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Abstract

We propose a novel rank aggregation method
based on converting permutations into their
corresponding Lehmer codes or other subdi-
agonal images. Lehmer codes, also known
as inversion vectors, are vector representa-
tions of permutations in which each coordi-
nate can take values not restricted by the
values of other coordinates. This transfor-
mation allows for decoupling of the coor-
dinates and for performing aggregation via
simple scalar median or mode computations.
We present simulation results illustrating the
performance of this completely parallelizable
approach and analytically prove that both
the mode and median aggregation procedure
recover the correct centroid aggregate with
small sample complexity when the permuta-
tions are drawn according to the well-known
Mallows models. The proposed Lehmer code
approach may also be used on partial rank-
ings, with similar performance guarantees.

1 Introduction

Rank aggregation is a family of problems concerned
with fusing disparate ranking information, and it arises
in application areas as diverse as social choice, meta-
search, natural language processing, bioinformatics,
and information retrieval [1, 2, 3]. The observed rank-
ings are either linear orders (permutations) or partial
(element-tied) rankings1. Sometimes, rankings are as-

1In the mathematics literature, partial rankings are also
referred to as weak orders, while the term partial order is
used to describe orders of subsets of elements of a ground
set. We nevertheless use the term partial ranking to denote
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sumed to be of the form of a set of pairwise compar-
isons [4, 5]. Note that, many massive ordinal datasets
arise from ratings, rather than actual comparisons.
Rank aggregation, rather than averaging of ratings, is
justified due to the fact that most raters have different
rating “scales”. As an example, the rating three of one
user may indicate that the user liked the item, while
the rating three by another user may indicate that the
user disliked the item. Hence, actual preferences can
only be deduced using ranked ratings.

In rank aggregation, the task at hand is to find a rank-
ing that is at the smallest cumulative distance from a
given set of rankings. Here, the cumulative distance
from a set equals the sum of the distances from each el-
ement of the set, and the most frequently used distance
measure for the case of permutations is the Kendall τ
distance. For the case of partial rankings, the distance
of choice is the Kemeny distance [6]. The Kendall τ
distance between two permutations equals the smallest
number of adjacent transpositions needed to convert
one permutation into the other. The Kemeny distance
contains an additional weighted correction term that
accounts for ties in the rankings.

It is well known that for a wide range of distance func-
tions, learning the underlying models and aggregating
rankings is computationally hard [7, 8]. Nevertheless,
for the case when the distance measure is the Kendall τ
distance, a number of approximation algorithms have
been developed that offer various trade-offs between
quality of aggregation and computational complex-
ity [9, 10]. The techniques used for aggregating per-
mutations in a given set include randomly choosing
a permutation from the set (PICK-A-PERM), piv-
oting via random selections of elements and divide-
and-conquer approaches (FAS-PIVOT), Markov chain
methods akin to PageRank, and minimum weight
graph matching methods exploiting the fact that the
Kendall τ distance is well-approximated by the Spear-
man footrule distance (SM) [11]. Methods with prov-
able performance guarantees – PICK-A-PERM, FAS-

orders with ties, as this terminology is more widely adopted
by machine learning community.
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PIVOT, and SM – give a 2-approximation for the
objective function, although combinations thereof are
known to improve the constant to 11/7 or 4/3 [10].
There also exists a polynomial time approximation
scheme (PTAS) for the aggregation problem [12].

Unfortunately, most of these known approximate rank
aggregation algorithms have high complexity for use
with massive datasets and may not be implemented
in a parallel fashion. Furthermore, they do not
easily extend to partial rankings. In many cases,
a performance analysis on probabilistic models [13]
such as the Plackett-Luce model [14] or the Mallows
model [15, 16], is intractable.

In this paper, we propose a new approach to the prob-
lem of rank aggregation that uses a combinatorial
transform, the Lehmer code (LC). The gist of the ap-
proach is to convert permutations into their Lehmer
code representations, in which each coordinate takes
values independently from other coordinates. Aggre-
gation over the Lehmer code domain reduces to com-
puting the median or mode of a bounded set of num-
bers, which can be done in linear time. Furthermore,
efficient conversion algorithms between permutations
and Lehmer codes – also running in linear time – are
known, making the overall complexity of the parallel
implementation of the scheme O(m+n), where m de-
notes the number of permutations to be aggregated,
and n denotes the length (size) of the permutations.
To illustrate the performance of the Lehmer code ag-
gregators (LCAs) on permutations, we carry out sim-
ulation studies showing that the algorithms perform
comparably with the best known methods for approx-
imate aggregation, but at a significantly lower com-
putational cost. We then proceed to establish a num-
ber of theoretical performance guarantees for the LCA
algorithms: In particular, we consider the Mallows
model with the Kendall τ distance for permutations
and Kemeny distance for partial rankings where ties
are allowed. We show that the centroid permutation
of the model or a derivative thereof may be recovered
from O(log n) samples from the corresponding distri-
bution with high probability.

