015; Arora et al., 2013) and variational inference methods.

Note. Before proceeding further, we note here an important
point regarding evaluation of topic models. The connection
between our approach and standard LDA may be viewed
analogously to the connection between k-means and a Gaus-
sian mixture model. As such, evaluation is nontrivial; most
topic models are evaluated using predictive log-likelihood
or related measures. In light of the “hard-vs-soft” anal-
ogy, a predictive log-likelihood score can be misleading
for evaluating performance of the k-means algorithm, so
clustering comparisons typically focus on ground-truth ac-
curacy (when possible). Due to the lack of available ground
truth data, to assess our combinatorial model we must resort
to synthetic data sampled from the LDA model to enable
meaningful quantitative comparisons; but in line with com-
mon practice we also present results on real-world data, for
which we use both discrete and held-out log-likelihoods.

1.1 Related Work

LDA Algorithms. Many techniques have been developed
for efficient inference for LDA. MCMC-based methods
are quite popular, notably the collapsed Gibbs sampler
(CGS) (Griffiths and Steyvers, 2004), and variational infer-
ence methods (Blei et al., 2003; Teh et al., 2006b). Among
MCMC and variational techniques, CGS typically yields ex-
cellent results and is guaranteed to sample from the desired
posterior with sufficiently many samples. However, it can
be slow and many samples may be required before mixing.

Since topic models are often used on large (document) col-
lections, significant effort has been made in scaling up LDA
algorithms. One recent example is (Li ef al., 2014) that
presents a massively distributed implementation. Such meth-
ods are outside the focus of this paper, where the emphasis
is on a new combinatorial model that can quatitatively com-
pete with the probabilistic LDA approaches. Ultimately, our
model should be amenable to fast distributed solvers, and
obtaining such solvers is an important part of future work.

A complementary line of algorithms starts with (Arora et
al., 2012, 2013), who consider certain separability assump-
tions on the input data to circumvent NP-Hardness of the
basic LDA model. These works have shown performance
competitive to Gibbs sampling in some scenarios while also
featuring theoretical guarantees. Other recent viewpoints on
LDA are offered by (Anandkumar et al., 2012; Bansal et al.,
2014; Podosinnikova et al., 2015).

Small-Variance Asymptotics (SVA). As noted above, SVA
has recently emerged as an effective tool for obtaining
scalable algorithms and objective functions by “hardening”
probabilistic models. Similar connections are known for

instance in dimensionality reduction (Roweis, 1997), multi-
view learning, classification (Tong and Koller, 2000), and
structured prediction (Samdani et al., 2014). Starting with
Dirichlet process mixtures (Kulis and Jordan, 2012), one
thread of research has considered applying SVA to richer
Bayesian nonparametric models. Applications include clus-
tering (Kulis and Jordan, 2012), feature learning (Broder-
ick et al., 2013), evolutionary clustering (Campbell et al.,
2013), infinite hidden Markov models (Roychowdhury et
al., 2013), Markov jump processes (Huggins et al., 2015),
infinite SVMs (Wang and Zhu, 2014), and hierarchical clus-
tering methods (Lee and Choi, 2015). A related thread of
research considers applying SVA when the data likelihood
is not Gaussian, which is precisely the scenario under which
LDA falls. (Jiang et al., 2012) show how SVA may be
applied when the likelihood is a member of the exponen-
tial family and they consider topic modeling as a potential
application, but no quantitative comparisons were provided.

However, almost all the algorithms proposed in the prior
SVA literature share the same greedy local assignment step,
which is known to succeed only under certain circumstances
and often fails to minimize the objective greatly under ran-
dom initialization (Yen et al., 2015). We will show in the
experiments that the popular greedy SVA algorithm (which
we denote in this work as the Basic algorithm) fails to
work well on topic models; the present paper fixes this is-
sue by using a stronger word assignment algorithm and
introducing incremental refinement.

