
Supplementary Material of “Less than a Single Pass:
Stochastically Controlled Stochastic Gradient”

A Comparison to Existing Methods

A.1 Computation Complexity

Table 1 summarizes the characteristics of 11 existing popular algorithms as well as SCSG. The
table includes the computation cost of optimizing non-strongly-convex functions (column 1) and
strongly convex functions (column 2). Here strong convexity is only assumed on f instead of
individual fi. In practice, the amount of tuning is of major concern. For this reason, a fixed stepsize
is usually preferred to a complicated stepsize scheme and it is better that the tuning parameter does
not depend on unknown quantities; e.g., D0. These issues are documented in column 3 and column 4.
Moreover, many algorithms requires ‖∇fi‖ to be bounded or at least fi to be Lipschitz. However,
this assumption is not realistic in many cases and it is better to discard it. To address this issue, we
document it in column 5. For all existing method, the complexity depends on ε through ε/D0L,
which is a scale-free quantity. For convenience, we denote it by ε′.

General Convex Strongly Convex Constant η? Depend on D0? fi Lipschitz?

SCSG O
(
(n ∧ Gn

Lε) 1
ε′

)
O
(
(n ∧ 1

ε′ + κ) log 1
ε′

)
Yes No No

SGD[4, 12]1 O
(

1
ε′2

)
O
(
κ
ε′ log 1

ε′

)
Yes/No No/Yes2 Yes

SAGA[3]3 O
(
n
ε′

)
O
(
(n+ κ) log 1

ε′

)
Yes No No

SVRG[6]4 - O
(
(n+ κ) log 1

ε′

)
Yes No No

APSDCA[13]5 O
(
n ∧

√
n
ε′

)
O
(
(n+ κ) log 1

ε′

)
Yes No No

APCG[9]6 O
(

n√
ε′

)
O
(
n
√
κ log 1

ε′

)
Yes No No

SPDC[16]7 - O
(
(n+

√
nκ) log 1

ε′

)
Yes No No

Catalyst[8]8 O
(

n√
ε′

)
O
(
(n+

√
nκ) log 1

ε′

)
No No No

SVRG++[2]9 O
(
n log 1

ε′ + 1
ε′

)
O
(
(n+ κ2) log 1

ε′ + 1
ε′

)
Yes No No

MSVRG[11]10 O
(
n+ 1

ε′2

)
- No Yes Yes

AMSVRG[10]11 O
((
n ∧

√
n
ε′

)
log 1

ε′

)
O
(
(n+ κ ∧ n

√
κ) log 1

ε′

)
Yes No No

Katyusha[1]12 O
(
n+

√
n
ε′

)
O
(
(n+

√
nκ) log 1

ε′

)
No No No

Table 1: Comparison of the computation cost of SCSG and other algorithms. The third column
indicates whether the algorithm uses a fixed stepsize η; the fourth column indicates whether the
tuning parameter depends on D0; the last column indicates whether fi is required to be Lipschitz or
(almost) equivalently ‖∇fi‖ is required to be bounded. ε′ denotes ε/D0L.

1Corollary 2.2 of [4] for the general convex case and Corollary 1 of [12] for the strongly convex case. The
former is stated for E‖∇f(xk)‖2 instead of Ef(xk)− f(x∗) to adapt to non-convex problems, but the latter has
the same rate if f is convex. The latter is proved only for SVM but is potentially extended to more general cases.

2For the general convex case, the stepsize is set to be D0/
√
T for given number of total steps T , which is a

constant but rely on D0 and T ; for the strongly convex case, the stepsize at step t is set to be proportional to 1/t.
3Section 2 of [3] for both cases.
4No result for the general convex case and Theorem 1 of [6] for the strongly convex case.

A.2 Communication Complexity

Note that CoCoA has an additional factor H [5] determining the iteration complexity T and hence
the tradeoff between computation and communication. We discuss the details in Appendix B.1).
These methods are considered in the datacenter/workers model in which there are m worker machines
with an (almost) equal number of data stored in each. In contrast to SCSG, instead of sub-sampling,
these methods save on communication cost by performing updates locally. Specifically, the iterate
is updated in each node in parallel and sent to the datacenter; then the datacenter sums or averages
the updates and broadcasts the result to each node. As a consequence, under our computational
model, the communication cost is the product of the number of nodes and the iteration complexity,
namely O(mT). Among these methods, DANE and DiSCO are second-order methods while SCSG
and CoCoA are first-order methods. We record this in column 3 to emphasize the dependence on
dimension. (Another first-order method which is similar to SVRG has been developed by [7]; we
do not consider this method in our comparison due to the lack of theoretical results.) In addition,
we show the computation cost in column 4. As seen from Table 2, SCSG is the only method whose
communication cost is free of the number of nodes. This suggests that SCSG is more scalable
in the distributed setting where a large number of worker machines exist; e.g., the mobile device
system. Comparing SCSG with CoCoA, we find that with the same amount of computation, SCSG
is more communication-efficient when ε >> 1

n∧m2 , in which case the former has a cost 1
ε log 1

ε

while the latter has a cost at least m2 log 1
ε (see Appendix B.1 for details). Further, if the problem

is well-conditioned in the sense that κ ∼ 1
ε , then the communication cost of CoCoA is m2nε log 1

ε

which could be much larger than that of SCSG once ε >> 1√
nm

. On the other hand, both DANE and
DiSCO depend on the condition number in terms of communication and depend on sample size in
terms of computation if m << n. We notice that the computation cost of DANE and DiSCO match
that of SCSG only when m = Ω(nε), in which case the communication cost depends on the sample
size. In contrast, this tradeoff does not appear in SCSG.

General Convex Strongly Convex Dim. Dependence Comp. Cost

SCSG O
(
(n ∧ Gn

Lε) log 1
ε′

)
O
((
n ∧ Gn

Lε

)
log 1

ε′

)
O(d) O

((
n ∧ Gn

Lε + κ
)

log 1
ε′

)
CoCoA[5]13 - O

(
m2 · n+κ

n∧GnLε +κ
log 1

ε′

)
O(d) O

((
n ∧ Gn

Lε + κ
)

log 1
ε′

)
DANE[14]14 - O

(
mκ log 1

ε′

)
O(d2) O

(
nκ
m log 1

ε′

)
DiSCO[15]15 - O

(
m
√
κ log κ log 1

ε′

)
O(d2) O

(
n
m

√
κ log κ log 1

ε′

)
Table 2: Comparison of communication cost between SCSG and other algorithms. The third column
shows the dimension dependence and the fourth column shows the additional assumptions required
other than smoothness and strong convexity. ε′ denotes ε/D0L.