The paper is organized as follows. Section 2 con-
tains the mathematical preliminaries and the defini-
tions used throughout the paper. Section 3 introduces
our new aggregation methods for two types of rank-
ings, while Section 4 describes our analysis pertaining
to the Mallows and generalized Mallows models. Sec-
tion 5 contains illustrative simulation results compar-
ing the performance of the LC aggregators to that of
other known aggregation methods, both on simulated
and real ranking data. A number of technical results,
namely detailed proofs of theorems and lemmas, can
be found in the supplementary material.

2 Mathematical Preliminaries

Let S denote a set of n elements, which without loss of
generality we assume to be equal to [n] ≡ {1, 2, . . . , n}.
A ranking is an ordering of a subset of elements Q of
[n] according to a predefined rule. When Q = [n],
we refer to the order as a permutation (full ranking).
When a ranking includes ties, we refer to it as a partial
ranking (weak or bucket order). Partial rankings may
be used to complete rankings of subsets of element in
[n] in a number of different ways [17], one being to tie
all unranked elements at the last position.

Rigorously, a permutation is a bijection σ : [n] →
[n], and the set of permutations over [n] forms the
symmetric group of order n! denoted by Sn. For any
σ ∈ Sn and x ∈ [n], σ(x) denotes the rank (position)
of the element x in σ. We say that x is ranked higher
than y (ranked lower than y) iff σ(x) < σ(y) (σ(x) >
σ(y)). The inverse of a permutation σ is denoted by
σ−1 : [n]→ [n]. Clearly, σ−1(i) represents the element
ranked at position i in σ. We define the projection
of a permutation σ over a subset of elements Q ⊆
[n], denoted by σQ : Q → [|Q|], as an ordering of
elements in Q such that x, y ∈ Q, σQ(x) > σQ(y)
iff σ(x) > σ(y). As an example, the projection of
σ = (2, 1, 4, 5, 3, 6) over Q = {1, 3, 5, 6} equals σQ =
(1, 3, 2, 4), since σ(1) < σ(5) < σ(3) < σ(6). As can
be seen, σQ(x) equals the rank of element x ∈ Q in σ.

We use a similar set of definitions for partial rank-
ings [17]. A partial ranking σ is also defined as a map-
ping [n]→ [n]. In contrast to permutations, where the
mapping is a bijection, the mapping in partial rank-
ing allows for ties, i.e., there may exist two elements
x 6= y such that σ(x) = σ(y). A partial ranking is
often represented using buckets, and is in this con-
text referred to as a bucket order [17]. In a bucket
order, the elements of the set [n] are partitioned into
a number of subsets, or buckets, B1,B2, ...,Bt. We let
σ(x) denote the index of the bucket containing the el-
ement x in σ, so the element x is assigned to bucket
Bσ(x). Two elements x, y lie in the same bucket if
and only if they are tied in σ. We may also define a
projection of a partial ranking σ over a subset of ele-
ments Q ⊂ [n], denoted by σQ, so that for x, y ∈ Q,
σQ(x) > σQ(y) iff σ(x) > σ(y) and σQ(x) = σQ(y)
iff σ(x) = σ(y). For a given partial ranking σ, we
use B1(σ),B2(σ), ...,Bt(σ) to denote its corresponding

buckets. In addition, we define rk(σ) ,
∑k
j=1 |Bj(σ)|

and lk(σ) ,
∑k−1
j=1 |Bj(σ)| + 1. Based on the previous

discussion, rσ(x)(σ) − lσ(x)(σ) + 1 = |Bσ(x)(σ)| (the
number of elements that are in the bucket containing
x). When referring to the bucket for a certain ele-
ment x, we use Bσ(x), rσ(x), lσ(x) whenever no confu-
sion arises. Note that if we arbitrarily break ties in σ
to create a permutation σ′, then lσ(x) ≤ σ′(x) ≤ rσ(x);
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clearly, if σ is a permutation, lσ(i) = σ(i) = rσ(i).

A number of distance functions between permutations
are known from the social choice, learning and discrete
mathematics literature [11]. One distance function of
interest is based on transpositions: A transposition
(a, b) is a swap of elements at positions a and b, a 6= b.
If |a − b| = 1, the transposition is referred to as an
adjacent transposition. It is well known that transpo-
sitions (adjacent transpositions) generate Sn, i.e., any
permutation π ∈ Sn can be converted into another per-
mutation σ ∈ Sn through a sequence of transpositions
(adjacent transpositions) [18]. The smallest number
of adjacent transpositions needed to convert a permu-
tation π into another permutation σ is known as the
Kendall τ distance between π and σ, and is denoted
by dτ (π, σ). Alternatively, the Kendall τ distance be-
tween two permutations π and σ over [n] equals the
number of mutual inversions between the elements of
the two permutations:

dτ (σ, π) = |{(x, y) : π(x) > π(y), σ(x) < σ(y)}|. (1)

Another distance measure, that does not rely on trans-
positions, is the Spearman footrule, defined as

dS(σ, π) =
∑
x∈[n]

|σ(x)− π(x)|.

