A Framework for Optimal Matching for Causal Inference

Supplementary Material

Proofs

Proof of Theorem 1. Let us write SATT as

SATT = n% dier, Yi— n% > ieT, Yi(0).
It is then clear that SATT differs from 7y only in the
second term, that is,

7—SATT = ;- 37, Yi(0) —
= X ()T HWY(0)
= X (CDTFIWfo(Xo) + 5L, (1) Wae,

where we recognize the last term as Ey. For each
term of Ey we have

E[(-1)T 1 Wie;| X, T)

= (=)W (E[Yi(0)| X, T] — fo(Xi))

= (=D)THW (E[Yi(0)[X] — fo(Xi)) =0,
where the first equality is by definition of €¢; and the

fact that W; = W;(X, T') and the second is by As-
sumption 1. O

Zz‘eTU WiYi(O)

Proof of Theorem 2. Let D be the distance matrix
Dy = 6(X;, Xir). For this choice of (F, ||-||), by linear
optimization duality we get

EW;F) = n% sup (Zieﬂ Vi =D e n1Wiv;)
Vi —V;1 SDii/Vi,i'
= i ming Zi,i’ Diz’/ Sii’

s.t. S e Rj‘rxn
Sty (Siir — Sii) =1 Vie T,
ZZ:l (Sii’ - Si’i) =-—-mW,; Vie 76

This describes a min-cost network flow problem with
sources 71 with inputs 1, sinks 7y with outputs W;,
edges between every two nodes with costs D;;; and
without capacities. Consider any source i € 7; and
any sink i’ € 7y and any path 4,i1,...,%,,7. By the
triangle inequality, D;;v < Dii, + Dijiy + -+ Di v
Therefore, as there are no capacities, it is always
preferable to send the flow from the sources to the
sinks along the direct edges from 77 to 7y. That is, we
can eliminate all other edges and write

. — 1 i
@(W,]:) = ming Zieﬂ,i’e% Dii’S'Li’

T xTo
st. SeRDxT

EieTl Siir = mW; Vi’ € To-
probability

In the case of with replacement and Wy = W ,

using the transformation W/ = nyW;, we get
min &(W;F)
Wew

1 .
= — Imin Z Dii/ Sii’
"LSW e ieTo
st. Se REXT"
W/ e RT°
I _
ZieTg Wi=m
ieTo S =1 VieTh

Zieﬂ Siir — Wi/ =0 Vi'e To-

This describes a min-cost netwrok flow problem with
sources 71 with inputs 1; nodes 7o with 0 exogenous
flow; one sink with output ni; edges from each i € Ty
to each i € 7Ty with flow variable S, cost D,
and without capacity; and edges from each i € Ty
to the sink with flow variable W/ and without cost
or capacity. Because all data is integer, the optimal
solution of W’ = nyW is integer [1]. Hence, since
W&“'mumswset C Z/nq, the solution is the same when
we restrict to Wy = Wyrmultisubset " Thig solution (in
terms of W') is equal to sending the whole input 1
from each source in 7; to the node in 7y with small-
est distance and from there routing this flow to the
sink, which corresponds exactly to one-to-one match-
ing with replacement.

—1
In the case of no replacement and W, = Wg ! _bounded,
using the transformation W/ = nyW;, we get
min E(W;F)
wew 1
= — min Z Dii’ S’ii/
"LSW e ieTo
st. Se REXT"
.
w! e Rﬁ/
ZieTg Wi=m
W/ <1 VieT
Zi/e’ro S’ii' - 1 V'L S 7—1
€T, Siir — Wi/ =0 Vie 76

This describes the same min-cost netwrok flow prob-
lem except that the edges from each i € Ty to the
sink have a capacity of 1. Because all data is integer,
the optimal solution of S and W’ = n;W is integer
[1]. Hence, since ng’su‘”et C Z/n4, the solution is
the same when we restrict to Wy = Wy 1-subset e
optimal S;; is integer and so, by Zi'eTo Sy = 1,
for each i € 7; there is exactly one ¢ € 7Ty with
S;i» = 1 and all others are zero. S;;; = 1 denotes
matching ¢ with /. The optimal W/ is integral and