Combinatorial Optimization. In developing effective al-
gorithms for topic modeling, we will borrow some ideas
from the large literature on combinatorial optimization al-
gorithms. In particular, in the k-means community, signif-
icant effort has been made on how to improve upon the
basic k-means algorithm, which is known to be prone to
local optima; these techniques include local search meth-
ods (Dhillon et al., 2002) and good initialization strate-
gies (Arthur and Vassilvitskii, 2007). We also borrow ideas
from approximation algorithms, most notably algorithms
based on the facility location problem (Jain et al., 2003).

2 SVA for Latent Dirichlet Allocation

We now detail our combinatorial approach to topic modeling.
We start with the derivation of the underlying objective
function that is the basis of our work. This objective is
derived from the LDA model by applying SVA, and contains
two terms. The first is similar to the k-means clustering
objective in which it seeks to assign words to topics that are,
in a particular sense, “close.” The second term, arising from
the Dirichlet prior on the per-document topic distributions,
places a constraint on the number of topics per document in
which it tries to exploit the word co-occurrence information.

Recall the standard LDA model. We choose topic weights
for each document as 6; ~ Dir(c), where j € {1,..., M}.
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Then we choose word weights for each topic as i, ~
Dir(8), where t € {1,..., K'}. Then, for each word 7 in
document j, we choose a topic z;; ~ Cat(6;) and a word
wj; ~ Cat(¢),,,). Here a and j3 are scalars (i.e., we are
using a symmetric Dirichlet distribution). Let W denote the
vector of all words in all documents, Z the topic indicators
of all words in all documents, @ the concatenation of all the
6; variables, and 1 the concatenation of all the v, variables.
Also let N; be the total number of word tokens in docu-
ment j. The 0; vectors are each of length K, the number
of topics. The v, vectors are each of length V, the size of
the vocabulary. We can write down the full joint likelihood
p(W,Z,0,1|a, B) of the model in the factored form

K
[1p(:18) H (0] szﬂw (wjilws,,),
t=1 j=

where each of the probabilities is as specified by the LDA
model. We can eliminate variables to simplify inference by
integrating out @ to obtain

(2, W, pla, B) = /9 p(W.Z,0,%la, B)d. (1)

After integration and some simplification, (1) becomes
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Here nt

;. is the number of word tokens in document j as-
signed to topic ¢. Following (Broderick et al., 2013), we can
obtain the SVA objective by taking the (negative) logarithm
of this likelihood and letting the variance go to zero. Given
space considerations, we will summarize this derivation;

full details are available in the supplementary material.

Consider the first bracketed term of (2). Taking logs yields
a sum over terms of the form log p(¢;|3) and terms of the
form log p(w;i[1)-,, ). Noting that the latter of these is a cat-
egorical distribution, and thus a member of the exponential
family, we can appeal to the results in (Banerjee et al., 2005;
Jiang et al., 2012) to introduce a new parameter for scaling
the variance. In particular, we can write p(w;;|¢.,, ) in its
Bregman divergence form exp(—KL(w;;,-,,)), where KL
refers to the discrete KL-divergence, and w;; is an indica-
tor vector for the word at token wj;. It is straightforward
to verify that KL(10j;,1.;,) = —10g %2, w;,. Next, intro-
duce a new parameter 7 that scales the variance appropri-
ately, and write the resulting distribution as proportional to
exp(—n - KL(w;;,vz,,)). As ) — oo, the expected value
of the distribution remains fixed while the variance goes to
zero, exactly what we require.

After this, consider the second bracketed term of (2). We
scale a appropriately as well; this ensures that the hier-
archical form of the model is retained asymptotically. In
particular, we write « = exp(—A\ - n7). After some manipu-
lation of this distribution, we can conclude that the negative
log of the Dirichlet multinomial term becomes asymptot-
ically n\(K 1), where K is the number of topics
currently used by document j. (The maximum value for
K; is K, the total number of topics.) To formalize, let
f(x) ~ g(z) denote that f(x)/g(x) — 1 as x — oo. Then
we have the following (see the supplement for a proof):

Lemma 1. Consider the likelihood

K

al I(aK L(n} +a)
p(Zle) = []1_[1 F(Zf_l(ng )+aK) ]‘_‘[ I'(a) ]

If @ = exp(—A\ - n), then asymptotically as n — oo, the
negative log-likelihood satisfies

t=1

—log p(Z|a) NWAZ Kjy —1).

