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A Proof of Theorem 3

Proof. We prove by mapping (4) to an equivalent problem
by performing a variable change.

Let GS :=

S
i2S Gi. Note that the inner optimization

min|GS|k,q2FGS
KL(qkp) = � log p(xG\GS

) [Koyejo et al.,
2014].

Define the function J : p(r) ! R as J(S) :=

log p(xG\GS
= 0), and the function ˜

J : p(r) ! R as
˜

J(S) := J(S)� J(;).

Define the costs associated with picking Gi as ci = |Gi|8i 2
[r]. The cost function of a set s ⇢ G can thus be written as
c(s) :=

P
8i s.t. Gi2s ci The optimization problem 4 is then

equivalent to max

P
i2S cik

˜

J(S).

The result follows from Theorem 1.

B Extension to multiple factors

The factor models defined in Sections 4.3,4.2 are readily
extensible to multiple factors using deflation techniques,
either by information projection or simple substraction. See
the work of [Khanna et al., 2017] for further discussion.
An alternative is also to infer for all factors as is typically
done in classic non-sparse settings. We present the detailed
equations and explicitly derive EM algorithm and the rele-
vant equations next for the case of the sparse PCA model
(Section 4.2). Note that because of the partition constraint
construction described in Section 4.3, the equations are also
relevant as the EM algorithm for the probabilistic CCA. The
only difference is in the Estep, where Algorithm 2 is to be
used instead of 3.

We have n observations made in a d dimensional space,
which are stacked in a matrix T 2 Rn⇥d. Drawing analogy
from traditional PCA, we want to search for a few sparse
basis vectors whose linear combination generates the ob-
servation matrix with small error. Additionally, the basis
vectors themselves may have structure.

We model the observation matrix as a product of a parameter
X 2 Rn⇥p and a sparse W 2 Rp⇥d. The sparse basis vec-
tors are stacked as rows of W, and their linear combination
is modelled by X. We are looking at scenarios with n � d,
so the above factorization is useful for small p, which is set
according to the domain. µ is the matrix of column means
generated as, µ = columnMeans(T)† ⌦ 1, and gaussian
noise is represented by ✏ij ⇠ N(0,�

2
), 8i 2 [n], 8j 2 [d].

T = XW + µ+ ✏ (6)

We have a normal prior on each row of W. 8i 2 [p],Wi,· ⇠
N(0,C), for a known matrix C, while the rows are in-

dependent. In the matrix-variate normal form, W ⇠
MVN(0,C, I). For convenience that will be apparent in
coming pages, the above equation can be vectorized and
rewritten as

�!
T = (I⌦X)

�!
W +

�!µ +

�!✏ (7)

Inference and learning can be performed for this model by
an Expectation Maximization (EM) algorithm, We introduce
sparsity into W by constraining its support in the variational
E-step as detailed next.

C EM Algorithm

Neal and Hinton [1998] give a free energy function based
interpretation of the EM algorithm wherein the E-step maxi-
mizes the energy function F in the space of distributions of
the missing data and the M-step maximizes it in the parame-
ter space. In our model, X and �

2 are the parameters, and
W can be treated as the missing data for the EM algorithm.
With KL(·, ·) as the Kullback-Liebler distance, from Neal
and Hinton [1998], we have

F (q(W),X,�

2
) = �KL

�
q(W)kp(W|T;X,�

2
)

�

+ log P(T;X,�

2
).

(8)

E-step can then be viewed as the search for the best q(W),

E-step: max

q
F (q(W),X,�

2
). (9)

The M-step is the search for the best parameters,

M-step: max

X,�2
F (q(W),X,�

2
). (10)

This view of the EM algorithm provides the flexibility to de-
sign algorithms with any E and M steps that monotonically
increase F .

C.1 Variational E-step

Equation 9 finds the best q to maximize the free energy
function F . An unconstrained search returns the posterior
p(W|T;X,�

2), making the KL term 0. W is size p ⇥ d,
so doing a full E-step is costly. To introduce sparsity, and to
make the Estep more tractable, we present a variational E-
step. Variational methods perform the search for best q over
a constrained set. For sparsity, we introduce the constraint
is that q(

�!
W) is k-sparse i.e. it has support only on at most k

out of total n⇥ d dimensions. From Equations 9 and 8, it
follows that the variational E-step can be written using the
vectorized W as:

min

|q|=k
KL

⇣
(q(

�!
W)kp(

�!
W|T;X,�

2
)

⌘
. (11)
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Let K be the enumerative set of constraints (group spar-
sity is a special case, but the equation is valid for other
constraint sets as well). Expanding the KL equation, it is
straightforward to see that the Equation 11 is equivalent to

max

Supp(P )2K
log(p(

�!
WKc

= 0Kc |T;X,�

2
)) (12)

Equation 12 is the resulting optimization problem to be
solved for variational E-step. However, it requires a com-
binatorial search over the set k which is of size (p⇤d)!