A well known result by Diaconis and Graham [11] as-
serts that dτ (π, σ) ≤ dS(π, σ) ≤ 2dτ (π, σ).

One may also define an extension of the Kendall τ
distance for the case of two partial rankings π and σ
over the set [n], known as the Kemeny distance:

dK(π, σ) =|{(x, y) : π(x) > σ(y), π(x) < σ(y)}|

+
1

2
|{(x, y) : π(x) = π(y), σ(x) > σ(y),

or π(x) > π(y), σ(x) = σ(y), }|. (2)

The Kemeny distance includes a component equal to
the Kendal τ distance between the linear chains in the
partial rankings, and another, scaled component that
characterizes the distance of tied pairs of elements [17].
The Spearman footrule distance may also be defined
to apply to partial rankings [17], and it equals the
sum of the absolute differences between “positions” of
elements in the partial rankings. Here, the position of
an element x in a partial ranking σ is defined as

posσ(x) ,
σ(x)−1∑
j=1

|Bj(σ)|+
|Bσ(x)(σ)|+ 1

2
.

The above defined Spearman distance is a 2-
approximation for the Kemeny distance between two
partial rankings [17].

A permutation σ = (σ(1), . . . , σ(n)) ∈ Sn may be
uniquely represented via its Lehmer code (also called
the inversion vector), i.e. a word of the form

cσ ∈ Cn , {0} × [0, 1]× [0, 2]× · · · × [0, n− 1],

where for i = 1, . . . , n,

cσ(x) = |{y : y < x, σ(y) > σ(x)}|, (3)

and for integers a ≤ b, [a, b] ≡ [a, a + 1, . . . , b]. By
default, cσ(1) = 0, and is typically omitted. For in-
stance, we have

e 1 2 3 4 5 6 7 8 9
σ 2 1 4 5 7 3 6 9 8
cσ 0 1 0 0 0 3 1 0 1

It is well known that the Lehmer code is bijective, and
that the encoding and decoding algorithms have linear
complexity (n) [19, 20]. Codes with similar properties
to the Lehmer codes have been extensively studied un-
der the name of subdiagonal codes. An overview of such
codes and their relationship to Mahonian statistics on
permutations may be found in [21].

We propose next our generalization of Lehmer codes
to partial rankings. Recall that the x-th entry in the
Lehmer code of a permutation σ is the number of ele-
ments with index smaller than x that are ranked lower
than x in σ (3). For a partial ranking, in addition to
cσ, we use another code that takes into account ties
according to:

c′σ(x) = |{y ∈ [n] : y < x, σ(y) ≥ σ(x)}|. (4)

Clearly, c′σ(x) ≥ cσ(x) for all x ∈ [n]. It is straightfor-
ward to see that using cσ(x) and c′σ(x), one may re-
cover the original partial ranking σ. In fact, we prove
next that the linear-time Lehmer encoding and decod-
ing algorithms may be used to encode and decode cσ
and c′σ in linear time as well.

Given a partial ranking σ, we may break the ties in
each bucket to arrive at a permutation σ′ as follows:
For x, y ∈ S, if σ(x) = σ(y),

σ′(x) < σ′(y) if and only if x < y. (5)

We observe that the entries of the Lehmer codes of σ
and σ′ satisfy the following relationships for all i ∈ [n]:

c′σ(x) = cσ′(x) + INx − 1,

cσ(x) = cσ′(x),

where INx = |{y ∈ [n] ∩ Bσ(x) : y ≤ x}|. An example
illustrating these concepts is given below.
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e 1 2 3 4 5 6 7 8 9
σ 1 1 2 2 3 1 2 3 3
σ′ 1 2 4 5 7 3 6 8 9
cσ′ 0 0 0 0 0 3 1 0 0
IN 1 2 1 2 1 3 3 2 3
cσ 0 0 0 0 0 3 1 0 0
c′σ 0 1 0 1 0 5 3 1 2

Note that INx, as well as cσ and c′σ may be computed
in linear time. The encoding procedure is outlined in
Algorithm 1.

Algorithm 1:
Lehmer encoder for partial rankings
Input: a partial ranking σ;
1: Set N to be the number of buckets in σ;
2: Initialize IN = (0, 0, ..., 0) ∈ Nn

and BucketSize = (0, 0, ..., 0) ∈ NN ;
3: For x from 1 to n do
4: BucketSize(σ(x)) + +;
5: IN(x)← BucketSize(σ(x));
6: Break ties of σ to get σ′ according to (5);
7: cσ′ ← Lehmer code of σ′;
Output: Output cσ = cσ′ , c

′
σ = cσ + IN− 1;

3 Aggregation Algorithms

Assume that we have to aggregate a set of m rankings,
denoted by Σ = (σ1, σ2, . . . , σm), σk ∈ Sn, 1 ≤ k ≤ m.
Aggregation may be performed via the distance-based
Kemeny-Young model, in which one seeks a ranking
σ that minimizes the cumulative Kendall τ (Kemeny)
distance dτ (dK) from the set Σ, formally defined as:

D(Σ, σ) =

m∑
i=1

dτ (σi, σ).

