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Abstract

The recent work [17] developed a 1-bit com-
pressed sensing (CS) algorithm based on α-
stable random projections. Although it was
shown in [17] that the method is a strong
competitor to other existing 1-bit CS algo-
rithms, the procedure requires knowing K,
the sparsity, which is the l0 norm of the sig-
nal. Other existing 1-bit CS algorithms re-
quire the l2 norm of the signal.

In this paper, we develop an estimation pro-
cedure for the lα norm of the signal, where
0 < α ≤ 2 from binary or multi-bit measure-
ments. We demonstrate that using a simple
closed-form estimator with merely 1-bit in-
formation does not result in a significant loss
of accuracy if the parameter is chosen appro-
priately. Theoretical tail bounds are also pro-
vided. Using 2 or more bits per measurement
reduces the variance and importantly, stabi-
lizes the estimate so that the variance is not
too sensitive to chosen parameters.

1 Introduction

Compressed sensing (CS) [10, 5] aims at recovering
sparse signals from linear measurements. Consider a
K-sparse signal of lengthN , denoted by xi, i = 1 toN ,
with

∑N
i=1 1{xi 6= 0} = K. In the CS framework, we

first collect measures yj =
∑N

i=1 xisij , where sij is the
(i, j)-th entry of the design matrix. Classical CS meth-
ods sample the sensing matrix sij from a Gaussian dis-
tribution. More recently, [17] showed that one can also
sample sij from an α-stable distribution [25, 22]. Note
that the case of α = 2 corresponds to Gaussian.
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In the case of Gaussian (i.e., α = 2), the measure-
ments are also normally distributed because yj =
∑N

i=1 xisij ∼ N(0,
∑N

i=1 |xi|2) if sij ∼ N(0, 1). The
α-stable distribution generalizes the Gaussian. Sup-
pose a random variable s is α-stable with scale 1,
denoted as s ∼ S(α, 1). The characteristic func-

tion is E(e
√
−1st) = e−|t|α . This is also one defini-

tion of stable distributions. Consequently, if sij ∼
S(α, 1), then the measurements are also stable yj ∼
S(α,

∑N
i=1 |xi|α), where the scale

∑N
i=1 |xi|α corre-

sponds to the lα norm of the signal.

1.1 1-Bit Compressed Sensing (1-Bit CS)

The problem of 1-bit CS has been studied in the lit-
erature of statistics, information theory and machine
learning, e.g., [4, 15, 13, 21, 8, 24], due to its many ad-
vantages by using only 1-bit (i.e., the sign) of the mea-
surements. The hardware will always have to quantize
the measurements in some way; and storing only the
signs is the simplest quantization scheme. Also, us-
ing only the signs will potentially reduce the cost of
storage and transmission. Of course, 1-CS only makes
sense if the number of measurements does not increase
too much compared to using full information, and the
decoding procedure should not be too complicated.

1.2 1-Bit CS with Stable Designs

Prior to [17], existing 1-bit CS methods use the Gaus-
sian design. [17] proposed sampling sij ∼ S(α, 1).
They also developed an efficient one-scan procedure
for the decoding, as summarized in Algorithm 1. This
particular algorithm requires using a small α and it
needs to know K, the sparsity of the signal.

In [17], the empirical comparisons with 1-bit marginal
regression [21, 24] illustrate that their proposed
method needs orders of magnitude fewer measure-
ments. Compared to 1-bit Iterative Hard Threshold-
ing (IHT) [15], the algorithm is still significantly more
accurate. Furthermore, while the method in [17] is
reasonably robust against random sign flipping, IHT
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Algorithm 1 Stable measurement collection and the one
scan 1-bit algorithm for sign recovery. [17]

Input: K-sparse signal x ∈ R
1×N , design matrix S ∈

R
N×M with entries sampled from S(α, 1) with small α (e.g.,

α = 0.05). We sample uij ∼ uniform(−π/2, π/2) and
wij ∼ exp(1) and compute sij by (2).

Collect: measurements: yj =
∑N

i=1 xisij , j = 1 to M .
Compute: For each coordinate i = 1 to N , compute

Q+
i =

M
∑

j=1

log
(

1 + sgn(yj)sgn(uij)e
−(K−1)wij

)

,

Q−

i =

M
∑

j=1

log
(

1− sgn(yj)sgn(uij)e
−(K−1)wij

)

Output: For i = 1 to N , report the estimated sign:

ˆsgn(xi) =







+1 if Q+
i > 0

−1 if Q−

i > 0
0 if Q+

i < 0 and Q−

i < 0

is known to be very sensitive to that kind of noise.