5Section 4.4 of [13] for Lasso and and Theorem 1 of [13] for the strongly convex case.
6Theorem 1 of [9] for both cases.
7No results for the general convex case and Section 1 of [16] for Empirical Risk Minimization.
8Table 1 of [8] for both cases
9Theorem 7.1 of [2] for the general convex case and Theorem 5.1 of [2] for the strongly convex case.

10Corollary 13 of [11] for the general convex case and no result for the strongly convex case.
11Theorem 2 of [10] for the general convex case and Theorem 3 of [10] for the strongly convex case.
12Theorem 5.1 of [1] for the general convex case and Theorem 3.1 for the strongly convex case.
13No result for the general convex case and Theorem 2 of [5] for the strongly convex case.
14No results for the general convex case (the results in [14] only hold for quadratic programming) and Theorem

4 of [14] for the strongly convex case.
15No results for the general convex case and Theorem 3 of [15] for the strongly convex case. For the latter

we do not take the pre-conditioning step into consideration for fair comparison and hence µ = L; see [15] for
details.

2

B Technical Proofs

B.1 Lemmas

Proof [Lemma 1] Let Wi = I(i ∈ I), then it is easy to see that

EW 2
i = EWi =

B

n
, EWiWi′ =

B(B − 1)

n(n− 1)
. (1)

Then g can be reformulated as

g =
1

B

n∑
i=1

Wi∇fi(x∗).

Since x∗ is the optimum of f , we have

Eg =
1

B

n∑
i=1

EWi∇fi(x∗) =
1

n

n∑
i=1

∇fi(x∗) = ∇f(x∗) = 0,

and

E‖g‖2 =
1

B2

 n∑
i=1

EW 2
i ‖∇fi(x∗)‖2 +

∑
i 6=i′

EWiWi′〈∇fi(x∗),∇fi′(x∗)〉


=

1

B2

B
n

n∑
i=1

‖∇fi(x∗)‖2 +
B(B − 1)

n(n− 1)

∑
i 6=i′
〈∇fi(x∗),∇fi′(x∗)〉


=

1

B2

(B
n
− B(B − 1)

n(n− 1)

) n∑
i=1

‖∇fi(x∗)‖2 +
B(B − 1)

n(n− 1)

∥∥∥∥∥
n∑
i=1

∇fi(x∗)

∥∥∥∥∥
2


=
1

B2

(
B

n
− B(B − 1)

n(n− 1)

) n∑
i=1

‖∇fi(x∗)‖2

=
n−B

(n− 1)B
· 1

n

n∑
i=1

‖∇fi(x∗)‖2 =
(n−B)Gn
(n− 1)B

.

Lemma 3 Under Assumption A1 and A2 with µ possibly equal to 0,

‖∇fi(x)−∇fi(y)‖2 ≤ 2L(fi(x)− fi(y)− 〈∇fi(y), x− y〉)

+ 2µ

(
fi(y)− fi(x)− 〈∇fi(x), y − x〉 − L

2
‖x− y‖2

)
.

The same bound holds if we interchange x and y on right-hand side. In particular, when µ = 0,

‖∇fi(x)−∇fi(y)‖2 ≤ 2Lmin{fi(x)−fi(y)−〈∇fi(y), x−y〉, fi(y)−fi(x)−〈∇fi(x), y−x〉}.

Proof [Lemma 3] By Lemma A1 of [3], for any x, y ∈ Rd,

fi(x)− fi(y) ≥ 〈∇fi(y), x− y〉+
1

2(L− µ)
‖∇fi(x)−∇fi(y)‖2 +

µL

2(L− µ)
‖x− y‖2

− µ

L− µ
〈∇fi(x)−∇fi(y), x− y〉

=
L

L− µ
〈∇fi(y), x− y〉+

1

2(L− µ)
‖∇fi(x)−∇fi(y)‖2 +

µL

2(L− µ)
‖x− y‖2

− µ

L− µ
〈∇fi(x), x− y〉,

which proves the lemma.

3

Proof [Lemma 2] We prove that for any x,

Gn
L2
≤ 2

L2n

∑
‖∇fi(x̃0)‖2 + 4‖x̃0 − x∗‖2.

In fact, by Lemma 3,

fi(x
∗)− fi(x) ≥ 〈∇fi(x), x∗ − x〉+

1

2L
‖∇fi(x∗)−∇fi(x)‖2.

Summing the above inequality for all i results in

f(x∗) ≥ f(x) + 〈∇f(x), x∗ − x〉+
1

2L

n∑
i=1

‖∇fi(x∗)−∇fi(x)‖2. (2)

Since x∗ is a minimizer, we know that f(x∗) ≤ f(x) and thus

1

2L

n∑
i=1

‖∇fi(x∗)−∇fi(x)‖2 ≤ 〈∇f(x), x− x∗〉 = 〈∇f(x)−∇f(x∗), x− x∗〉 ≤ L‖x− x∗‖2.

On the other hand, note that for any a, b ∈ Rp,

‖a− b‖2 = ‖a‖2 + ‖b‖2 − 2〈a, b〉 =
1

2
‖a‖2 − ‖b‖2 +

1

2
‖a− 2b‖2 ≥ 1

2
‖a‖2 − ‖b‖2.

Thus,
1

4L

n∑
i=1

‖∇fi(x∗)‖2 −
1

2L

n∑
i=1

‖∇fi(x)‖2 ≤ L‖x− x∗‖2.

The first part of the lemma is then proved by setting x = x̃0. For the second part, we exchange x and
x∗ in equation (2) and obtain that

f(x) ≥ f(x∗) +
1

2L

n∑
i=1

‖∇fi(x∗)−∇fi(x)‖2 ≥ B +
1

2L

n∑
i=1

‖∇fi(x∗)−∇fi(x)‖2.

Apply the same argument as above we prove the second inequality of the lemma.