Note that when the set Σ comprises permutations only,
σ is required to be a permutation; if Σ comprises par-
tial rankings, we allow the output to be either a per-
mutation or a partial ranking.

The LCA procedure under the Kendall τ distance is
described in Algorithm 2. Note that each step of the

Algorithm 2: The LCA Method (Permutations)
Input: Σ = {σ1, σ2, ..., σm}, where σi ∈ Sn, i ∈ [n].
1: Compute the Lehmer codewords cσj for all σj ∈ Σ.
2: Compute the median/mode of the coordinates:

ĉ(i) = median/mode
(
cσ1

(i), cσ2
(i), . . . , cσm(i)

)
.

3: Compute σ̂, the inverse Lehmer code of ĉ.
Output: Output σ̂.

algorithm may be executed in parallel. If no paral-
lelization is used, the first step requires O(mn) time,
given that the Lehmer codes may be computed in O(n)
time [19, 20]. If parallelization on Σ is used instead,
the time reduces to O(m+n). Similarly, without par-
allelization the second step requires O(mn) time, while
coordinate parallelization reduces this time to O(m).
This third step requires O(n) computations. Hence,
the overall complexity of the algorithm is either O(mn)
or O(m+ n), depending on parallelization being used
or not.

For permutations, the aggregation procedure may be
viewed as specialized voting: The ranking σk casts a
vote to rank x at position x−cσk(x), for the case that
only elements ≤ x are considered (A vote corresponds
to some score confined to [0, 1]). However, when σk is a
partial ranking involving ties, the vote should account
for all possible placements between x− c′σ(x) and x−
cσ(x). More precisely, suppose that the vote cast by
σk to place element x in position y ∈ [x] is denoted by
vk→x(y). Then, one should have

vk→x(y) =

{
1, for the mode,
1

c′σ(x)−cσ(x)+1 , for the median,
(6)

if and only if y ∈ [x−c′σ(x), x−cσ(x)], and zero other-
wise. Note that when the mode is used, the “positive
votes” are all equal to one, while when the median is
used, a vote counts only a fractional value dictated by
the length of the “ranking interval”.

Next, we use Vx(y) =
∑m
k=1 vk→x(y) to denote the

total voting score element x received to be ranked at
position y. The inverse Lehmer code of the aggregator
output σ̂ is computed as:

mode: ĉ(x) = argy∈[x] maxVx(y)− 1, (7)

median: ĉ(x) = min{k :

∑k
y=1 Vx(y)

m
≥ 1/2} − 1.

To compute the values Vx(y) for all y ∈ [x], the LCA
algorithm requires O(mx) time, which yields an over-
all aggregation complexity of O(mn2) when no par-
allelization is used. This complexity is reduced to
O(m+ n2) for the parallel implementation. Note that
the evaluations of the V functions may be performed
in a simple iterative manner provided that the votes
vk→x(y) are positive constants, leading to a reduction
in the overall complexity of this step to O(mn + n2)
when no parallelization is used. Relevant details re-
garding the iterative procedure may be found in Sec-
tion VII of the supplementary document.

Note that the output σ̂ of Algorithm 2 is a permu-
tation. To generate a partial ranking that minimizes
the Kemeny distance while being consistent2 with σ̂,

2We say that two partial rankings σ, π are consistent
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one can use a O(mn2 +n3)-time algorithm outlined in
Section VII of the supplementary document. Alterna-
tively, the following simple greedy method always pro-
duces practically good partial rankings with O(mn)
complexity: Scan the elements in the output permu-
tation from highest (j = 1) to lowest rank (j = n− 1)
and decide to put σ̂−1(j + 1) and σ̂−1(j) in the same
bucket or not based on which of the two choices offers
smaller Kemeny distance with respect to the subset
{σ̂−1(1), ..., σ̂−1(j)}.

Discussion. In what follows, we briefly outline the
similarities and differences between the LCA method
and existing positional as well as InsertionSort based
aggregation methods. Positional methods are a class
of aggregation algorithms that seek to output a rank-
ing in which the position of each element is “close” to
the position of the element in Σ. One example of a po-
sitional method is Borda’s algorithm, which is known
to produce a 5-approximation to the Kemeny-Young
problem for permutations [22]. Another method is the
Spearman footrule aggregation method which seeks
to find a permutation that minimizes the sum of the
Spearman footrule distance between the output and
each ranking in Σ. As already mentioned, the latter
method produces a 2-approximation for the Kendall
τ aggregate for both permutations and partial rank-
ing. LCA also falls under the category of positional
methods, but the positions on which scoring is per-
formed are highly specialized by the Lehmer code.
And although it appears hard to prove worst-case per-
formance guarantees for the method, statistical anal-
ysis on particular ranking models shows that it can
recover the correct results with small sample com-
plexity. It also offers significant reductions in com-
putational time compared to the Spearman footrule
method, which reduces to solving a weighted bipar-
tite matching problem and hence has complexity at
least O(mn2 + n3) [23], or O(mn) when implemented
in MapReduce [24].