Thus, we are left with an interesting unsolved estima-
tion problem from quantized stable measurements. In
particular, we need to estimate the lα norm of the sig-
nal. Estimating the lα norm from stable measurements
using full information have been studied in machine
learning [18, 19] and theory literature [14, 16].

1.3 Problem Formulation

Given samples yi ∼ N(0, σ2), we would like to estimate
σ2 from only 1-bit information of |yi|. More generally,
the problem of interest is about bit-efficient estima-
tion of the scale parameter of the α-stable distribution.
That is, given n i.i.d. samples,

yj ∼ S(α,Λα), j = 1, 2, ..., n (1)

from an α-stable distribution S(α,Λα), we hope to es-
timate the scale parameter Λα by using only 1-bit or
multi-bit information of |yj |. Here we adopt the pa-
rameterization [25, 22] such that, if y ∼ S(α,Λα), then

the characteristic function is E
(

e
√
−1yt

)

= e−Λα|t|α .

Under this parameterization, when α = 2, S(2,Λ2) is
equivalent to a Gaussian distribution N(0, σ2 = 2Λ2).
When α = 1, S(1, 1) is the standard Cauchy.

1.4 Sampling from α-stable Distribution

Although in general there is no closed-form density
of S(α, 1), we can sample from the distribution using
a procedure provided by [6]. That is, one can first
sample an exponential w ∼ exp(1) and a uninform
u ∼ unif(−π/2, π/2) , and then compute

sα =
sin(αu)

(cosu)1/α

[cos(u − αu)

w

](1−α)/α

∼ S(α, 1) (2)

This paper will heavily use the distribution of |sα|α =

|sin(αu)|α
cosu

[

cos(u−αu)
w

](1−α)

. Intuitively, as α → 0,

1/|sα|α converges to exp(1) in distribution [9].

2 Estimation of Λ
α
Using Full

(Infinite-Bit) Information

Given n i.i.d. samples yj ∼ S(α,Λα), j = 1 to n, we
review various estimators of Λα using full information.
When α = 2 (i.e., Gaussian), the arithmetic mean es-
timator is statistically optimal (i.e., the asymptotic
variance reaches the reciprocal of Fisher Information):

Λ̂2,f =
1

n

n
∑

j=1

|yj |2, V ar
(

Λ̂2,f

)

=
Λ2
2

n
2

When α = 1, the optimal estimator Λ̂1,f is solved from
a nonlinear quation

n
∑

j=1

Λ̂2
1,f

Λ̂2
1,f + y2j

=
n

2
, V ar

(

Λ̂1,f

)

=
Λ2
1

n
2 +O

(

1

n2

)

The harmonic mean estimator [16] is suitable for small
α and becomes optimal as α → 0+:

Λ̂α,f,hm =
− 2

π
Γ(−α) sin

(

π
2
α
)

∑n

j=1 |yj |
−α

(3)

×

(

n−

(

−πΓ(−2α) sin (πα)
[

Γ(−α) sin
(

π
2
α
)]2

− 1

))

V ar
(

Λ̂α,f,hm

)

=
Λ2

α

n

(

−πΓ(−2α) sin (πα)
[

Γ(−α) sin
(

π
2
α
)]2

− 1

)

+O

(

1

n2

)

where Γ(.) is the gamma function. When α → 0+,

the variance becomes
Λ2

0+

n +O
(

1
n2

)

.

[18] also proposed a “fractional-power” estimator
which is nearly optimal for entire range of 0 < α ≤ 2.

In summary, the optimal variances for α = 0+, 1, and
2, are respectively

Λ2
0+

n
1,

Λ2
1

n
2, and

Λ2
2

n
2 (4)

Our goal is to develop 1-bit and multi-bit schemes to
achieve variances which are close to be optimal.