Now we put the terms of the negative log-likelihood together.
The — log p(¢¢|8) terms vanish asymptotically since we are
not scaling /3 (see the note below on scaling 3). Thus, the re-
maining terms in the SVA objective are the ones arising from
the word likelihoods and the Dirichlet-multinomial. Using
the Bregman divergence representation with the additional
1 parameter, we conclude that the negative log-likelihood
asymptotically yields the following:

—logp(Z, W, 9|, §)

[ZZKL Wji, V) +AZ

j=114i=1

=

which leads to our final objective function

M Nj
%(ZZKL%% +AZKJ+> (3)

j=11i=1

We remind the reader that KL(w;;,v.,,) = —1og 1., w,,-
Thus, we obtain a k-means-like term that says that any
word should be “close” to its assigned topic in terms of
KL-divergence under the word co-occurrence constraint
enforced with reasonable A value. Notice that (3) reduces
to the document-level K -means problem with A — oo, and
the token-level K -means with A — 0.

Note. We did not scale /3 to obtain a simpler objective with
only one parameter (other than the total number of topics),
but let us say a few words about scaling 5. A natural ap-
proach is to further integrate out 1) of the joint likelihood, as
is done in the collapsed Gibbs sampler. One would obtain
additional Dirichlet-multinomial distributions, and properly
scaling as discussed above would yield a simpler objective
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Algorithm 1 Basic Batch Algorithm

Algorithm 2 Improved Word Assignments for Z

Input: Words: W, num. of topics: K, Topic penalty: A
Initialize Z and topic vectors i1, ..., Y.
Compute initial objective function (3) using Z and 1.
repeat
//Update assignments:
for every word token ¢ in every document j do
Compute distance d(j, 7, ) to topic i: —log(¢¢,w,, )-

If zj; # t for all tokens ¢ in document j, add A to
d(j,i,t).
Obtain assignments via Z;; = argmin,d(j, ,t).
end for
//Update topic vectors:
for every element vy, do
Py = # occ. of word w in topic t / total # of word
tokens in topic .
end for
Recompute objective (3) using updated Z and ).
until no change in objective function.
Output: Assignments Z.

that places penalties on the number of topics per document
as well as the number of words in each topic. Optimization
would then be performed with respect to the topic assign-
ment matrix. Future work will consider effectiveness of
such an objective function for topic modeling.

3 Algorithms

With our combinatorial objective in hand, we are ready
to develop algorithms that optimize it. First, we discuss
a locally-convergent algorithm similar to k-means and the
hard topic modeling algorithm (Jiang et al., 2012). Then, we
introduce two more powerful techniques: (i) a word-level
assignment method that arises from connections between
our proposed objective function and the facility location
problem; and (ii) an incremental topic refinement method.
Despite the apparent complexity of our algorithms, we show
that the per-iteration time matches that of the collapsed
Gibbs sampler (while empirically converging in just a few
iterations, as opposed to the thousands typically required
for Gibbs sampling).

Algorithm 1 shows the basic iterative algorithm, which fol-
lows a strategy similar to DP-means (Kulis and Jordan,
2012) and the hard topic modeling algorithm (Jiang et al.,
2012)—we perform alternate optimization by first minimiz-
ing with respect to the topic indicators for each word (the Z
values) and then minimizing with respect to the topics (the
1) vectors). As with DP-means, the updates for Z cannot
be computed exactly, due to the extra penalty term in the
objective, so the basic algorithm uses a simple heuristic for
the updates on Z. The resulting algorithm has the advantage
that it achieves local convergence. However, it works only

Input: Words: W, num. of topics: K, Topic penalty: A,
Topics: ¥
for every document j do
Let f; = A for all topics ¢.
Initialize all word tokens to be unmarked.
while there are unmarked tokens do
Pick the topic ¢ and set of unmarked tokens WV that
minimizes (4).
Let f; = 0 and mark all tokens in W.
Assign z;; = t forall i € W.
end while
end for
Output: Assignments Z.

under careful initializations, analogous to DP-means.