Lemma 4 Let I ∈ {1, · · · , n} be a random subset with size B, i be a random element of I and

ν = ∇fi(x)−∇fi(x̃) +
1

B

∑
i∈I
∇fi(x̃);

thus for any β > 1, under Assumption A1 and A2 with µ possibly equal to 0, it holds that

E‖ν‖2 ≤ 2L(1 + β){〈∇f(x), x− x∗〉 − (f(x)− f(x∗))}+ 2L(1 + β)(f(x̃)− f(x∗))

+ L(1 + (β − 1)−1)
(n−B)

(n− 1)B
· Gn
L

+ 2µ(1 + β)

(
f(x)− f(x∗)− L

2
‖x− x∗‖2

)
. (3)

In particular when µ = 0,

E‖ν‖2 ≤ 2L(1 + β){〈∇f(x), x− x∗〉 − (f(x)− f(x∗))}+ 2L(1 + β)(f(x̃)− f(x∗))

+ L(1 + (β − 1)−1)
(n−B)

(n− 1)B
· Gn
L
. (4)

Proof [Lemma 4] Notice that for any β > 0,

‖x+ y‖2 ≤ (1 + β−1)‖x‖2 + (1 + β)‖y‖2

then for β > 1 we have

E‖ν‖2 = E‖(∇fi(x)−∇fi(x∗))− (∇fi(x̃)−∇fi(x∗)) +
1

B

∑
i∈I
∇fi(x̃)‖2

4

≤ (1 + β)E‖(∇fi(x)−∇fi(x∗))‖2 + (1 + β−1)E‖(∇fi(x̃)−∇fi(x∗)) +
1

B

∑
i∈I
∇fi(x̃)‖2

= (1 + β)E‖∇fi(x)−∇fi(x∗)‖2 + (1 + β−1)E‖(∇fi(x̃)−∇fi(x∗))

− 1

B

∑
i∈I

(∇fi(x̃)−∇fi(x∗)) +
1

B

∑
i∈I
∇fi(x∗)‖2

≤ (1 + β)E‖∇fi(x)−∇fi(x∗)‖2 + (1 + β)E‖(∇fi(x̃)−∇fi(x∗))−
1

B

∑
i∈I

(∇fi(x̃)−∇fi(x∗))‖2

+ (1 + (β − 1)−1)E‖ 1

B

∑
i∈I
∇fi(x∗)‖2

≤ (1 + β)E‖∇fi(x)−∇fi(x∗)‖2 + (1 + β)E‖∇fi(x̃)−∇fi(x∗)‖2

+ (1 + (β − 1)−1)E‖ 1

B

∑
i∈I
∇fi(x∗)‖2,

where the last inequality uses the fact that

1

B

∑
i∈I

(∇fi(x̃)−∇fi(x∗)) = E(∇fi(x̃)−∇fi(x∗)|I)

and the trivial inequality E(X −E(X|I))2 ≤ EX2. For the first term, by Lemma 3 we obtain that

E‖∇fi(x)−∇fi(x∗)‖2 ≤ 2LE(fi(x
∗)− fi(x)− 〈∇fi(x), x∗ − x〉)

+ 2µE
(
fi(x)− fi(x∗)− 〈∇fi(x∗), x− x∗〉 −

L

2
‖x− x∗‖2

)
.

Note that Efi(x) = f(x) and E∇fi(x) = ∇f(x), the above expression can be simplified as

E‖∇fi(x)−∇fi(x∗)‖2 ≤ 2LE(f(x∗)− f(x)− 〈∇f(x), x∗ − x〉)

+ 2µE
(
f(x)− f(x∗)− L

2
‖x− x∗‖2

)
For the second term, we simply use Lemma 3 with µ = 0 and obtain that

E‖∇fi(x̃)−∇fi(x∗)‖2 ≤ 2LE(fi(x̃)− fi(x∗)− 〈∇fi(x∗), x̃− x∗〉) = 2L(f(x̃)− f(x∗)).

Combining the above results and Lemma 1, we conclude that

E‖ν‖2 ≤ 2L(1 + β){〈∇f(x), x− x∗〉 − (f(x)− f(x∗))}+ 2L(1 + β)(f(x̃)− f(x∗))

+ L(1 + (β − 1)−1)
(n−B)

(n− 1)B
· Gn
L

+ 2µ(1 + β)

(
f(x)− f(x∗)− L

2
‖x− x∗‖2

)
.

B.2 Convergence Analysis of Non-Strongly Convex Case

Proof [Theorem 1] We prove Theorem 1 with

C1 =
1

2
√

1− θ(
√

1− θ −
√
θ)
, C2 =

1

2(
√

1− θ −
√
θ)2

.

It is easy to show C1, C2 ≤ 2.5 when θ < 1
5 via numerical calculation.

Now we state the main proof. In stage j, x0 = x̃j−1, and we have 0 ≤ k ≤ Nj . In the following
argument, we omit the subscript j for brevity.

E‖xk+1 − x∗‖2 = E‖xk − x∗ − ηνk‖2 = E‖xk − x∗‖2 − 2ηE〈νk, xk − x∗〉+ η2E‖νk‖2

= E‖xk − x∗‖2 − 2ηE〈∇f(xk), xk − x∗〉+ η2E‖νk‖2

≤ E‖xk − x∗‖2 − 2η{1− Lη(1 + β)}E〈∇f(xk), xk − x∗〉

5

− 2L(1 + β)η2E(f(xk)− f(x∗)) + 2L(1 + β)η2E(f(x0)− f(x∗))

+ L(1 + (β − 1)−1)η2 (n−B)

(n− 1)B
· Gn
L
,

where the last inequality uses Lemma 4. Here we restrict β such that

β <
1

θ
− 1. (5)

Noticing that (5) implies that η < 1/L(1 + β) and the convexity of f implies

〈∇f(xk), xk − x∗〉 ≥ f(xk)− f(x∗),

we have

2ηE(f(xk)− f(x∗)) ≤ 2η{1− L(1 + β)η}E〈∇f(xk), xk − x∗〉+ 2L(1 + β)η2E(f(xk)− f(x∗))

≤ E‖xk − x∗‖2 − E‖xk+1 − x∗‖2 + 2L(1 + β)η2E(f(x0)− f(x∗))

+ L(1 + (β − 1)−1)η2 (n−B)

(n− 1)B
· Gn
L

(6)