3 1-Bit Coding and Estimation

Consider n i.i.d. samples yj ∼ S(α,Λα), j = 1 to
n. To estimate Λα using one bit information of each
|yj |, we choose a threshold C and compare it with
|yj |α, j = 1, 2, ..., n. In other word, we store a “0” if
|yj |α ≤ C and a “1” if |yj |α > C. Note that we can
express |yj |α as

zα = |yj |α ∼ Λα |sα|α , sα ∼ S(α, 1).
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Let fα and Fα be the pdf and cdf of |sα|α, respectively.
Then we can define p1 and p2 as follows

p1 = Pr (zα ≤ C) = Fα (C/Λα) ,

p2 = Pr (zα > C) = 1− p1 = 1− Fα (C/Λα)

which are needed for computing the likelihood. Denote

n1 =

n
∑

j=1

1{zj ≤ C}, n2 =

n
∑

j=1

1{zj > C}

The log-likelihood of the n = n1 + n2 observations is

l =n1 log p1 + n2 log p2

=n1 logFα (C/Λα) + n2 log [1− Fα (C/Λα)]

To seek the MLE (maximum likelihood estimator) of
Λα, we compute the first derivative l′ = ∂l

∂Λα
:

l′ = n1
fα (C/Λα)

Fα (C/Λα)

(

− C

Λ2
α

)

+ n2
−fα (C/Λα)

1− Fα (C/Λα)

(

− C

Λ2
α

)

Setting l′ = 0 yields the MLE solution denoted by Λ̂α:

F−1
α (n1/n) = C/Λα =⇒ Λ̂α = C/F−1

α (n1/n)

To assess the estimation variance of Λ̂α, the classical
statistics estimation theory says

V ar
(

Λ̂α

)

=
1

−E (l′′)
+O

(

1

n2

)

After some algebra, we have E (l′′) = −nC2

Λ4
α

f2
α

Fα(1−Fα) .

For convenience, we introduce η = Λα

C and summa-
rize the results in Theorem 1, which also provides the
O
(

1
n

)

bias term [2, 23].

Theorem 1 Given n i.i.d. samples yj ∼ S(α,Λα),
j = 1 to n, a threshold C, and n1 =

∑n
j=1 1{zj ≤ C},

the maximum likelihood estimator (MLE) of Λα is

Λ̂α = C/F−1
α (n1/n) (5)

Denote η = Λα

C . The asymptotic bias of Λ̂α is

E
(

Λ̂α − Λα

)

=
Λα

n

n1

n

(

1− n1

n

)

(6)

×
(

η2

f2
α(1/η)

+
ηf ′

α(1/η)

2f3
α(1/η)

)

+O

(

1

n2

)

and the asymptotic variance of Λ̂α is

V ar
(

Λ̂α

)

=
Λ2
α

n
Vα (η) +O

(

1

n2

)

(7)

Vα (η) = η2
Fα(1/η)(1− Fα(1/η))

f2
α(1/η)

, (8)

where fα and Fα are the pdf and cdf of |S(α, 1)|α, re-
spectively, and f ′

α(z) =
∂fα(z)

∂z . �

3.1 α → 0+

As α → 0+, we have 1/[sα]
α ∼ exp(1). Thus

F0+(z) = e−1/z, f0+(z) =
1

z2
e−1/z, F−1

0+ (z) =
1

log 1/z

We can then derive the estimator and its variance:

Λ̂0+ =
C

F−1
0+ (n1/n)

= Clogn/n1,

V ar
(

Λ̂0+

)

=
Λ2
0+

n
V0+(η) +O

(

1

n2

)

V0+ (η) = η2
Fα(1/η)(1− Fα(1/η))

f2
α(1/η)

=
eη − 1

η2

Numerically, one can compute the minimum of V0+ (η)
to be 1.544..., attained at η = 1.594...

3.2 α = 1

By properties of Cauchy distribution, we know

F1(z) =
2

π
tan−1 z, f1(z) =

2

π

1

1 + z2
, F−1

1 (z) = tan
π

2
z

Thus, we can derive the estimator and variance

Λ̂1 =
C

tan π
2
n1

n

, V ar
(

Λ̂1

)

=
Λ2
1

n
V1(η) +O

(

1

n2

)

The minimum of V1(η) is
π2

4 , attained at η = 1. To see

this, let t = 1/η. Then V1 (η) =
1
t2

F1(t)(1−F1(t))
f2
1 (t)

and

∂ log V1 (η)

∂t
=− 2

t
+

f1(t)

F1(t)
+

−f1(t)

1− F1(t)
− 2

f ′
1(t)

f1(t)

=− 2

t
+

4t

1 + t2
+

1
1+t2

tan−1 t
−

2
π

1
1+t2

1− 2
π tan−1 t

=
1

1 + t2

[

t2 − 1 +
1

tan−1 t
− 1

π
2 − tan−1 t

]

Setting ∂ log V1(η)
∂t = 0, the solution is t = 1. Hence the

optimum is attained at η = 1.