3.1 Improved Word Assignments

In this section, we discuss and analyze an alternative assign-
ment technique for Z, which may be used as an initialization
to the locally-convergent basic algorithm or to replace it
completely.

Algorithm 2 details the alternate assignment strategy for
tokens. The inspiration for this greedy algorithm arises
from the fact that we can view the assignment problem
for Z, given 1), as an instance of the uncapacitated facility
location (UFL) problem (Jain et al., 2003). Recall that the
UFL problem aims to open a set of facilities from a set F'
of potential locations. Given a set of clients D, a distance
functiond : D x F' — R, and a cost function f : ' — R,
for the set F', the UFL problem aims to find a subset .S of F’
that minimizes » ;.5 fi + > ;e p(mines dij).

To map UFL to the assignment problem in combinatorial
topic modeling, consider the problem of assigning word
tokens to topics for some fixed document j. The topics cor-
respond to the facilities and the clients correspond to word
tokens. Let f; = A for each facility, and let the distances
between clients and facilities be given by the corresponding
KL-divergences as detailed earlier. Then the UFL objective
corresponds exactly to the assignment problem for topic
modeling. Algorithm 2 is a greedy algorithm for UFL that
has been shown to achieve constant factor approximation
guarantees when distances between clients and facilities
forms a metric (Jain et al., 2003) (this guarantee does not
apply in our case, as KL-divergence is not a metric).

The algorithm, must select, among all topics and all un-
marked tokens WV, the minimizer to

fo 4 2 iew KL(Wji, ¥)
W)

“4)

This algorithm appears to be computationally expensive,
requiring multiple rounds of marking where each round re-
quires us to find a minimizer over exponentially-sized sets.



Ke Jiang, Suvrit Sra, Brian Kulis

Algorithm 3 Incremental Topic Refinements for Z

Input: Words: W, num. of topics: K, Topic penalty: A,
Assignment: Z, Topics: v
randomly permute the documents.
for every document j do
for each mini-topic .S, where z;, =t Vs € .S for some
topic t do
for every other topic t’ # t do
Compute A(S, t,t'), the change in the obj. func-
tion when re-assigning z;; = t' Vs € S.
end for
Let t* = argmin, A(S, ¢, t').
Reassign tokens in S to ¢* if it yields a smaller obj.
Update topics 1) and assignments Z.
end for
end for
Output: Assignments Z and Topics ).

Surprisingly, under mild assumptions we can use the struc-
ture of our problem to derive an efficient implementation
of this algorithm that runs in total time O(NK). The de-
tails of this efficient implementation are presented in the
supplementary material.

3.2 Incremental Topic Refinement

In this section, we try to refine the results exploring the
hierarchical structure in topic modeling: we have both word-
level assignments and “mini-topics” (formed by word tokens
in the same document which are assigned to the same topic).
Explicitly refining the mini-topics should help in achieving
better word-coassignment within the same document. This
can be considered as analogously to the block coordinate
descent algorithm (Bertsekas, 1999) in the continuous opti-
mization and is also similar to the local search techniques
in the clustering literature (Dhillon et al., 2002).