By definition of N (Nj),

E(f(xN)− f(x∗)) =
∑
k≥1

γk

A
E(f(xk)− f(x∗)),

and

E‖xN − x∗‖2 =
∑
k≥1

γk

A
E‖xk − x∗‖2,

where A = γ(1− γ)−1 is the normalization factor. In order to be concise, let

∆(η, β,B) = L(1 + (β − 1)−1)η2 (n−B)

(n− 1)B
· Gn
L
. (7)

Setting k = 0 in (6),

E‖x1−x∗‖2 ≤ E‖x0−x∗‖2−2η{1−L(1+β)η}E(f(x0)−f(x∗))+∆(η, β,B) ≤ E‖x0−x∗‖2+∆(η, β,B)
(8)

It then follows from (6) and (8) that

2ηE(f(xN)− f(x∗)) =
∑
k≥1

γk

A
2ηE(f(xk)− f(x∗))

≤
∑
k≥1

γk

A
(E‖xk − x∗‖2 − E‖xk+1 − x∗‖2) + 2η2L(1 + β)E(f(x0)− f(x∗)) + ∆(η, β,B)

=
γE‖x1 − x∗‖2 −

∑
k≥2(γk−1 − γk)E‖xk − x∗‖2

A
+ 2η2L(1 + β)E(f(x0)− f(x∗)) + ∆(η, β,B)

=
E‖x1 − x∗‖2 −

∑
k≥1(γk−1 − γk)E‖xk − x∗‖2

A
+ 2η2L(1 + β)E(f(x0)− f(x∗)) + ∆(η, β,B)

≤
E‖x0 − x∗‖2 −

∑
k≥1(γk−1 − γk)E‖xk − x∗‖2

A
+ 2η2L(1 + β)E(f(x0)− f(x∗)) +

(
1 +

1

A

)
∆(η, β,B)

=
E‖x0 − x∗‖2 − E‖xN − x∗‖2

A
+ 2η2L(1 + β)E(f(x0)− f(x∗)) +

1

γ
∆(η, β,B)

=
1− γ
γ

(E‖x0 − x∗‖2 − E‖xN − x∗‖2) + 2η2L(1 + β)E(f(x0)− f(x∗)) +
1

γ
∆(η, β,B).

This implies that

2ηE(f(x̃j)−f(x∗)) ≤ 1− γ
γ

(E‖x̃j−1−x∗‖2−E‖x̃j−x∗‖2)+2η2L(1+β)E(f(x̃j−1)−f(x∗))+
1

γ
∆(η, β,B).

(9)

6

By convexity of f , we have

2η{1− ηL(1 + β)}TE(f(x̄T)− f(x∗))

≤
T∑
j=1

{
2ηE(f(x̃j)− f(x∗))− 2η2L(1 + β)E(f(x̃j−1)− f(x∗))

}
+ 2η2L(1 + β)(f(x̃0)− f(x∗)) +

T

γ
∆(η, β,B)

≤1− γ
γ
‖x̃0 − x∗‖2 + 2η2L(1 + β)(f(x̃0)− f(x∗)) +

T

γ
∆(η, β,B)

≤
(

1

γ
− 1 + η2L2(1 + β)

)
‖x̃0 − x∗‖2 +

T

γ
∆(η, β,B)

≤ 1

γ
‖x̃0 − x∗‖2 +

T

γ
∆(η, β,B),

where the third inequality uses the smoothness of f , i.e.,

f(x̃0)− f(x∗) ≤ L

2
‖x̃0 − x∗‖2,

and the fourth inequality uses the fact that

η2L2(1 + β) ≤ {ηL(1 + β)}2 ≤ 1.

Then

E(f(x̄T)− f(x∗)) ≤ 1

T
· D0

2η{1− ηL(1 + β)}γ
+

1

2η{1− ηL(1 + β)}γ
∆(η, β,B)

=
1

T
· D0

2η{1− ηL(1 + β)}γ
+

β

β − 1

ηL

2{1− ηL(1 + β)}γ
(n−B)

(n− 1)B
· Gn
L

=
1

T
· LD0

2θ{1− θ(1 + β)}γ
+

β

β − 1

θ

2{1− θ(1 + β)}γ
(n−B)

(n− 1)B
· Gn
L

, J1 + J2.

We distinguish two cases:

1. If B = n, then J2 = 0. Setting β = 1 implies that

E(f(x̃T)− f(x∗)) ≤ 1

T
· LD0

2θ(1− 2θ)γ
.

2. If B < n, then optimizing J2 over the set B = {β : β > 1, θ(1 + β) < 1} produces
β =

√
(1− θ)/θ, in which case (5) is satisfied and

J1 =
1

T
· LD0

2θ
√

1− θ(
√

1− θ −
√
θ)γ

and

J2 =
θ

2(
√

1− θ −
√
θ)2γ

(n−B)

(n− 1)B
· Gn
L
.

Based on Theorem 1, we can obtain the following result.

Corollary 3 Under the settings of Theorem 1, assume θ ∈ (0, 1
2) and

B ≥ min

{
n,

2C2θ

γε
· Gn
L

}
(10)

and
T ≥ 2C1D0

θγ
· L
ε
. (11)

Then
E(f(x̄T)− f(x∗)) ≤ ε.

7

Proof [Corollary 3] It is easy to verify that under (20) and (21),

1

T
· C1LD0

θγ
≤ ε

2

and

C2
θ

γ

(n−B)

(n− 1)B
· Gn
L
≤ ε

2
.

Therefore,
E(f(x̄T)− f(x∗)) ≤ ε

.

As a direct consequence, we obtain the computation and communication complexity of SCSG for
non-strongly convex case.

Proof [Corollary 1] It is known from Corollary 3 that

E(f(x̄T)− f(x∗)) ≤ ε.

The computation cost is

ECcomp = E
T∑
j=1

(B +Nj) = E2BT = O

(
D0 min

{
nL

ε
,
Gn
ε2

})
.

By Lemma 2, we know that

Gn
L2
≤ 2

L2
· 1

n

n∑
i=1

‖∇fi(x̃0)‖2 + 4D0 = O(1)

and as a result,

ECcomp = O

(
min

{
n,
Gn
L2
· L
ε

}
D0L

ε

)
.

Similarly the communication cost is

ECcomm = EBT = O

(
min

{
n,
Gn
L2
· L
ε

}
D0L

ε

)
.