3.3 α = 2

Since S(2, 1) ∼
√
2×N(0, 1), i.e., |sα|2 ∼ 2χ2

1, we have

F2(z) = Fχ2
1
(z/2), f2(z) = fχ2

1
(z/2)/2,

where Fχ2
1
and fχ2

1
are the cdf and pdf of a chi-square

distribution with 1 degree of freedom, respectively.
The MLE is Λ̂2 = C

F−1
2 (n1/n)

. Numerically, the op-

timal V2(η) = 3.066..., attained at η = Λ2

C = 0.228...



Binary and Multi-Bit Coding for Stable Random Projections

0 0.5 1 1.5 2 2.5
1.5

2

2.5

3

3.5

4

4.5

5

η

V
ar

ia
nc

e

α = 0

α = 1

0 0.5 1 1.5 2 2.5
1.5

2

2.5

3

3.5

4

4.5

5

η

V
ar

ia
nc

e

α = 1

α = 2

Figure 1: The variance factor Vα(η) in (8) for α ∈
[0, 2], spaced at 0.1. The lowest point on each curve
corresponds to the optimal variance at that α value.
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Figure 2: Optimal variance values Vα(η) (left panel)
and the corresponding optimal η values (right panel).
Each point on the curve corresponds to the lowest
point of the curve for that α as in Figure 1.

3.4 General 0 < α ≤ 2

For general 0 < α ≤ 2, the cdf Fα and pdf fα can be
computed numerically. Figure 1 plots Vα(η) for α from
0 to 2. The lowest point on each curve corresponds
to the optimal (smallest) Vα(η). Figure 2 plots the
optimal Vα values and optimal η values.

Figure 1 suggests that the 1-bit scheme performs rea-
sonably well. The optimal variance coefficient Vα is
not much larger than the variance using full (infinite-
bit) information . For example, when α = 1, the opti-
mal variance coefficient using full information is 2 (i.e.,
see (4)), while the optimal variance coefficient of the

1-bit scheme is just π2

4 = 2.467... which is only 20%
larger. Furthermore, we can see that, at least when
α ≤ 1, Vα(η) is not very sensitive to η in a wide range
of η values, a property which is practically important.

3.5 Error Tail Bounds

Theorem 2

Pr
(

Λ̂α ≥ (1 + ǫ)Λα

)

≤ exp

(

−n
ǫ2

GR,α,C,ǫ

)

, ǫ ≥ 0

Pr
(

Λ̂α ≤ (1− ǫ)Λα

)

≤ exp

(

−n
ǫ2

GL,α,C,ǫ

)

, 0 ≤ ǫ ≤ 1

where GR,α,C,ǫ and GL,α,C,ǫ are computed as follows:

ǫ2

GR,α,C,ǫ

= −Fα(1/(1 + ǫ)η) log

[

Fα(1/η)

Fα(1/(1 + ǫ)η)

]

(9)

− (1− Fα(1/(1 + ǫ)η)) log

[

1− Fα(1/η)

1− Fα(1/(1 + ǫ)η)

]

ǫ2

GL,α,C,ǫ

= −Fα(1/(1− ǫ)η) log

[

Fα(1/η)

Fα(1/(1− ǫ)η)

]

(10)

− (1− Fα(1/(1− ǫ)η)) log

[

1− Fα(1/η)

1− Fα(1/(1− ǫ)η)

]

�

The tail bounds provide a precise probabilistic guar-

antee. That is, to ensure errorPr
(

Λ̂α ≥ (1 + ǫ)Λα

)

+

Pr
(

Λ̂α ≤ (1− ǫ)Λα

)

≤ δ, 0 ≤ δ ≤ 1, it suffices that

exp

(

−n
ǫ2

GR,α,C,ǫ

)

+ exp

(

−n
ǫ2

GL,α,C,ǫ

)

≤ δ (11)

for which it suffices n ≥ Gα,C,ǫ

ǫ2 log 2/δ, where Gα,C,ǫ =
max{GR,α,C,ǫ, GL,α,C,ǫ}. Figure 3 provides the tail
bound constants for α = 0+, at selected η values.
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Figure 3: The tail bound constants GR,0+,C,ǫ (9) (up-
per group) and GL,0+,C,ǫ (10) (lower group), for η = 1
to 2 spaced at 0.1. Recall η = Λα

C .