More specifically, we consider an incremental topic refine-
ment scheme that works as follows. For a given document,
we consider swapping all word tokens assigned to the same
topic within that document to another topic. We compute the
change in objective function that would occur if we updated
the topic assignments for those tokens and then updated the
resulting topic vectors. Specifically, for document j and its
mini-topic S formed by its word tokens assigned to topic ¢,
the objective function change can be computed by

A(S 1) = = (n!. = nj ), ) — (n! +nj)o(3y))
+nl g(gpy) +nl d(sr) = NIt € Tj),
where n§ is the number of tokens in document j assigned
to topic ¢, n!, is the total number of tokens assigned to topic

t, ¢, and 'gb;,r are the updated topics, 7; is the set of all the
topics used in document j, and ¢(¢p;) = > Vi 10g .

We accept the move if min, . A(S,¢,t") < 0 and update
the topics 1) and assignments Z accordingly. Then we con-

tinue to the next mini-topic, hence the term “incremental”.
Since ) and Z are updated in every objective-decreasing
move, we randomly permute the processing order of the
documents in each iteration. This usually helps in obtaining
better results in practice. See Algorithm 3 for details.

At first glance, it appears that this incremental topic refine-
ment strategy may be computationally expensive. How-
ever, computing the global change in objective function
A(S,t,t") can be computed in O(]S|) time, if the topics are
maintained by count matrices. Only the counts involving
the words in the mini-topic and the total counts are affected.
Since we compute the change across all topics, and across
all mini-topics .S, the total running time of the incremental
topic refinement is O(N K), as for the basic batch algorithm
and the improved word assignment algorithm.

4 Experiments

In this section, we compare the algorithms proposed above
with the basic algorithm and their probabilistic counterparts.

4.1 Synthetic Documents

Our first set of experiments is on simulated data. We com-
pare two versions of our algorithms—Improved Word As-
signment (Word), and Improved Word with Topic Refine-
ment (Word+Ref ine)—with the traditional Basic Batch
algorithm (Basic), the collapsed Gibbs sampler (CGS)
(Griffiths and Steyvers, 2004), the standard variational in-
ference algorithm (VB) (Blei et al., 2003), the spectral al-
gorithm (Spectral) (Anandkumar et al., 2012), the or-
thogonal joint diagonalization (JD) (Podosinnikova et al.,
2015), the tensor power method (TPM) (Podosinnikova et
al., 2015) and the Anchor method! (Arora et al., 2013).

Methodology. Due to a lack of ground truth data for topic
modeling, we benchmark on synthetic data. We train all
algorithms on the following data sets. (A) documents sam-
pled from an LDA model with a = 0.04, 5 = 0.05, with 20
topics and having vocabulary size 2000. Each document has
length 150. (B) documents sampled from an LDA model
with a = 0.02, 8 = 0.01, 50 topics and vocabulary size
3000. Each document has length 200.

For the collapsed Gibbs sampler, we collect 10 samples with
30 iterations of thinning after 3000 burn-in iterations. The
variational inference runs for 100 iterations. The Word
algorithm replaces basic word assignment with the im-
proved word assignment step within the batch algorithm,
and Word+Refine further alternates between improved
word and incremental topic refinement steps. The Word
and Word+Refine are run for 20 and 10 iterations, re-
spectively. All the algorithms are initialized by randomly
assigning each word to one of the topics, whenever appli-
cable. For Basic, Word and Word+Refine, we run
experiments with A € {6,7,8,9,10,11, 12}, and the best

"All the codes used are provided by the authors.
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SynthA =38 X=9 =10 X =11 X =12
Basic 0.027/0.009 | 0.027/0.009 | 0.027/0.009 | 0.027/0.009 | 0.027/0.009
Word 0.72470.669 | 0.730/0.660 | 0.786/0.750 | 0.786/0.745 | 0.78470.737
Word+Refine || 0.828/0.838 | 0.839/0.850 | 0.825/0.810 | 0.847/0.859 | 0.848/0.859
CGS 0.829/0.839

SynthB X =6 X=17 X =8 A=9 =10
Basic 0.04370.007 | 0.043/0.007 | 0.043/0.007 | 0.04370.007 | 0.043/0.007
Word 0.850/0.737 | 0.854/0.743 | 0.855/0.752 | 0.855/0.750 | 0.850/0.743
Word+Refine || 0.922/0.886 | 0.926/0.901 | 0.913/0.860 | 0.923/0.899 | 0.914/0.876
CGS 0.917/0.873