B.3 Convergence Analysis of Strongly Convex Case With Assumption A2

Similarly to the last section, we first establish a slightly more accurate version of Theorem 2 as
follows.

Theorem 3 Let D0 = ‖x̃0 − x∗‖2. If η = θ
L+µ for some θ ∈ (0, 1

2), and one of the following
assumptions hold:

(i) γ > 1− ηµ, m ≥ log
(

1
1−γ

)/
log
(

γ
1−ηµ

)
;

(ii) γ = 1− ηµ, m ≥ 1
2Lµη2 = (κ+1)2

2κθ2 .

where κ = L/µ is the condition number. Then

1. If B = n,

E(f(x̃T)− f(x∗)) ≤
(

2Lη

1− 2µη

)T
· 5LD0

θ
=

(
1− (L+ µ)(1− 2θ)

L+ µ− 2µθ

)T
· 5LD0

θ

8

2. If B < n,

E(f(x̃T)−f(x∗)) ≤ 5LD0

θ
·

(
1−

(L+ µ)(1− θ −
√
θ(1− θ))

L+ µ− µ(θ +
√
θ(1− θ))

)T
+

4θ

(
√

1− θ −
√
θ)2
· (n−B)

(n− 1)B
·Gn
L
.

Remark 1 Note that when θ < 1
2 ,

(L+ µ)(1− 2θ)

L+ µ− 2µθ
≥ 1− 2θ,

and thus Part 1 can be simplified by a slightly weaker bound as in Theorem 2:

(2θ)T · 5LD0

θ
= 10LD0 · (2θ)T−1.

Similarly,

1−
(L+ µ)(1− θ −

√
θ(1− θ))

L+ µ− µ(θ +
√
θ(1− θ))

≤ 1− θ−
√
θ(1− θ) =

L
√
θ(
√
θ +
√

1− θ)
L+ µ

√
1− θ(

√
1− θ −

√
θ)
≤
√

2θ,

and thus Part 2 can be simplified by a slightly weaker bound as in Theorem 2

(
√

2θ)T · 5LD0

θ
= 10LD0 · (2θ)

T
2 −1.

Furthermore, Part 2 of the Theorem implies that the constant C3 in Theorem 2 is

C3 =
4

(
√

1− θ −
√
θ)2

,

and it is easy to see that C3 ≤ 20 if θ < 1
5 .

Proof [Theorem 3] Similar to the proof of Theorem 1, if β satisfies (5), then 1−Lη(1 + β) > 0 and

E‖xk+1 − x∗‖2 ≤ {1− η2µL(1 + β)}E‖xk − x∗‖2 − 2η{1− Lη(1 + β)}E〈∇f(xk), xk − x∗〉
− 2(L− µ)(1 + β)η2E(f(xk)− f(x∗)) + 2L(1 + β)η2E(f(x0)− f(x∗))

+ L(1 + (β − 1)−1)η2 (n−B)

(n− 1)B
· Gn
L

(12)

≤ (1− µη)E‖xk − x∗‖2 − 2η{1− µη(1 + β)}E(f(xk)− f(x∗))

+ 2L(1 + β)η2E(f(x0)− f(x∗)) + L(1 + (β − 1)−1)η2 (n−B)

(n− 1)B
· Gn
L
,

(13)

where the last inequality is from the strong convexity of f , i.e.

〈∇f(xk), xk − x∗〉 ≥ (f(xk)− f(x∗)) +
µ

2
‖xk − x∗‖2.

Setting k = 0, we have

E‖x1 − x∗‖2 ≤ (1− µη)E‖x0 − x∗‖2 − 2η (1− (L+ µ)η(1 + β))E(f(x0)− f(x∗)) + ∆(η, β,B)

≤ (1− µη)E‖x0 − x∗‖2 + ∆(η, β,B), (14)

where ∆(η, β,B) is defined by (7). By definition of N (the stage index j is omitted for brevity),

E(f(xN)− f(x∗)) =
1

A(m, γ)

m∑
k=1

γk

(1− µη)k
E(f(xk)− f(x∗)),

and

E‖xN − x∗‖2 =
1

A(m, γ)

m∑
k=1

γk

(1− µη)k
E‖xk − x∗‖2,

9

where A(m, γ) is the normalization factor such that

A(m, γ) =

m∑
k=1

γk

(1− µη)k
.

It then follows from (13) and (14) that

2η{1− µη(1 + β)}E(f(xN)− f(x∗)) =
1

A(m, γ)

m∑
k=1

γk

(1− µη)k
2η{1− µη(1 + β)}E(f(xk)− f(x∗))

≤ 1

A(m, γ)

m∑
k=1

γk
(
E‖xk − x∗‖2

(1− µη)k−1
− E‖xk+1 − x∗‖2

(1− µη)k

)
+ 2η2L(1 + β)E(f(x0)− f(x∗)) + ∆(η, β,B)

=
1

A(m, γ)

{
γE‖x1 − x∗‖2 −

m∑
k=2

γk−1 − γk

(1− µη)k−1
E‖xk − x∗‖2

}
+ 2η2L(1 + β)E(f(x0)− f(x∗)) + ∆(η, β,B)

=
1

A(m, γ)

{
E‖x1 − x∗‖2 −

m∑
k=1

γk−1 − γk

(1− µη)k−1
E‖xk − x∗‖2

}
+ 2η2L(1 + β)E(f(x0)− f(x∗)) + ∆(η, β,B)

=
1

A(m, γ)

{
E‖x1 − x∗‖2 −

A(m, γ)(1− µη)(1− γ)

γ
E‖xN − x∗‖2

}
+ 2η2L(1 + β)E(f(x0)− f(x∗)) + ∆(η, β,B)

≤ 1− µη
A(m, γ)

{
E‖x0 − x∗‖2 −

A(m, γ)(1− γ)

γ
E‖xN − x∗‖2

}
+

(
1 +

1

A(m, γ)

)
∆(η, β,B) + 2η2L(1 + β)E(f(x0)− f(x∗)).