3.6 Bias-Correction

Bias-correction for MLE is important for “small” sam-
ple size n. In Theorem 1, Eq. (6) naturally pro-
vides a bias-correction for Λ̂α, known as the “Bartlett
correction” in statistics. To do so, we will need to
use the estimate Λ̂α to compute the η. Since Λ̂α =
C/F−1

α (n1/n), we have Λ̂α/C = 1/F−1
α (n1/n). The

bias-corrected estimator, denoted by Λ̂α,c is

Λ̂α,c =
Λ̂α

1 + 1
n

n1

n

(

1− n1

n

)

(

η̂2

f2
α(1/η̂) +

η̂f ′

α(1/η̂)
2f3

α(1/η̂)

) ,

where η̂ = 1/F−1
α (n1/n)

which, when α = 0+, 1, and 2, becomes respectively

Λ̂0+,c =
C logn/n1

1 + 1/n1−1/n
2 logn/n1

,

Λ̂1,c =

C
tan π

2

n1
n

1 + 1
n

π2

4
n1

n

(

1− n1

n

)

(

1 + 1
tan2 π

2

n1
n

)

Λ̂2,c =

C
2F−1

χ2
1

(n1/n)

1 + π
n

n1

n

(

1− n1

n

)

(

3
F−1

χ2
1

(n1/n)
− 1

)

e
F−1

χ2
1

(n1/n)
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Bias-correction for the MLE is an important topic in
classical statistics theory [2, 23]. The calculation is in
general tedious. In Theorem 1, we are able to compute
the bias of order O

(

1
n

)

and hence it is easy to remove

it once it is calculated. However, the O
(

1
n

)

term in
the variance will still be the same. To see this, we can
write Λ̂α,c = Λ̂α

(

1− 1
ne+O

(

1
n2

))

, where we use e for
the sophisticated constant. Then

V ar
(

Λ̂α,c

)

=V ar
(

Λ̂α

)

(

1− 2

n
e+O

(

1

n2

))

=
Λ2
α

n
Vα(η) +O

(

1

n2

)

Of course, the O
(

1
n2

)

term of the variance is smaller
(i.e., bias-correction also reduces variance), but we will
not be able to see the exact expression unless we carry
out some even more sophisticated calculations [2, 23].

Interestingly (perhaps also surprisingly), for the prob-
lem we study here, the bias-correction step is actually
in a sense crucial, as demonstrated in the next section.

4 Experiments on 1-Bit Coding

We conduct simulations to (i) verify the 1-bit variance
formulas of the MLE, and (ii) apply the 1-bit estimator
to 1-bit compressed sensing [17].

4.1 Bias and Variance

Figure 4 provides the simulations for verifying the 1-
bit estimator Λ̂0+ and its bias-corrected version Λ̂0+,c

using small α (i.e., 0.05). For each sample size n, we
generate 106 samples from S(α, 1), which are quan-
tized according a pre-selected threshold C. Then we
apply both Λ̂0+ and Λ̂0+,c and report the empirical
mean square error (MSE = variance + bias2) from
106 repetitions. For thorough evaluations, we conduct
simulations for a wide range of n ∈ [5, 1000].

The results are presented in log-log scale, which exag-
gerates the portion for small n and the y-axis for large
n. The plots confirm that when n is not too small
(e.g., n > 100), the bias of MLE estimate varnishes
and the asymptotic variance formula (8) matches the
mean square error. For small n (e.g., n < 100), the
bias correction becomes important.

Note that when n is large (i.e., when errors are very
small), the plots show some discrepancies. This is due
to the fact that we have to use small α for the sim-
ulations but the estimators Λ̂0+ and Λ̂0+,c are based
on α = 0+. The differences are very small and only
become visible when the estimation errors are so small
(due to the exaggeration of the log-scale). To remove
this effect, we conduct similar simulations for α = 1
and present the results in Figure 5, which does not
show the discrepancies at large n. We can see that the
bias-correction step is also important for α = 1.
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Figure 4: Empirical Mean square errors of Λ̂0+ (dashed
curves) and Λ̂0+,c (solid curves) from 106 simulations
of S(α, 1) for α = 0.05, at each sample size n. Each
panel present results for a different η = Λα

C . For both
estimators, the empirical MSEs converge to the the-
oretical asymptotic variances (8) (dashed dot curves
and blue if color is available) when n is large enough.
In each panel, the lowest curve (dashed dot and green
if color is available) represents the theoretical variance
using full (infinite-bit) information, i.e., 1/n in this
case. For small n, the bias-correction is important.
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Figure 5: Mean square errors of Λ̂1 (dashed curves)
and Λ̂1,c (solid curves) for α = 1. Note that the lowest
curve (dashed dot and green if color is available) in
each panel represents the optimal variance using full
(i.e., infinite-bit) information, which is 2/n for α = 1.