A related type of aggregation is based on Insertion-
Sort [9, 23]. In each iteration, an element is randomly
chosen to be inserted into the sequence containing the
already sorted elements. The position of the insertion
is selected as follows. Assume that the elements are in-
serted according to the identity order e = (1, 2, . . . , n)
so that at iteration t, element t is chosen to be inserted
into some previously constructed ranking over [t− 1].
Let St−1 = [t − 1] and the symbol t is inserted into
the ranking over St−1 to arrive at σSt , the ranking
available after iteration t. If t is inserted between two
adjacent elements σ−1

St−1
(i− 1) and σ−1

St−1
(i), then one

should have σSt(x) = σSt−1
(x) when σSt−1

(x) ≤ i− 1,

if for any two elements x, y, σ(x) < σ(y) if and only if
π(x) ≤ π(y) and vise versa.

σSt(x) = σSt−1(x − 1) + 1 when σSt−1(x) ≥ i and
σSt(t) = i. Let σSt(t) denote the rank assigned to el-
ement t over St, the choice of which may vary from
method to method. The authors of [9] proposed set-
ting σSt(t) to

max

i ∈ [t− 1] :
∑
k∈[m]

1σk(t)<σk(σ−1
St−1

(i)) <
m

2

 ,

or t when the above set is empty. This insertion rule
does not ensure a constant approximation guarantee
in the worst case (It has an expected worst-case per-
formance guarantee of Ω(n)), although it leads to a
Locally Kemeny optimal solution.

We next describe how the LCA method may be viewed
as an InsertionSort method with a special choice of
σSt(t). Consider the permutation LCA method of Al-
gorithm 2, and focus on estimating the t-th coordi-
nate of the Lehmer code ĉ(t) (step 2) and the in-
verse Lehmer code via insertion (step 3) simultane-
ously. Once ĉ(t) is generated, it’s corresponding in-
verse Lehmer transform may be viewed as the opera-
tion of placing the element t at position (t− ĉ(t)) over
St. In other words, inverting the incomplete ranking
reduces to setting σSt(t) = (t− ĉ(t)), where σSt(t) es-
sentially equals the mode or median of the positions of
t in the rankings of Σ, projected onto St. The same is
true of partial rankings, with the only difference being
that the selection of σSt(t) has to be changed because
of ties between elements.

4 Analysis of the Mallows Model

We provide next a theoretical performance analysis
of the LCA algorithm under the assumption that the
rankings are generated according to the Mallows and
generalized Mallows Model. In the Mallows model
MM(σ0, φ) with parameters σ0 and φ, σ0 denotes the
centroid ranking and φ ∈ (0, 1] determines the variance
of the ranking with respect to σ0. The probability of a
permutation σ is proportional to φdτ (σ0,σ). For partial
rankings, we assume that the samples are generated
from a generalized Mallows Model (GMM) whose cen-
troid is allowed to be a partial ranking and where the
distance is the Kemeny dk, rather than the Kendall τ
distance dτ .

Our analysis is based on the premise that given a suf-
ficiently large number of samples (permutations), one
expects the ranking obtained by a good aggregation
algorithm to be equal to the centroid σ0 with high
probability. Alternative methods to analytically test
the quality of an aggregation algorithm are to perform
a worst-case analysis, which for the LCA method ap-
pears hard, or to perform a simulation-based analysis
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which produces a comparison of the objective function
values for the Kemeny-Young problem given different
aggregation methods. We report on the latter study
in the section to follow.

To ease the notational burden, we henceforth use
φs:t ,

∑t
k=s φ

k in all subsequent results and deriva-
tions. Detailed proofs are relegated to the supplemen-
tary material. One of our main theoretical result is
the following.

Theorem 4.1. Assume that Σ = {σ1, σ2, ..., σm},
where σk

i.i.d∼ MM(σ0, φ), k ∈ [m], are m i.i.d. sam-
ples of the given Mallows model. If φ+φ2 < 1+φn and

m ≥ c log n2

2δ with c = 2(1+q)2

(1−q)4 and q = φ1:n−1

1+φ3:n
, then

the output ranking of Algorithm 2 under the mode rule
equals σ0 with probability at least 1− δ.