The above inequality can be rewritten as

2η{1− µη(1 + β)}E(f(xN)− f(x∗)) +
(1− µη)(1− γ)

γ
E‖xN − x∗‖2 (15)

≤2η2L(1 + β)E(f(x0)− f(x∗)) +
1− µη
A(m, γ)

E‖x0 − x∗‖2 +

(
1 +

1

A(m, γ)

)
∆(η, β,B). (16)

Define λ as

λ = max

{
Lη(1 + β)

1− µη(1 + β)
,

γ

(1− γ)A(m, γ)

}
(17)

then

2η{1− µη(1 + β)}E(f(x̃j)− f(x∗)) +
(1− µη)(1− γ)

γ
E‖x̃j − x∗‖2 −

1

1− λ

(
1 +

1

A(m, γ)

)
∆(η, β,B)

=2η{1− µη(1 + β)}E(f(xN)− f(x∗)) +
(1− µη)(1− γ)

γ
E‖xN − x∗‖2 −

1

1− λ

(
1 +

1

A(m, γ)

)
∆(η, β,B)

≤λ

[
2η{1− µη(1 + β)}E(f(x0)− f(x∗)) +

(1− µη)(1− γ)

γ
E‖x0 − x∗‖2 −

1

1− λ

(
1 +

1

A(m, γ)

)
∆(η, β,B)

]

=λ

[
2η{1− µη(1 + β)}E(f(x̃j−1)− f(x∗)) +

(1− µη)(1− γ)

γ
E‖x̃j−1 − x∗‖2 −

1

1− λ

(
1 +

1

A(m, γ)

)
∆(η, β,B)

]
.

This implies that

2η{1− µη(1 + β)}E(f(x̃T)− f(x∗)) +
(1− µη)(1− γ)

γ
E‖x̃j − x∗‖2

≤λT
[

2η{1− µη(1 + β)}E(f(x̃0)− f(x∗)) +
(1− µη)(1− γ)

γ
E‖x̃0 − x∗‖2

]
+

1

1− λ

(
1 +

1

A(m, γ)

)
∆(η, β,B)

≤λT
[

2η{1− µη(1 + β)}E(f(x̃0)− f(x∗)) +
(1− µη)(1− γ)

γ
E‖x̃0 − x∗‖2

]
+

2

1− λ
∆(η, β,B),

10

where the last inequality uses the fact that A(m, γ) ≥ γ/(1− µη) ≥ 1 and hence

E(f(x̃T)− f(x∗)) ≤ λT
[
E(f(x̃0)− f(x∗)) +

(1− µη)(1− γ)

2ηγ{1− µη(1 + β)}
E‖x̃0 − x∗‖2

]

+
1

η(1− λ){1− µη(1 + β)}
∆(η, β,B)

, λTJ1 + J2. (18)

Now we prove that under both conditions (i) and (ii),

Lη(1 + β)

1− µη(1 + β)
≥ γ

(1− γ)A(m, γ)
.

(i) Since

m ≥ log

(
1

1− γ

)/
log

(
γ

1− µη

)
then it can be verified that

m ≥ log

(
γ − (1− µη)

1− γ
1− µη(1 + β)

Lη(1 + β)
+ 1

)/
log

(
γ

1− µη

)
(19)

by noticing that

γ − (1− µη)

1− γ
1− µη(1 + β)

Lη(1 + β)
+1 ≤

(
γ − (1− µη)

1− γ
+ 1

)
1− µη(1 + β)

Lη(1 + β)
=
µ

L

1− µη(1 + β)

(1 + β)(1− γ)
≤ 1

2(1− γ)
,

where the last inequality uses the fact that β ≥ 1. Then

γ

(1− γ)A(m, γ)
=

γ

(1− γ)
∑m
k=1

(
γ

1−ηµ

)k =
1− ηµ
1− γ

·
γ

1−ηµ − 1(
γ

1−ηµ

)m
− 1
≥ Lη(1 + β)

1− µη(1 + β)
.

(ii)

m ≥ 1

2Lµη2
≥ (1− 2µη)(1− µη)

2Lµη2

then
γ

(1− γ)A(m, γ)
≤ 1− ηµ
m(1− γ)

=
1− ηµ
mηµ

≤ 2Lη

1− 2µη
≤ Lη(1 + β)

1− µη(1 + β)
.

Therefore, in both cases,

λ =
Lη(1 + β)

1− µη(1 + β)

Now we distinguish two cases:

1. If B = n, then J2 = 0. Set β = 1 then

λ =
2Lη

1− 2µη

and

J1 ≤
L

2

(
1 +

(1− µη)(1− γ)

Lηγ(1− 2µη)

)
D0.

Note that µ ≤ (µ+ L)/2 ≤ L and γ ≥ 1− µη,

J1 ≤
L

2

(
1 +

2

θ(1− θ)

)
D0 ≤

5LD0

θ
.

Therefore,

E(f(x̃T)− f(x∗)) ≤
(

2Lη

1− 2µη

)T
· 5LD0

θ
=

(
1− (L+ µ)(1− 2θ)

L+ µ− 2µθ

)T
· 5LD0

θ
.

11

2. If B < n, then

J2 ≤
4Lη

1− (L+ µ)η(1 + β)
· β

β − 1
· (n−B)

(n− 1)B
·Gn
L
≤ 4θ

1− θ(1 + β)
· β

β − 1
· (n−B)

(n− 1)B
·Gn
L
.

As in the smooth case, set β =
√

(1− θ)/θ, then (5) is satisfied and

J2 ≤
4θ

(
√

1− θ −
√
θ)2
· (n−B)

(n− 1)B
· Gn
L
.

In addition,

J1 ≤
L

2

(
1 +

(1− µη)(1− γ)

Lηγ{1− µη(1 +
√

(1− θ)/θ)}

)
D0.

Similar to the case B = n, we have

J1 ≤
L

2

(
1 +

4(1− µη)(1− γ)

θγ

)
D0 ≤

L

2

(
1 +

4

θ

)
D0 ≤

5LD0

θ
,

where the first inequality uses the fact that

1− µη(1 +
√

(1− θ)/θ) ≥ 1− L+ µ

2
η(1 +

√
(1− θ)/θ) = 1−

θ +
√
θ(1− θ)
2

≥ 1

2

and the second inequality uses γ ≥ 1− µη. Therefore,

E(f(x̃T)− f(x∗)) ≤ 5LD0

θ
·

(
1− (L+ µ)

√
1− θ(

√
1− θ −

√
θ)

L+ µ− µ(θ +
√
θ(1− θ))

)T
+

4θ

(
√

1− θ −
√
θ)2
· (n−B)

(n− 1)B
· Gn
L
.