Table 1: The NMI scores and Adjusted Rand Index (NMI/ARand, best results in bold, higher is better) for word assignments
of our algorithms for both synthetic datasets with 5000 documents.

results are presented if not stated otherwise. In contrast,
the true o, § parameters are provided as inputs to the CGS,
VB, Spectral, JD and TPM algorithms. We note that
we are heavily handicapped by this setup, since these al-
gorithms are designed specifically for data from the LDA
model. Here, we use LDA moments (Anandkumar et al.,
2012) for the Spectral, JD and TPM algorithms. Please
see the supplementary material for results with the discrete
independent analysis cumulants (Podosinnikova et al., 2015)
and varied document length datasets.

Assignment accuracy. Both the Gibbs sampler and our
algorithms provide word-level topic assignments. Thus we
can compare the training accuracy of these assignments,
which is shown in Table 1. The result of the Gibbs sampler
is given by the highest among all the samples selected. The
accuracy is shown in terms of the normalized mutual infor-
mation (NMI) score and the adjusted Rand index (ARand),
which are both in the range of [0,1] and are standard evalua-
tion metrics for clustering problems.

Despite the similarity with the Gibbs sampler, we can see
that the Basic algorithm, which has the same assignment
update strategy as with existing SVA algorithms, performs
poorly. This shows that the Basic algorithm is very sen-
sitive to the initialization and the A\ value. Unlike Basic,
the Word algorithm greatly boosts the assignment accu-
racy. With further help from topic refinement, we match or
marginally exceed the performance of the Gibbs sampler
for a wide range of \.

Topic reconstruction error. Now we look at the recon-
struction error between the true topic-word distributions and
the learned distributions. In particular, given a learned topic
matrix 1[) and the true matrix 1, we use the Hungarian algo-
rithm (Kuhn, 1955) to align topics, and then evaluate the /1
distance between each pair of topics. Table 2 presents the
mean reconstruction errors per topic of different learning
algorithms for varying number of documents. As a baseline,
we also include the results from the k-means algorithm with
KL-divergence (Banerjee et al., 2005) where each document
is assigned to a single topic.

Among the three proposed algorithms, similar to the situa-
tion above, the Basic algorithm performs the worst in all
the data settings, even worse than the k-means algorithm.
The topic refinement step provides a significant improve-
ment, which helps to reduce the ¢; error at least 60% from
the Word algorithm only. The Gibbs sampler has the lowest
£1 on smaller corpora, where Word+Refine and Anchor
come next. However, for the larger corpora, the sampler
needs to run much longer to reach a lower ¢; error, and can
not compete with Word+Refine and Anchor for even
3000 iterations. We again want to emphasize here that CGS,
VB, Spectral, JD and TPM? are given the frue parameters
as input.

As observed above, the Gibbs sampler can easily become
trapped in a local optima area and needs many iterations
on large data sets, which can be seen from Figure 1. Since
our algorithm outputs Z, we can use this assignment as
initialization to the sampler. In Figure 1, we show the evo-
lution of topic reconstruction ¢; error initialized with the
Word+Ref ine optimized assignment for only 3 iterations
with varying values of \. With these semi-optimized initial-
izations, we observe more than a 5-fold speed-up compared
to random initializations with no special choice of \.

Running Time. For our current implementation, an itera-
tion of Re fine is roughly equivalent to one Gibbs iteration
while an iteration of Word is roughly equivalent to two
Gibbs iterations. Since one typically runs thousands of
Gibbs iterations (while ours runs in 10 iterations even on
very large data sets, yielding a running time equivalent to
approximately 30 Gibbs iterations), we can observe several
orders of magnitude improvement in speed by our algorithm.
Further, running time could be significantly enhanced by
noting that the Word algorithm trivially parallellizes.