The idea behind the proof is to view the LCA proce-
dure as an InsertionSort method, in which the proba-
bility of the event that the selected position is incorrect
with respect to σ0 is very small for sufficiently large
m. Based on the lemma that follows (Lemma 4.2),
one may show that if φ satisfies φ + φ2 < 1 + φn, the
most probable position of an element in a ranking σ ∼
MM(σ0, φ) corresponds to its rank in the centroid σ0.
Given enough samples, one can estimate the rank of
an element in the centroid by directly using the mode
of the rank of the element in the drawn samples.

Lemma 4.2. Let σ ∼ MM(σ0, φ). Consider an ele-
ment u. Then, the following two statements describe
the distribution of σ(u):

1)
P[σ(u) = j + 1]

P[σ(u) = j]
∈ [φ,

φ1:n−1

1 + φ3:n
] when σ0(u) ≤ j < n.

2)
P[σ(u) = j − 1]

P[σ(u) = j]
∈ [φ,

φ1:n−1

1 + φ3:n
] when 1 < j ≤ σ0(u).

In 1), the upper bound is achieved when σ0(u) = n−1
and j = σ0(u), while the lower bound is achieved when
σ0(u) = 1. In 2), the upper bound is achieved when
σ0(u) = 2 and j = σ0(u), while the lower bound is
achieved when σ0(u) = n.

Remark 4.1. The result above may seem counterintu-
itive since it implies that for φ + φ2 > 1 + φn, the
probability of ranking some element u at a position
different from its position in σ0 is larger than the prob-
ability of raking it at position σ0(u). An easy-to-check
example that shows that this indeed may be the case
corresponds to σ0 = (1, 2, 3, 4) and φ = 0.9. Here, we
have P[σ(3) = 3] = 0.2559 < P[σ(3) = 4] = 0.2617.

Lemma 4.2 does not guarantee that in any single iter-
ation the position of the element will be correct, since
the ranking involves only a subset of elements. There-
fore, Lemma 4.3, a generalized version for the subset-
projected ranking, is required for the proof.

Lemma 4.3. Let σ ∼ MM(σ0, φ) and let A ⊂ [n].
Consider an element u ∈ A. Then, the following two
statements describe the distribution of σA(u):

1)
P[σA(u) = j + 1]

P[σA(u) = j]
≤ max
l∈[0,n−|A|]

φ+ φlφ2:n−l−1

1 + φ2lφ3:n−l

when |A| > j ≥ σ0,A(u).

2)
P[σA(u) = j − 1]

P[σA(u) = j]
≤ max
l∈[0,n−|A|]

φ+ φlφ2:n−l−1

1 + φ2lφ3:n−l

when 1 < j ≤ σ0,A(u).

Observe that the conditions that allow one to achieve
the upper bound in Lemma 4.2 also ensure that the
upper bounds are achieved in Lemma 4.3. Moreover,
when φ+φ2 < 1+φn, the right hand sides are≤ φ1:n−1

1+φ3:n
.

The next result establishes the performance guarantees
for the LCA algorithm with the median operation.

Theorem 4.4. Assume that Σ = {σ1, σ2, ..., σm},
where σk

i.i.d∼ MM(σ0, φ), k ∈ [m]. If φ < 0.5 and
m ≥ c log 2n

δ , where c = 2
(1−2φ)2 , then the output of Al-

gorithm 2 under the median operation equals σ0 with
probability at least 1− δ.

The proof follows by observing that if the median of
the Lehmer code cσk(t) over all k ∈ [m] converges to
t − σ0,St(t) as m → ∞, then each σk should have
P[σk,St(t) > σ0,St(t)],P[σk,St(t) < σ0,St(t)] < 1/2. Ac-
cording to the following Lemma, in this case, one needs
φ < 0.5.

Lemma 4.5. Let σ ∼ MM(σ0, φ) and let A ⊆ [n].
For any u ∈ A, the following two bounds hold:

1) P[σA(u) > σ0,A(u)] ≤
φ1:(|A|−σ0,A(u))

φ0:(|A|−σ0,A(u))
< φ,

2) P[σA(u) < σ0,A(u)] ≤
φ1:σ0,A(u)

φ0:σ0,A(u)
< φ.

The inequality 1) is met for A = S and σ0(u) = 1,
while the inequality 2) is met for A = S and σ0(u) = n.

We now turn our attention to partial rankings and
prove the following extension of the previous result
for the GMM, under the LCA algorithm that uses the
median of coordinate values. Note that the output
of Algorithm 2 is essentially a permutation, although
it may be transformed into a partial ranking via the
bucketing method described in Section 2.