Based on Theorem 3, we can obtain the following result.

Corollary 4 Under the settings of Theorem 3, assume θ ∈ (0, 1
2 − θ0) and

B ≥ min

{
n,

2C3θ

ε
· Gn
L

}
(20)

where C3 is defined in Theorem 3 and

T ≥ log

(
10D0L

θε

)/
log

(√
1

2θ

)
, (21)

E(f(x̃T)− f(x∗)) ≤ ε.

Proof [Corollary 4] By remark 1, it is easy to verify that under (20) and (21),

5LD0

θ
·

(
1− (L+ µ)

√
1− θ(

√
1− θ −

√
θ)

L+ µ− µ(θ +
√
θ(1− θ))

)T
≤ 5LD0

θ
(
√

2θ)T ≤ ε

2
,

and
4θ

(
√

1− θ −
√
θ)2
· (n−B)

(n− 1)B
· Gn
L
≤ C3θ

B

Gn
L
≤ ε

2
.

Therefore,
E(f(x̃T)− f(x∗)) ≤ ε.

Proof [Corollary 2] It is known from Corollary 4 that

E(f(x̃T)− f(x∗)) ≤ ε.

12

The computation cost is

ECcomp = E
T∑
j=1

(B +Nj) ≤ T (B +m).

Now we consider two conditions separately. By definition, m = (κ+1)2

2κθ2 = O(κθ2) and hence

ECcomp = O

(
min

{
n+

κ

θ2
,
Gnθ

Lε
+

κ

θ2

}
log

D0L

θε

)
.

Recalling that
Gn
L2
≤ 2

L2

1

n

n∑
i=1

‖∇fi(x̃0)‖2 + 4D0,

we conclude that

ECcomp = O

(
min

{
n+ κ,

Gn
L2
· L
ε

+ κ

}
log

D0L

ε

)
.

In contrast, the communication cost does not depend on m and hence

ECcomm = EBT = O

((
n ∧ Gn

L2
· L
ε

)
log

D0L

ε

)
.

C Miscellanies

C.1 Convergence Analysis for Strongle Convex Case (Under Assumption A3)

In some applications, Assumption A2 might not be valid but Assumption A3 is. Since µ̄ is generally
hard to estimate in cases without a L2-regularization term, for which Assumption A2 holds and
better results can be obtained from Theorem 2, we sample Nj from a geometric distribution as in the
general convex case. The following theorem provides a similar result to Theorem 2, assuming only
A1 and A3 but requiring more stringent conditions on the parameters.

Theorem 4 Assume A1 and A3. Let Nj

ζ =
1

µ̄η

1− γ
γ

+ 2ηL.

1. If B = n and ζ < 1, then

E(f(x̃T)− f(x∗)) ≤ ζT (f(x̃0)− f(x∗));

2. If B < n and ζ + αηL < 1 for some α > 0, then

E(f(x̃T)− f(x∗)) ≤ ζ̃T (f(x̃0)− f(x∗)) +
1

1− ζ̃
· 1 + α

2α
ηGn

n−B
(n− 1)B

.

where ζ̃ = ζ + αηL.

Proof [Theorem 4] With an identical proof to Theorem 1, we reach the equation (9):

2ηE(f(x̃j)−f(x∗)) ≤ 1− γ
γ

(E‖x̃j−1−x∗‖2−E‖x̃j−x∗‖2)+2η2L(1+β)E(f(x̃j−1)−f(x∗))+
1

γ
∆(η, β,B)

Instead of summing over j, we use the strong convexity of f and obtain that

2ηE(f(x̃j)−f(x∗)) ≤ 1− γ
γ
· 2
µ̄
E(f(x̃j−1)−f(x∗))+2η2L(1+β)E(f(x̃j−1)−f(x∗))+

1

γ
∆(η, β,B).

Rearranging the terms we have

E(f(x̃j)− f(x∗)) ≤ (ζ + (β − 1)ηL)E(f(x̃j−1)− f(x∗)) +
1

2ηγ
∆(η, β,B).

We distinguish two cases:

13

1. If B = n, we set β = 1 and then

E(f(x̃j)− f(x∗)) ≤ ζE(f(x̃j−1)− f(x∗))

which proves Part 1 of the theorem;
2. If B < n, we set β = 1 + α and then

E(f(x̃j)− f(x∗)) ≤ ζ̃E(f(x̃j−1)− f(x∗)) +
1 + α

2α
ηGn

n−B
(n− 1)B

.

Then a standard argument shows that

E(f(x̃T)− f(x∗)) ≤ ζ̃T (f(x̃0)− f(x∗)) +
1

1− ζ̃
· 1 + α

2α
ηGn

n−B
(n− 1)B

.

The requirement that ζ < 1 implies that
1

µ̄η

1− γ
γ

< 1, 2ηL < 1,

and these results together imply that
γ

1− γ
>

2L

µ̄
.

Denote by κ̄ = L
µ̄ the condition number of f , then

ENj =
1

1− γ
> 1 + 2κ̄.

This plays a similar role to m as in the previous subsection with κ replaced by κ̃. Similar to Corollary
2, we can derive the computation and communication cost as follows.

Corollary 5 Assume A1 and A3. Let κ̄ = L
µ̄ denote the condition number of f . Set γ to satisfy

1

1− γ
≥ 1 + cκ̄,

for some c > 8 and set η = θ
L for any θ with

1

cθ
+ 2θ < 1.

Further, select the batch size B and number of stages T such that

B = min

{
n,

⌈
C4

ε
· Gn
L

⌉}
, T =

⌈
C5 log

(
(f(x̃0)− f(x∗))

ε

)⌉
,

for some large enough constants C4, C5 which only depend on c and θ. Then E(f(x̃T)− f(x∗)) ≤ ε
and

ECcomp = O

((
n ∧ Gn

L2
· L
ε

+ κ̄

)
log

D0L

ε

)
, ECcomm = O

((
n ∧ Gn

L2
· L
ε

)
log

D0L

ε

)
.

Proof [Corollary 5] Since 1
1−γ ≥ 1 + cκ̄ and η = θ

L , it holds that

ζ ≤ 1

cθ
+ 2θ.