4.2 Real Documents
We consider two real-world data sets with different proper-
ties: a random subset of the Enron emails (8K documents,

2The ¢; distance used in (Podosinnikova et al., 2015) is the
normalized version, which is half of what we report here.
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#Docs SynthA SynthB
2K 4K 6K 8K 10K 2K 4K 6K 8K 10K
KMeans 0.794 | 0.801 | 0.864 | 0.635 | 0.714 1.063 | 1.048 | 1.022 | 0.921 | 0.952
Basic 1.821 | 1.816 | 1.823 | 1.814 | 1.818 1.804 | 1.798 | 1.805 | 1.796 | 1.794
Word 0.772 | 0.384 | 0.373 | 0.364 | 0.220 || 0.944 | 0.760 | 0.582 | 0.537 | 0.504
VB 0.283 | 0.247 | 0.305 | 0.117 | 0.059 || 0.500 | 0.521 | 0.448 | 0.443 | 0.392
Spectral || 0.310 | 0.169 | 0.158 | 0.149 | 0.112 || 0.494 | 0.384 | 0.372 | 0.296 | 0.314
JD 0.208 | 0.151 | 0.126 | 0.111 | 0.099 || 0.310 | 0.238 | 0.199 | 0.178 | 0.161
TPM 0.206 | 0.149 | 0.125 | 0.110 | 0.099 || 0.303 | 0.230 | 0.193 | 0.170 | 0.153
Anchor 0.179 | 0.142 | 0.120 | 0.107 | 0.102 || 0.144 | 0.135 | 0.118 | 0.118 | 0.112
W+R 0.141 | 0.107 | 0.093 | 0.086 | 0.080 || 0.102 | 0.131 | 0.155 | 0.110 | 0.105
CGS 0.130 | 0.092 | 0.076 | 0.199 | 0.197 || 0.094 | 0.091 | 0.098 | 0.338 | 0.276
Table 2: Comparison of topic reconstruction errors of different algorithms.
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Figure 1: left: The evolution of topic reconstruction ¢; errors of Gibbs sampler with different initializations: “Random’

Iterations

s

means random initialization, and “lambda=6" means initializing with the assignment learnt using Word+Re fine algorithm
with A = 6 for 3 iterations. right: The evolution of the held-out word log-likelihood of Gibbs sampler with different

initializations for the Enron dataset (best viewed in color).

semiEnron | semiNYTimes
Basic 1.881 1.890
Word 0.529 0.721
VB 0.375 0.468
Spectral 0.340 0.510
JD 0.219 0.325
TPM 0.215 0.328
Anchor 0.199 0.313
W+R 0.201 0.297
CGS 0.202 0.283

Table 3: Comparison of topic reconstruction errors of differ-
ent algorithms on the semi-synthetic datasets.

vocabulary size 5000), and a subset of the New York Times
articles® (15K documents, vocabulary size 7000). 1K docu-
ments are reserved for predictive performance assessment
for both datasets.

Semi-synthetic corpora. Following (Arora et al., 2013),
we generate semi-synthetic corpora from models trained

3http://archive.ics.uci.edu/ml/machine-learning-
databases/bag-of-words/

with K = 50 from Enron and NYTimes for 3000 Gibbs
steps, with document lengths set to 200. This setup gives
a clear expected advantage to the performance of the
Gibbs sampler; the main interest here is in comparisons
to other methods. Table 3 shows the mean topic recon-
struction errors for 10K documents and Figure 2 presents
the density plot of the reconstruction errors. Similar to
the synthetic situations, the Gibbs sampler has the lowest
¢, error, where Word+Refine and Anchor come next.
However, Word+Refine has the smallest error range.
The Word+Refine also improves significantly over the
Basic and Word algorithms. Again, the true parameters
are provided as input when applicable.