Theorem 4.6. Assume that Σ = {σ1, σ2, ..., σm},
where σk

i.i.d∼ GMM(σ0, φ), k ∈ [m]. If φ + φ1/2 < 1
and m ≥ c log 2n

δ with c = 2
(1−2q′)2 , where q′ =

1 − 1
2φ

1/2 − 1
2φ, then the output ranking of the LCA

algorithm (see Section VII of the supplementary docu-
ment) under the median operation is in Σ0 with prob-
ability at least 1 − δ. Here, Σ0 denotes the set of
permutations generated by breaking ties in σ0.
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The proof of this theorem relies on showing that the In-
sertionSort procedure places elements in their correct
position with high probability. If the median is used
for partial ranking aggregation, one vote is uniformly
distributed amongst all possible positions in the range
given by (6). To ensure that the output permutation is
in Σ0, we need to guarantee that the median of the po-
sitions of the votes for t over St is in [lσ0,St(t), rσ0,St(t)]
for large enough m (as in this case, [lσ0,St(t), rσ0,St(t)]
represents the bucket in σ0 that contains t).

For a σ ∼ GMM(σ0, φ), let v(j) be the vote that
the partial ranking σ cast for position j. Then, one
requires that

E[

rσ0,A(u)∑
k=1

v(j)] > 0.5 and E[

n∑
k=lσ0,A(u)

v(j)] > 0.5.

The expectations in the expressions above may be
evaluated as follows (We only consider the expecta-
tion on the left because of symmetry). If the event
W = {rσSt (t) ≤ rσ0,St (t)

} occurs, then the vote of σ
that contributes to the sum equals 1. If the event

Q = ∪
n−rσ0,St (t)
j=1 Qj , where Qj = {rσSt (t) = j +

rσ0,St (t)
, lσSt (t) ≤ rσ0,St (t)

} occurs, then the vote that

σ contributes to the sum equals Vj =
rσ0,St (t)

−lσSt (t)+1

rσSt (t)
−lσSt (t)+1 .

Therefore, we have

E[

rσ0,St (t)∑
k=1

v(k)] = P[W ] +

n−rσ0 (u)∑
j=1

VjP[Qj ]. (8)

The following lemma describes a lower bound for (8).

Lemma 4.7. Let σ ∼ GMM(σ0, φ) and let A ⊆ [n]
be such that it contains a predefined element u. Let
A′ = A− {x ∈ A : x 6= u, σ0,A(x) ≤ σ0,A(u)}. Define

W = {rσA(u) ≤ rσ0,A(u)},
Qj = {rσA(u) = j + rσ0,A(u), lσA(u) ≤ rσ0,A(u)},
W ′ = {rσA′ (u) ≤ rσ0,A′ (u)},
Q′j = {rσA′ (u) = j + rσ0,A′ (u), lσ′A(u) ≤ rσ0,A′ (u)}.

Then, one can prove that

P[W ]+
∑|A|−rσ0,A (u)

j=1 VjP[Qj ]

≥ P[W ′] +
∑|A′|−rσ

0,A′
(u)

j=1
1
j+1VjP[Q′j ]

≥ 1− 1
2φ

1/2 − 1
2φ.

If φ + φ1/2 < 1, the lower bound above exceeds 1/2.
Theorem 4.6 then follows using the union bound and
Hoeffding’s inequality.
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Figure 1: The normalized Kendall τ distance between
the set σ and the aggregate vs the parameter λ of the
MM.

5 Performance Evaluation

We next evaluate the performance of the LCA algo-
rithms via experimental methods and compare it to
that of other rank aggregation methods using both
synthetic and real datasets. For comparative analysis,
we choose the Fas-Pivot and FasLP-Pivot (LP) meth-
ods [10], InsertionSort with Comparison (Insertion-
Comp) from [9], and the optimal Spearman Footrule
distance aggregator (Spearman) [11]. For the random-
ized algorithms Fas-Pivot and FasLP-Pivot, the pivot
in each iteration is chosen randomly. For InsertionSort
with Comparison, the insertion order of the elements
is also chosen randomly. Furthermore, for all three
methods, the procedure is executed five times, and the
best solution is selected. For Fas-Pivot and FasLP-
Pivot, we chose the better result of Pick-A-Perm and
the given method, as suggested in [10].

In the context of synthetic data, we only present re-
sults for the Mallows model in which the number of
ranked items equals n = 10, and the number of rank-
ings equals m = 50. The variance parameter was cho-
sen according to φ = e−λ, where λ is allowed to vary
in [0, 1]. For each parameter setting, we ran 50 inde-
pendent simulations and computed the average cumu-
lative Kendall τ distance (normalized by m) between

the output ranking and Σ, given as Dav = D(σ,Σ)
m .

We then normalized the Dav value of each algorithm
by that of FasLP-Pivot, since FasLP-Pivot always of-
fered the best performance. The results are depicted
in Fig. 1. Note that we used MostProb to describe the
most probable ranking, which is the centroid for the
Mallows Model.