Since c > 8, there exists θ > 0 such that ζ < 1. Similarly, there exists α > 0 such that

{θ :
1

cθ
+ (2 + α)θ < 1}

is a non-empty set. Then under our settings, for sufficiently large C4 and C5, E(f(x̃T)− f(x∗)) ≤ ε.
Similar to Corollary 1 and Corollary 2, we prove that

ECcomp = O

((
n ∧ Gn

Lε
+ κ̄

)
log

D0L

ε

)
, ECcomm = O

((
n ∧ Gn

Lε

)
log

D0L

ε

)
.

14

C.2 Communication Cost of CoCoA (Table 2)

CoCoA has an additional factor H [5] determining the iteration complexity T and hence the tradeoff
between computation and communication. For given H , the computation cost of CoCoA is HT .
Under our notation, Theorem 2 of [5] implies that the iteration complexity

T = Ω

(
m

1−Θ

n+ κ

n
log

D0L

ε

)
= Ω

(
m log

1

ε̃

)
.

To match the computation cost of CoCoA to SCSG, we assume

H = O

(
1

m

(
n ∧ Gn

Lε
+ κ

))
.

Then equation (5) of [5] implies that

Θ ≥
(

1− n

n+ κ
· m
n

)H
≤ exp

{
−m ·

n ∧ Gn
Lε + κ

n+ κ

}
=

((
1− m

n+ κ

)n+κ
m

)n∧Gn
Lε

+κ

n+κ

.

In most applications, m/n is bounded away from 1. Suppose m/n ≤ ζ < 1, then

Θ ≥
(

(1− ζ)
1
ζ

) n+κ

n∧Gn
Lε

+κ , exp

{
−c ·

n ∧ Gn
Lε + κ

n+ κ

}
where c = −ζ−1 log(1− ζ). Note that for any a > 0, 1/(1− e−a) ≥ a−1, we conclude that

1

1−Θ
≥ c−1 · n+ κ

n ∧ Gn
Lε + κ

and hence

T = Ω

(
m · n+ κ

n ∧ Gn
Lε + κ

log
1

ε̃

)
.

As a consequence, we obtain that the communication cost of CoCoA is at least

m2 · n+ κ

n ∧ Gn
Lε + κ

log
1

ε̃
.

C.3 Bounding M1 and M2 for (Multi-Class) Logistic Regression (Equation (3))

In Section 4 we claim that M1 = 2,M2 = 1 for (multi-class) logistic regression. Here we establish
this claim. Denote by x the concatenation of x1, . . . , xK−1 as in Section 5. Then

fi(x) = log

(
1 +

K−1∑
k=1

ea
T
i xk

)
−
K−1∑
k=1

I(yi = k)aTi xk.

For any k = 1, . . . ,K − 1,

∂fi(x)

∂xk
=

(
ea
T
i xk

1 +
∑K−1
k=1 ea

T
i xk
− I(yi = k)

)
· ai

and thus
∇fi(x) = Hi(x)⊗ ai =⇒ ‖∇fi(x)‖2 = ‖Hi(x)‖2 · ‖ai‖2,

where

Hi(x) =

(
ea
T
i x1

1 +
∑K−1
k=1 ea

T
i xk
− I(yi = 1), . . . ,

ea
T
i xK−1

1 +
∑K−1
k=1 ea

T
i xk
− I(yi = K − 1)

)T
.

It is easy to see that for any i and x

‖Hi(x)‖2 ≤ ‖Hi(x)‖1 ≤ 2.

15

This entails that

Gn ≤
1

n

n∑
i=1

‖ai‖2.

On the other hand, for any k = 1, . . . ,K − 1,

∂2fi
∂xk∂xTk

= (Hi(x)k −Hi(x)2
k)aia

T
i ,

and for any k 6= k′,
∂2fi

∂xk∂xTk′
= −Hi(x)kHi(x)k′aia

T
i .

Thus,
∇2fi(x) = (diag(Hi(x))−Hi(x)Hi(x)T)⊗ aiaTi .

As a consequence,

L ≤ max
i
λmax(∇2fi(x)) ≤ λmax(diag(Hi(x))−Hi(x)Hi(x)T) · sup ‖ai‖2 ≤ sup ‖ai‖2.

References

[1] Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. In STOC,
2017.

[2] Z. Allen-Zhu and Y. Yuan. Improved SVRG for non-strongly-convex or sum-of-non-convex
objectives. In International Conference on Machine Learning, 2016.

[3] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In Advances in Neural Information
Processing Systems, pages 1646–1654, 2014.

[4] S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[5] M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan, T. Hofmann, and M. I. Jordan.
Communication-efficient distributed dual coordinate ascent. In Advances in Neural Infor-
mation Processing Systems, pages 3068–3076, 2014.

[6] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, pages 315–323, 2013.

[7] J. Konečnỳ, B. McMahan, and D. Ramage. Federated optimization: Distributed optimization
beyond the datacenter. ArXiv e-prints abs/1511.03575, 2015.

[8] H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In
Advances in Neural Information Processing Systems, pages 3384–3392, 2015.

[9] Q. Lin, Z. Lu, and L. Xiao. An accelerated proximal coordinate gradient method. In Advances
in Neural Information Processing Systems, pages 3059–3067, 2014.

[10] A. Nitanda. Accelerated stochastic gradient descent for minimizing finite sums. In Proceedings
of the 19th International Conference on Artificial Intelligence and Statistics, pages 195–203,
2016.

[11] S. J. Reddi, A. Hefny, S. Sra, B. Póczós, and A. J. Smola. Stochastic variance reduction for
nonconvex optimization. In International Conference on Machine Learning, 2016.

[12] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated sub-gradient
solver for SVM. Mathematical Programming, 127(1):3–30, 2011.

[13] S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. In International Conference on Machine Learning, pages 64–72,
2014.

[14] O. Shamir, N. Srebro, and T. Zhang. Communication-efficient distributed optimization using
an approximate Newton-type method. In International Conference on Machine Learning,
volume 32, pages 1000–1008, 2014.

16

[15] Y. Zhang and X. Lin. Disco: Distributed optimization for self-concordant empirical loss. In
International Conference on Machine Learning, pages 362–370, 2015.

[16] Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for regularized empirical
risk minimization. In International Conference on Machine Learning, volume 951, page 2015,
2015.

17

