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A Proofs

In this section, we provide detailed proofs of all the results
used in this manuscript. For lemma and theorem statements
repeated from the main text, we add an apostrophe to indi-
cate that it is not a new lemma/theorem being introduced.

We make use of the following result that provides an approx-
imation bound for greedy selections for weakly submodular
functions.
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For proving Lemma 3, we require another auxillary result.
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We now prove Lemma 3.
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Using �Bi,k � �G,k, and proceeding now as in the proof of
Theorem 2, we get the desired result.

A.2 Stochastic Greedy

Lemma’ 4. Let A,B ⇢ [n], with |B|  k. Consider another
set C drawn randomly from [n]\A with |C| = dn log
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Proof. To relate the best possible marginal gain from C to
the total gain of including the set B\A into A, we must
upper bound the probability of overlap between C and B\A
as follows:
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where (14) is because |B\A|
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 1. Let S = C\ (B\A). Since
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f(v [ A) � f(A) is nonnegative,

E[max

v2C
f(v [ A) � f(A)]

� P(S 6= ;)E[max

v2C
f(v [ A) � f(A)|S 6= ;]

� (1 � �)
|B\A|
k

E[max

v2C
f(v [ B) � f(B)|S 6= ;]

� (1 � �)
|B\A|
k

E[ max

v2C\(B\A)
f(v [ A) � f(A)|S 6= ;]

� (1 � �)
|B\A|
k

X

v2B\A

f(v [ A) � f(A)

|B\A|

�
(1 � �)�A,B\A

k
(f(B) � f(A)).

A.3 Linear regression

Lemma’ 6. For the maximization of the R2 (7) ⌫S �
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columns indexed by S.

Proof. Say A, B is an arbitrary partition of S. Consider,
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where (15) results from the fact that all orthogonal projec-
tion matrices are symmetric and idempotent. Repeating a
similar analysis for B instead of A, we get
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gives the desired result.

A.4 RSC implies weak subadditivity

Let �(S)
:= maxsupp(x)2S g(x).
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Proof. By strong concavity,

g(�(S)
) � g(0)  hrg(0),�(S)i � m

2

||�(S)||2
2

 max

v

hrg(0),v)i � m

2

kvk2
F

,

where v is an arbitrary vector that has support only on S.
Optimizing the RHS over v gives the desired result.

B Additional experiments

Figures 4,5 shows the performance of all algorithms on the
following metrics: log likelihood (normalized with respect
to a null model), generalization to new test measurements
from the same true support parameter, area under ROC, and
percentage of the true support recovered for l = 2. Recall
that Figure 1 presents the results from the same experiment
with l = 10. Clearly, the greedy algorithms benefit more
from increased number of partitions.

Figure 4: Distributed linear regression, l = 2 partitions, n =

800 training and test samples, ↵ = 0.5. Training/testing
performance
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Figure 5: Distributed linear regression, l = 2 partitions,
n = 800 training and test samples, ↵ = 0.5. Support
Recovery Performance