Note that for parameter values λ ≥ 0.6 LCA al-
gorithms perform almost identically to the best ag-
gregation method, the LP-based pivoting scheme.
For smaller values of λ, the performance differences
are negligible; but the LCS method has significantly
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Table 1: Rank aggregator comparison for the Sushi
dataset (permutations)

m 10 50 200 1000 5000
Fas-Pivot 14.51 15.98 16.18 16.38 16.06

FasLP-Piovt 13.59 15.00 15.33 15.39 15.39
InsertionComp 15.87 16.60 16.70 16.80 16.65

Spearman 14.41 15.24 15.54 15.56 15.61
LC-median 14.03 15.25 15.57 15.58 15.74
LC-mode 14.19 15.33 15.46 15.47 15.49

Table 2: Rank aggregator comparison for the Jester
dataset (permutations)

m 50 200 1000 5000 10000
Fas-Pivot 2102 2137 2144 2127 2127

FasLP-Piovt 1874 1915 1920 1922 1921
InsertionComp 2327 2331 2337 2323 2390

Spearman 1900 1936 1935 1937 1937
LC-median 1932 1962 1965 1966 1965
LC-mode 1973 1965 1962 1964 1965

smaller complexity, which in the parallel implemen-
tation mode equals O(n + m). Note that the Inser-
tionSort Comp method performs poorly, although it
ensures local Kemeny optimality.

We also conducted experiments on a number of real-
world datasets. To test the permutation LCA aggrega-
tion algorithms, we used the Sushi ranking dataset [25]
and the Jester dataset [26]. The Sushi dataset con-
sists of 5000 permutations involving n = 10 types of
sushi. The Jester dataset contains scores in the con-
tinuous interval [−10, 10] for n = 100 jokes submitted
by 48483 individuals. We chose the scores of 14116 in-
dividuals who rated all 100 jokes and transformed the
rating into permutations by sorting the scores. For
each dataset, we tested our algorithms by randomly
choosing m many samples out of the complete list and
by computing the average cumulative Kendall τ dis-
tance normalized by m via 50 independent tests. The
results are listed in the Table 1 and Table 2.

To test our partial ranking aggregation algorithms, we
used the complete Jester dataset [26] and the Movie-
lens dataset [27]. For the Jester dataset, we first
rounded the scores to the nearest integer and then
placed the jokes with the same integer score in the
same bucket of the resulting partial ranking. We
also assumed that the unrated jokes were placed in
a bucket ranked lower than any other bucket of the
rated jokes. The movielens dataset contains incom-
plete lists of scores for more than 1682 movies rated by
943 users. The scores are integers in [5], so that many
ties are present. We chose the 50 most rated movies
and 500 users who rated these movies with largest cov-
erage. Similarly as for the Jester dataset, we assumed

Table 3: Rank aggregator comparison for the Jester
dataset (partial rankings)

m 50 200 1000 5000 10000
Fas-Pivot 1265 1280 1279 1279 1281

FasLP-Piovt 1264 1280 1279 1279 1281
InsertionComp 1980 1967 1956 1949 1979

Spearman 1272 1284 1281 1281 1282
LC-median 1275 1287 1284 1283 1287
LC-mode 1311 1304 1289 1283 1283

Table 4: Rank aggregator comparison for the Movie-
lens dataset (partial rankings)

m 20 50 100 200 500
Fas-Pivot 328.8 344.4 350.3 351.4 353.3

FasLP-Piovt 328.6 344.4 350.3 351.4 353.5
InsertionComp 386.3 390.2 392.6 393.1 393.0

Spearman 332.9 347.3 352.5 353.5 355.4
LC-median 334.2 350.4 355.4 355.9 359.1
LC-mode 340.1 353.5 357.5 359.0 360.0

that the unrated movies were tied for the last position.
In each test, we used the iterative method described in
Section 3 to transform permutations into partial rank-
ings. Note that for the Footrule-optimal method for
aggregating partial rankings, we used the algorithm in
Section 3.1.2 of [28]. Moreover, when computing the
Kemeny distance between two partial rankings of (2),
we omitted the penalty incurred by ties between un-
rated elements, because otherwise the iterative method
would yield too many ties in the output partial rank-
ing. We used the following formula to assess the dis-
tance between two incomplete partial rankings (9):

dτ (π, σ) = |{(x, y) : π(x) > σ(y), π(x) < σ(y)}|

+
1

2
|{(x, y) : [π(x) = π(y), σ(x) > σ(y), x, y rated byπ]

or [π(x) > π(y), σ(x) = σ(y), x, y rated byσ]}|. (9)

The results are listed in Table 3 and Table 4. The
parallelizable, low-complexity LCA methods offer very
similar performance to that of the significantly more
computationally demanding LP pivoting algorithm.

Concluding remarks. An open question is to deter-
mine if a constant-factor-approximation result holds
for LCA. The problem may be approached by observ-
ing that for any π, σ ∈ Sn, dτ (π, σ) ≥ ||cπ − cσ||`1 [29,
30], and showing that the optimal minπ

∑
i dτ (π, σi)

can be constantly approximated by minπ
∑
i ||cπ −

cσ||`1 whose optimal solution is the median LCA. An-
other interesting problem is to extend the LCA method
to other forms of rank aggregation, such as the k-center
problem [31, 32], or the min-max problem [33].
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