K2

so, by W/ <1, W} € {0,1}. Hence, for each i € Ty,
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> ier, Sir € {0,1} so we only use node i at most
once. The cost of S is exactly the sum of pairwise
distances in the match. Hence, the optimal solution
corresponds exactly to one-to-one matching without
replacement. O

Proof of Corollary 3. Apply Theorem 2 with the met-
ric

8" (x,2") = Ijgre max {0(x,2'), o} . O
Proof of Theorem 4. This choice of space leads to

M
Y a2 Lox=5 = Z Wilio(x)=j]

j=1 €Ty

E(W;F) =

That is, the worst-case f assigns 1 to each partition
in order to make the difference of values in that parti-
tion be nonnegative. Then clearly the optimal choice
of W € R0 is to make each of these absolute val-
ues equal zero. This happens exactly when, for each

i € To,

1 |7 ET:C(X,)=C(X))]

Wi= 0 [i7€T0:C(X;)=C(X:)]
__ 1 num treatment subjects in same partition as i
" n1 num control subjects in same partition as i
where 0/0 = 0 and we never encounter dividing a

positive integer by 0 due to the no-extrapolation as-
sumption. Because the weight is nonnegative, the so-
lution is unchanged when restricting to nonnegative
weights. O

Proof of Theorem 5. By duality of norms,
sup BT L Y Xi— X WiX;
BTVA<1 LieT: i€To
= My (W).

The optimal W minimizes this discrepancy over sub-
samples from control with the allowable size. O

E(W; F) =

Proof of Theorem 6. We have

(W F) = max <1 (Simy (~D)THWif (X))’

= (LI (D HWIR(XG, ), S ()T WK (X
=== )T'+TJ WW; K,

which when written in block form gives rise to the
result. O

Proof of Theorem 7. First we show €, (F) — 0 a.s.
by showing that we can construct a feasible W such
that ¢(W;F) — 0 as. Let p(z) = P(T =1|X = 2).
By Assumption 1, 0 < p(X) < 1 a.s. So there exists
a > 0 such that ¢(z) = ap(z)/(1 — p(z)) is a.s. in
(0,1). For each i, let W/ € {0,1} be Bernoulli with
probability ¢(X;). Then we have that X;|T' = 0, W] =

1 is distributed as X;|T = 1. Let nf, = Y ieT WJ’ and

note that n{, > ng eventually a.s. For each ¢ € To, set

Wi = W//ny. Let ¢(f) = E[f(X1) | T =1], &(f) =
(T; + W’) (f(X5) = C(f))- Let Ag = ;53,7 & and
Ay = n—l > ier, §i- Adding and subtracting ¢, we see

~(W, ) =A1(f) — (no/ny)Ao(f). By construction of
W/, we see that E[¢;] = 0 (i.e., Bochner integral). By
(5), lI€]l, has (a) second or (b) first moment. By (1),
each ¢&; is independent. Therefore, by [2] for (5)(a)
(since B-convexity of F implies B-convexity of F*;
see [20]) or by [6] for (5)(b), a law of large num-
bers holds yielding, a.s., ||4o]l, — 0 and ||44]|, — 0.
Since (no/ny) — aE[p(X1)] < oo a.s., we have that
IEW; )|« — 0 a.s. By (3) W is feasible, so, a.s.
Emin(F) = E(W; F) < E(W; F) = |EW; )]« — 0.
Fix ¢ > 0. By (4), theres is a go € F such that
sup,. | fo(z) — go(x)| < €/2. Hence,

EW: fo)l < [EW3go)[ +2 sup |fo(Xy)

=1,....n

— go(Xy)]

< llgoll €W; F) + € = [|go| Emin + € — €.
Since true for any € > 0, |E(W; fo)| — 0 a.s. O