4.2 One Scan 1-Bit Compressed Sensing (CS)

Algorithm 1 summarizes the recently proposed one-
scan 1-bit CS method based on α-stable designs for
small α [17], which requires knowing K = Λ0+ (the
sparsity). Note that in their paper, they also used a
refined method by making more aggressive use of K.
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Here, we replace K in Algorithm 1 with Λ̂0+,c for com-
puting Q+

i and Q−
i . We report the sign recovery er-

rors
∑

i | ˆsgn(xi) − sgn(xi)|/K from 104 simulations.
We let N = 1000, K = 20, and sample the nonzero
coordinates from N(0, 52). For estimating K, we use
n ∈ {50, 100} samples with η ∈ {0.2, 0.5, 1.5, 2, 3}.
Recall η = 1.5 is close to be optimal (1.594...) for Λ̂0+.

Figure 6 reports the sign recovery errors at 75% quan-
tile (upper panels) and 95% quantile (bottom panels).
The number of measurements for sparse recovery is
chosen as M = ζK log(N/0.01), although we only use
n ∈ {50, 100} samples to estimate K. For compari-
son, Figure 6 also reports the results for estimating K
using n full (i.e., infinite-bit) samples.

When n = 100, except for η = 0.2, the performance
of Λ̂0+,c is stable with no essential difference from the
estimator using full information. The performance for
n = 50 is less stable.
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Figure 6: Sign recovery error:
∑

i | ˆsgn(xi) −
sgn(xi)|/K, using Algorithm 1 and estimated K in
computing Q+

i and Q−
i in Algorithm 1, for N = 1000,

K = 20. The number of measurements for recovery
is M = ζK log(N/0.01) and we use n samples to es-
timate K for n ∈ {50, 100}. We report 75% (upper
panels) and 95% (bottom panels) quantiles of the sign
recovery errors, from 104 repetitions. We estimate K
using the full information (i.e., the estimator (3)) as
well as 1-bit estimator Λ̂0+,c with selected values of
η ∈ {0.2, 0.5, 1.5, 2, 3}. When n = 100, except for
η = 0.2 (which is too small), the performance of Λ̂0+,c

is fairly stable with no essential difference from the
estimator using full information. The performance of
Λ̂0+,c is not as stable when n = 50. Note that, when a
curve does not show in the panel (e.g., n = 50, η = 3,
and 95%), it basically means the error is too large.

Significance: We claim that the empirical results
as shown in Figure 6 are significant for 1-bit CS. It

basically says the number of required measurements
is ζK logN where ζ is merely a small number like 9.
Interested readers may consult [17], which also pre-
sented recovery results using 1-bit marginal regression
and 1-bit IHT. One can see that with estimated K,
Algorithm 1 is still significantly more accurate.

5 2-Bit Coding and Estimation

It is desirable to further stabilize the estimates (and
lower the variance) by using more bits. With the 2-bit
scheme, we need to introduce 3 threshold values.

Theorem 3 Given n i.i.d. samples yj ∼ S(α, 1), j =
1 to n, three thresholds 0 < C1 ≤ C2 ≤ C3, n1 =
∑n

j=1 1{zj ≤ C1}, n2 =
∑n

j=1 1{C1 < zj ≤ C2}, n3 =
∑n

j=1 1{C2 < zj ≤ C3}, n4 =
∑n

j=1 1{zj > C3}, and

η1 =
Λα

C1
, η2 =

Λα

C2
, η3 =

Λα

C3

The MLE, Λ̂α, is the solution to the equation:

0 =n1
C1fα (1/η1)

Fα (1/η1)
+ n2

C2fα (1/η2)− C1fα (1/η1)

Fα (1/η2)− Fα (1/η1)

+ n3
C3fα (1/η3)− C2fα (1/η2)

Fα (1/η3)− Fα (1/η2)
+ n4

−C3fα (1/η3)

1− Fα (1/η3)

The asymptotic variance of the MLE is

V ar
(

Λ̂α

)

=
Λ2
α

n
Vα(η1, η2, η3) +O

(

1

n2

)

where the variance factor can be expressed as

1

Vα(η1, η2, η3)
=

1

η21

f2
α (1/η1)

Fα (1/η1)
+

1

η23

f2
α (1/η3)

1− Fα (1/η3)

+
[fα (1/η2) /η2 − fα (1/η1) /η1]

2

Fα (1/η2)− Fα (1/η1)

+
[fα (1/η3) /η3 − fα (1/η2) /η2]

2

Fα (1/η3)− Fα (1/η2)