(p⇤d�k)!k! ,

where p⇤d is dimension of the ambient space of
�!
W. Search-

ing over atmost k-sparse supports (instead of exactly k-
sparse) is more costly as the size of the set to be searched
over increases. Since this is to be done in every iteration of
the EM, it is prohibitively expensive. As a workaround, we
proposed selecting each of the k dimensions greedily.

C.1.1 E-step Equations

Having defined the optimization function, the algorithm
and its gaurantees, we now derive explicit equations for the
variational E-step.

For deriving the E-step equations, we first require the poste-
rior p(

�!
W|�!T ;X,�

2
). In this section, we suppress {X,�

2}
from the equations for brevity since dependence on them
is obvious. From standard properties of the gaussians, we
know that,

p(
�!
W|�!T ) ⇠ N (m,⌃)

where,

⌃

�1
=

1

�

2
(Id ⌦X

†
X) + (C

�1 ⌦ Ip),

m = ⌃

1

�

2
(Id ⌦X

†
)(

�!
T ��!

µ ).

(13)

We can now expand Equation 12 as

max

K
m

†
Kc [⌃Kc

]

�1
mKc � log det⌃Kc

+ const,

which is equivalent to:

define r = ⌃

�1
m;

max

K
rK[[⌃

�1
]K]

�1
rK � log det[⌃

�1
]K.

(14)

Recall that ⌃K is the submatrix of ⌃ supported on K, simi-
arly for [⌃�1

]K. Note that Equation 14 is in space of size
p ⇤ d. Since [⌃

�1
]K and rK are easy to calculate by some

smart indexing, this version of the equation is convenient to
implement and use.

Say after solving the constrained optimization problem spec-
ified by Equations [13,14], we obtain the best support as K⇤,

then the resulting solution density, say q

⇤, which is known
to be the conditional Koyejo et al. [2014], is

q

⇤ ⇠ N (c,D)

where,

D

�1
= [⌃

�1
]K⇤

,

c = DrK⇤

(15)

Recall, q⇤ has support only on K⇤, so in Equation 15, c 2
R|K⇤|

,D 2 R|K⇤|⇥|K⇤|.

C.2 M-step

Equation 10 optimizes F in the parameter space to get the
argmax parameters that maximize F . However, it turns out
solving for {X,�

2} over F directly is costly. Since the free
energy view of the EM shows that any M-step that increases
F suffices, we maximize the log likelihood portion of F
instead for the M-step. Recall q⇤ is the distribution on

�!
W

obtained from the E-step, the effective M-step is:

max

X,�2
Eq⇤ [log p(

�!
T |�!W;X,�

2
)] (16)

C.2.1 M-step Equations

Since q⇤ has measure 0 outside K⇤, let bc represent the mean
vector c expanded from |K⇤| to ambient dimension p ⇤ d,
with zeroes padded as needed. Similarly, b

D 2 Rpd⇥pd

represents D with zeroes padded as needed. For brevity,
the following equations assume

�!
T to be zero mean i.e.

�!
µ = 0, the derivation extends to non-zero mean

�!
T trivially

by replacing
�!
T with

�!
T ��!

µ . Equation 16 can be written
as:

max

X,�2
Eq⇤ [

�1

2�

2
(

�!
T � (I⌦X)

�!
W)

†
(

�!
T � (I⌦X)

�!
W)

� nd log �

2
]

⌘ max

X,�2

�1

2�

2
V(X)� nd log �

2
,

where,

V(X) = r(I⌦X

†
X)(

b
c

b
c

†
+

b
D)� 2

b
c

†����!
(X

†
T)

Clearly , X and �

2 can be updated separately.

For X, it is easy to take gradient of V(X) w.r.t X. We
can matricize b

c as mat(bc) 2 Rp⇥d to rewrite the second
term as a trace: rmat(bc)†X†

T. Note that I ⌦ X

†
X is a

block diagonal matrix with the same block X

†
X repeating

over and over. Thus, we can define M =

P
blocks bcbc† + b

D,
where the summation is over diagonal blocks of size p⇥ p
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(sp M 2 Rp⇥p), to write V(X) and its gradient as

V(X) = rX†
XM� rmat(bc)†X†

T

@V
@X

= 2XM�Tmat(bc)†
(17)

Equation 17 gives closed form solution if M is invertible. If
that is not the case, gradient steps can be taken to update X.
Recall that even a single gradient step to update X suffices
as required by the free energy view of the EM.

Once X is updated, updating �

2 is more straightforward by
taking derivative and setting to 0 to get

�

2
=

V(X)

2nd

(18)

Algorithm 5: EM Algorithm for sparse projections
1: Input: k, p, d,C,T

2: Initialize X randomly
3: while not converged do
4: E-Step
5: Init: K⇤

= {}
6: for i = 1 . . . k do
7: Solve Equation 14 with

K = H
S
{j}, 8j 2 [p ⇤ d], j 62 K⇤

8: Set K⇤ S{j⇤}, where j

⇤ is argmax from
previous step

9: end for
10: Use Equation 15 to get q⇤
11: M-Step
12: Solve for X using Equation 17
13: Solve for �2 using Equation 18
14: end while
15: return(q⇤,X,�

2)