Predictive performance. We consider the held-out word
log-likelihood for predictive performance: fifty percent of
the words of the test documents are used for inference and
the other fifty percent forms the prediction set, which is
similar to the document completion evaluation metric in
(Wallach et al., 2009)*. In addition, we also consider a dis-

*Computing directly from the predictive distribution requires
computationally demanding sampling procedures. As pointed out
in (Ranganath et al., 2015), it only allows testing of a smaller
number (50) of documents.
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Enron 5 =0.1 5 =0.01 5 =0.001
discrete | held-out || discrete | held-out || discrete | held-out
CGS -5.932 -8.604 -5.484 | -10.870 -5.091 | -13.484
W+R -5.434 -9.883 -5.147 | -11.753 -4918 | -13.882
NYT 5=0.1 5 =10.01 5 =0.001
discrete | held-out || discrete | held-out || discrete | held-out
CGS -6.594 -9.345 -6.205 | -11.431 -5.891 | -13.813
W+R -6.105 | -10.666 -5.941 | -12.296 -5.633 | -14.639

Table 4: The held-out word log-likelihood on new documents for Enron (K = 100 topics) and NYTimes (K = 100 topics)

datasets with fixed « value. See text for details.

W+R

CGS || art, artist, painting, museum, century, show, collection, history, french, exhibition
painting, exhibition, portrait, drawing, object, photograph, gallery, flag, artist

W+R

CGS || plane, flight, airport, passenger, pilot, aircraft, crew, planes, air, jet
flight, plane, passenger, airport, pilot, airline, aircraft, jet, planes, airlines

W+R

CGS || car, driver, truck, vehicles, vehicle, zzz_ford, seat, wheel, driving, drive
car, driver, vehicles, vehicle, truck, wheel, fuel, engine, drive, zzz_ford

Table 5: Example topics pairs learned from NYTimes dataset.

Topic Recovery Error Density

method
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DAnchor
[Jrpm

A oonaean A TS
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Figure 2: Density plot of the topic recovery error on
the semi-NYTimes corpora for different algorithms (best
viewed in color).

crete version of the test log-likelihood similar to k-means,
where the computation is based on the learned topic and the
word-topic assignment inferred by the Word algorithm. Ta-
ble 4 shows the results on the Enron and NYTimes datasets.
We can see that our approach excels in the discrete test log-
likelihood while lags in the held-out log-likelihood. Note
here we tune the \ value such that the resulting number
of topics per document is comparable to that of the sam-
pler. This would put our method at a disadvantage since
the differences among the weights will be much smaller in
the document-topic distribution. With a higher A value, we
can get comparable predictive performance as the sampler.
For 8 = 0.01, the held-out log-likelihood of our method
comes at -10.784 (v.s. -10.870) for Enron and -11.449 (v.s.
-11.431) for NYTimes. In Figure 1, we also show the evo-
lution of held-out word log-likelihood initialized with the
Word+Refine optimized assignment for only 3 iterations.
With these semi-optimized initializations, we again observe

quite a speed-up over the random initialization. Table 5
further shows some sample topics generated by CGS and
our method (see the supplement for the full list).

5 Conclusions

Our goal has been to lay the groundwork for a combinato-
rial optimization view of topic modeling as an alternative
to the standard probabilistic framework. Small-variance
asymptotics provides a natural way to obtain an underlying
objective function, using the k-means connection to Gaus-
sian mixtures as an analogy. We saw that the basic batch
algorithm, as often utilized by researchers of small-variance
techniques, performs poorly when compared quantitatively
to probabilistic approaches. However, using ideas from fa-
cility location and incremental refinement, we obtained an
algorithm that compares favorably, while being efficient and
robust to initializations and parameter selection. Moreover,
we also showed that the sampler’s mixing time improves
substantially when initialized using our method. Potential
future work includes distributed implementations for fur-
ther scalability, adapting k-means-based semi-supervised
clustering techniques to this setting, and extensions of k-
means++ (Arthur and Vassilvitskii, 2007) to derive explicit
performance bounds for this problem.
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