Learning Cost-Effective and Interpretable Treatment Regimes
(Supplementary)

1 Proof for Theorem 1

Theorem 1: The objective function defined in Eqn. 7 is
NP-hard.

Proof: Here, we prove that the objective outlined in
Eqn. 7 is NP-hard via a reduction to the weighted
exact-cover problem.

Recall that our goal is to find a sequence of if-then-else
rules (decision list) which maximizes the following objec-
tive:

argmax A1g1(m) — Aaga(m) — Azgz(m)
reC(L) XA

where g1 (), g2(7), and g3 () are as defined in Eqns. 4-6
and correspond to expected outcome, expected assessment
cost, and expected treatment cost respectively. C (L) is the
set of permutations of all possible subsets (except the null
set) of L = FP x A where F'P denotes the set of fre-
quently occurring patterns each of which is a conjunction
of one or more predicates of the form (f, 0, v) (See section
3.2) and A is the set of all possible treatments.

The key idea behind this proof lies in demonstrating that the
problem of finding an optimal decision list over C(£) x A
can be reformulated as the problem of finding a set of inde-
pendent if-then rules which are 1) non-overlapping 2) cover
all the subjects in the dataset D, and 3) optimize our objec-
tive function. (1) and (2) together imply that the charac-
teristics of each subject in D should satisfy exactly one of
these if-then rules.

To illustrate, let us consider a medical treatment recom-
mendation dataset D with three characteristics namely, age,
gender, and BMI. Let us assume that each subject in this
data is assigned to either treatment T1 or T2 and the set
F'P comprises of the following two frequently occurring
patterns:

(1) Age > 40 A Gender = Female;

(2) BMI = High;

The set L = FP x A for this dataset will consist of the
following rules:

(1) (Age > 40 A Gender = Female, T1)

(2) (Age > 40 A Gender = Female, T2)

(3) (BMI = High, T1)

(4) (BMI = High, T2)

Let us assume that the optimal decision list for this dataset
is:

If Age> 40 and Gender=Female then T1

Else

This list can be rewritten using a set of non-overlapping
if-then rules and the negation operator as follows:

If Age> 40 and Gender=Female then T1

If —~(Age> 40 and Gender=Female) then

This simple example shows that a decision list can be eas-
ily converted into a set of independent, non-overlapping if-
then rules which cover all the subjects in D. In order to
reformulate our problem of learning an optimal decision
list to that of learning a set of if-then rules, we first need to
define the candidate set of if-then rules appropriately.

Let us create a new candidate rule set £’ from £ as follows:
For each rule r = (¢,a) in £

e add the rule r to L’
e create a new rule ¢ = (—¢, a) and add it to £’

e append all possible conjunctive combinations of the
negations of conditions ¢’ € FP (¢’ # cand ¢’ # —c¢)
to the condition ¢ in r and add these new rules to £'.

e append all possible conjunctive combinations of nega-
tions of conditions ¢’ € FP (¢’ # cand ¢ # —c¢) to
the condition —¢ in r¢ and add these new rules to £’.

Following our example above, the new set £’ will comprise
of the following rules:

(1) (Age > 40 A Gender = Female, T1)

(2) (Age > 40 A Gender = Female, T2)

(3) (—(Age > 40 A Gender = Female), T1)

(4) (—(Age > 40 A Gender = Female), T2)

(5) (= (BMI = High) A Age > 40 A Gender = Female, T1)
(6) (— (BMI = High) A Age > 40 A Gender = Female, T2)
(7) (BMI = High, T1)

(8) (BMI = High, T2)

(9) (~(BMI = High), T1)
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(10) (—=(BMI = High), T2)

(11) (— (Age > 40 A Gender = Female) A BMI = High, T1)
(12) (— (Age > 40 A Gender = Female) A BMI = High, T2)
(13) (—(Age > 40 A Gender = Female) A —~(BMI = High), T1)
(14) (—(Age > 40 A Gender = Female) A =(BMI = High), T2)

Our problem of learning an optimal decision list can now
be solved by choosing a set of if-then rules from the set
L’ such that 1) characteristics of each subject in the data
satisfy exactly one rule in the solution set 2) the objective
function in Eqn. 7 is maximized. This can be formalized
as a weighted exact cover problem:

min Z U(r;)o(r;)

rj €L’

s.t. Z o(rj) =1V (x;,a,y;) € D

{rj=(cj.a;)€L | satisfy(xi,c;)}

¢(Tj) S {0, 1} VTJ‘ er

¢(r;) is an indicator function which is 1 if the rule r; €
L’ is chosen to be in the solution set. ¥(r;) represents
the weight associated with choosing the rule r; = (¢;, a;)
which is defined as:

A A A
U(r;) = > —ﬁlO(%ay‘HWQ > d(6)+ﬁgd/(a;‘)
{i€{1---N} | satisfy(x;,c;)} e€Q;

where Q; denotes the set of all characteristics present in
the condition c;.

Note that the function W distributes the value of our objec-
tive function (Eqn. 7) across the rules in the solution set.
Furthermore, weighted exact cover formulation is a mini-
mization problem, so we flip the signs of the terms in our
objective (which is a maximization function) when defining
the function W. Since the weighted exact cover problem is
NP-Hard, our objective function is also NP-Hard.
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