The asymptotic bias is

E
(

Λ̂α

)

= Λα

(

1 +
1

nB
− D

2nB2

)

+O

(

1

n2

)

where

B =

(

− C1
Λα

)2

f2
1

F1

+

[(

− C2
Λα

)

f2 −
(

− C1
Λα

)

f1
]2

F2 − F1

+

[(

− C3
Λα

)

f3 −
(

− C2
Λα

)

f2
]2

F3 − F2

+

(

− C3
Λα

)2

f2
3

1 − F3

D =

(

− C1
Λα

)3

f1f
′

1

F1

+

(

− C3
Λα

)3

f3f
′

3

1 − F3
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− C2
Λα

)

f2 −
(

− C1
Λα

)

f1
]

[

(
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Λα

)2

f ′

2 −
(
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Λα

)2

f ′

1

]
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Λα

)

f3 −
(
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)

f2
]

[

(

− C3
Λα

)2

f ′

3 −
(

− C2
Λα

)2

f ′

2

]

F3 − F2
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The asymptotic bias formula in Theorem 3 leads to a
bias-corrected estimator

Λ̂α,c =
Λ̂α

1 + 1
nB − D

2nB2

(12)

Note that, with a slight abuse of notation, we still use
Λ̂α to denote the MLE of the 2-bit scheme and we
rely on the number of parameters (e.g., η1, η2, η3) to
differentiate Vα for different schemes.

It is intuitive to see why the 2-bit scheme improves the
1-bit scheme (which only needs one threshold η). Sup-
pose we have the best guessed η for the 1-bit scheme,
we can always let η2 = η and choose η3 < η < η1.

5.1 α → 0+

In this case, we can slightly simplify the expression:

V0+(η1, η2, η3) =
1

(η1−η2)2

eη1−eη2 + (η2−η3)2

eη2−eη3 +
η2
3

eη3−1

Numerically, the minimum of V0+(η1, η2, η3) is 1.122...,
attained at η1 = 3.365..., η2 = 1.771..., η3 = 0.754....
The value 1.122... is much smaller than 1.544..., the
minimum variance coefficient of the 1-bit scheme.

Figure 7 illustrates that, with the 2-bit scheme, the
variance is less sensitive to the choice of the thresholds.
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Figure 7: Left (strategy 1): V0+ (η1, η2, η3) for η2 =
tη3, η1 = tη2, at t = 2, 3, 4, with varying η3. Right
(strategy 2): V0+ for fixed η1 = 5, η3 ∈ {0.5, 0.75, 1},
and η2 varying between η3 and η1.

In practice, there are at least two simple strategies for
selecting the parameters η1 ≥ η2 ≥ η3:

• Strategy 1: First select a “small” η3, then let η2 =
tη3 and η1 = tη2, for some t > 1.

• Strategy 2: First select a “small” η3 and a “large”
η1, then select a “reasonable” η2 in between.

See the plots for examples of the two strategies in Fig-
ure 7. We re-iterate that for the task of estimating
Λα using only a few bits, we must choose parameters
(thresholds) beforehand. While in general the opti-
mal results are not attainable, as long as the chosen
parameters fall in a reasonable (and wide) range, the
estimation variance will not be far away from optimal.

5.2 α = 1

The minimum of V1(η1, η2, η3) is 2.087..., attained at
η1 = 1.927..., η2 = 1, η3 = 0.519.... The value
2.087... is very close to the optimal variance coefficient
2 using full information. Figure 8 plots examples of
V1(η1, η2, η3) for both “strategy 1” and “strategy 2”.
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Figure 8: Left (strategy 1): V1 (η1, η2, η3) for η2 =
tη3, η1 = tη2, at t = 2, 3, 4, with varying η3.
Right (strategy 2): V1 for fixed η1 = 3, η3 ∈
{0.25, 0.5, 0.75}, and η2 varying between η3 and η1.

5.3 α = 2

Numerically, the minimum of V2(η1, η2, η3) is 2.236...,
attained at η1 = 0.546..., η2 = 0.195..., η3 =
0.093.... Figure 9 presents examples of V2(η1, η2, η3)
for both strategies for choosing η1, η2, and η3.
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Figure 9: Left (strategy 1): V1 (η1, η2, η3) for η2 =
tη3, η1 = tη2, at t = 2, 3, 4, with varying η3. Right
(strategy 2): V1 for fixed η1 = 1, η3 ∈ {0.05, 0.1, 0.2},
and η2 varying between η3 and η1.

5.4 Simulations

Figure 10 presents the simulation results for verifying
the 2-bit estimator Λ̂0+ and its bias-corrected version
Λ̂0+,c. We choose η3 ∈ {0.05, 0.25, 0.75, 2} and fix
η2 = 3η3, η1 = 3η2. Although these choices are not
optimal, Figure 10 shows the estimators still perform
well for such a wide range of η3 values. Compared
to 1-bit estimators, the 2-bit estimators are noticeably
more accurate and less sensitive to parameters. Again,
the bias-correction step is useful when the sample size
n is not large. Similar to Figure 4, we can observe
discrepancies at large n (as magnified by the log-scale),
because we simulate data using α = 0.05 and we use
estimators based on α = 0+. To remove this effect, we
also provide simulations for α = 1 in Figure 11.
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Figure 10: Empirical Mean square errors of the 2-
bit estimators: Λ̂0+ (dashed curves) and Λ̂0+,c (solid
curves). We use α = 0.05 to generate stable samples
S(α, 1) and we consider 4 different η3 = Λα

C3
values.

We let η2 = 3η3 and η1 = 3η2. For both estimators,
the empirical MSEs converge to the theoretical asymp-
totic variances (8) (dashed dot curves and blue if color
is available) when n is not small. In each panel, the
lowest curve (dashed dot and green if color is available)
represents the theoretical variances using full (infinite-
bit) information, i.e., 1/n in this case.
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Figure 11: Mean square errors of the 2-bit estimator
Λ̂1 (dashed curves) and its bias-corrected version Λ̂1,c

(solid curves), for α = 1, by using 6 different η3 values
(one for each panel) and fixing η2 = 3η3, η1 = 3η2. The
lowest curve (dashed dot and green if color is available)
in each panel represents the optimal variance using full
information, which is 2/n for α = 1.

5.5 Efficient Computational Procedure

With the 1-bit scheme, the cost for computing the
MLE is negligible. With the 2-bit scheme, however,
the computational cost might be a concern if we try

to find the MLE solution numerically every time (at
run time). A tabulation-based efficient procedure is
presented in the full paper (arXiv:1503.06876).

6 Multi-Bit (Multi-Partition) Coding

With more bits, it is more flexible to consider schemes
based on (m + 1) partitions, e.g., m = 1 for the 1-bit
scheme, m = 3 for the 2-bit scheme, and m = 7 for
the 3-bit scheme. After some algebra, the asymptotic
variance of the MLE Λ̂α is derived as

V ar
(

Λ̂α

)

=
Λ2
α

n
Vα(η1, ..., ηm) +O

(

1

n2

)

, where

1

Vα(η1, ...., ηm)
=

1

η21

f2
α (1/η1)

Fα (1/η1)
+

1

η2m

f2
α (1/ηm)

1− Fα (1/ηm)

+

m−1
∑

s=1

[fα (1/ηs+1) /ηs+1 − fα (1/ηs) /ηs]
2

Fα (1/ηs+1)− Fα (1/ηs)

7 Conclusion

The method of random projections has become a rou-
tine technique in machine learning and compressed
sensing (CS). In many situations, quantized projec-
tions will be desirable. For example, 1-bit com-
pressed sensing (1-bit CS) has been popular. When
we only need 1-bit per measurement, it becomes con-
venient/economical to store and transmit the data.

For example, we can have compressed sensing func-
tionality in a handheld device (or remote sensors with
very limited storage and bandwidth) [11]. We collect
compressed signals (e.g., images or videos) and trans-
mit them to a central sever for processing. For this
kind of applications, an effective algorithm for 1-bit
compressed sensing will be essential. Note that the
remote signals can also come from the space [3].

Existing 1-bit CS algorithms require knowing the scale
of the signal, such as the l0 or the l2 norm. This mo-
tivates estimating the scale parameter of an α-stable
distribution from quantized samples. In this paper, we
develop 1-bit and multi-bit coding schemes, which per-
form well (even with just 1-bit) in that, if the param-
eters are chosen appropriately, their variances are ac-
tually not much larger than the variances of using full
(i.e., infinite-bit) information. In general, using more
bits increases the computational and/or storage cost,
with the benefits of stabilizing the estimates when the
chosen parameters are not much away from optimal.

One interesting and in fact surprising observation is
that the classical “Bartlett correction” for MLE bias-
correction is particularly effective in our case.

Finally, we should mention that, although this paper
as presented has focused on the motivation about 1-bit
CS, the work also provides an efficient mechanism for
data stream computations [1, 12, 7, 20, 14, 16].
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