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1 Stochastic Variational Inference

The main paper introduces a Gibbs sampling algo-
rithm for the recurrent SLDS and its siblings, but it
is straightforward to derive a mean field variational
inference algorithm as well. From this, we can imme-
diately derive a stochastic variational inference (SVI)
[Ho↵man et al., 2013] algorithm for conditionally in-
dependent time series.

We use a structured mean field approximation on the
augmented model,

p(z1:T , x1:T ,!1:T , ✓ | y1:T )
⇡ q(z1:T ) q(x1:T ) q(!1:T ) q(✓; ⌘).

The first three factors will not be explicitly parame-
terized; rather, as with Gibbs sampling, we leverage
standard message passing algorithms to compute the
necessary expectations with respect to these factors.
Moreover, q(!1:T ) further factorizes as,
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To be concrete, we also expand the parameter factor,
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The algorithm proceeds by alternating between opti-
mizing q(x1:T ), q(z1:T ), q(!1:T ), and q(✓).

Updating q(x1:T ). Fixing the factor on the discrete
states q(z1:T ), the optimal variational factor on the

continuous states q(x1:T ) is determined by,
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where

 (x1) = E
q(✓)q(z) ln p(x1 | z1, ✓) (1)
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Because the densities p(x1 | z1, ✓) and p(x
t+1 |xt

, z

t

, ✓)
are Gaussian exponential families, the expectations
in Eqs. (1)-(2) can be computed e�ciently, yielding
Gaussian potentials with natural parameters that de-
pend on both q(✓) and q(z1:T ). Furthermore, each
 (x

t

; y
t

) is itself a Gaussian potential. As in the Gibbs
sampler, the only non-Gaussian potential comes from
the logistic stick breaking model, but once again, the
Pólya-gamma augmentation scheme comes to the res-
cue. After augmentation, the potential as a function
of x

t

is,
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t+1 = R

ztxt

+ r

zt is linear in x

t

, this is another
Gaussian potential. As with the dynamics and ob-
servation potentials, the recurrence weights, (R

k

, r

k

),
also have matrix normal factors, which are conjugate
after augmentation. We also need access to E

q

[!
t,k

];
we discuss this computation below.

After augmentation, the overall factor q(x1:T ) is a
Gaussian linear dynamical system with natural pa-
rameters computed from the variational factor on the
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dynamical parameters q(✓), the variational parameter
on the discrete states q(z1:T ), the recurrence poten-
tials { (x

t

, z

t

, z

t+1)}T�1
t=1 , and the observation model

potentials { (x
t

; y
t

)}T
t=1.

Because the optimal factor q(x1:T ) is a Gaussian lin-
ear dynamical system, we can use message passing
to perform e�cient inference. In particular, the ex-
pected su�cient statistics of q(x1:T ) needed for up-
dating q(z1:T ) can be computed e�ciently.

Updating q(!1:T ). We have,
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While the expectation with respect to q(z1:T ) makes
this challenging, we can approximate it with a sam-
ple, ẑ1:T ⇠ q(z1:T ). Given a fixed value ẑ1:T we have,
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Updating q(z1:T ). Similarly, fixing q(x1:T ) the op-
timal factor q(z1:T ) is proportional to
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The first and third densities are exponential families;
these expectations can be computed e�ciently. The
challenge is the recurrence potential,

 (z
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q(✓),q(x) ln⇡SB(⌫t+1).

Since this is not available in closed form, we approxi-
mate this expectation with Monte Carlo over x

t

, R
k

,
and r

k

. The resulting factor q(z1:T ) is an HMM
with natural parameters that are functions of q(✓) and
q(x1:T ), and the expected su�cient statistics required
for updating q(x1:T ) can be computed e�ciently by
message passing in the same manner.

Updating q(✓). To compute the expected su�cient
statistics for the mean field update on ⌘, we can also
use message passing, this time in both factors q(x1:T )
and q(z1:T ) separately. The required expected su�-
cient statistics are of the form
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where I[ · ] denotes an indicator function. Each of these
can be computed easily from the marginals q(x

t

, x

t+1)
and q(z

t

, z

t+1) for t = 1, 2, . . . , T � 1, and these
marginals can be computed in terms of the respective
graphical model messages.

Given the conjugacy of the augmented model, the dy-
namics and observation factors will be MNIW distri-
butions as well. These allow closed form expressions
for the required expectations,
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Likewise, the conjugate matrix normal prior
on (R
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, r
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) provides access to
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Stochastic Variational Inference. Given multi-
ple, conditionally independent observations of time se-

ries, {y(p)1:Tp
}P
p=1 (using the same notation as in the bas-

ketball experiment), it is straightforward to derive a
stochastic variational inference (SVI) algorithm [Ho↵-
man et al., 2013]. In each iteration, we sample a ran-
dom time series; run message passing to compute the

optimal local factors, q(z
(p)
1:Tp

), q(x
(p)
1:Tp

), and q(!
(p)
1:Tp

);
and then use expectations with respect to these lo-
cal factors as unbiased estimates of expectations with
respect to the complete dataset when updating the
global parameter factor, q(✓). Given a single, long
time series, we can still derive e�cient SVI algorithms
that use subsets of the data, as long as we are willing to
accept minor, controllable bias [Johnson and Willsky,
2014, Foti et al., 2014].

2 Initialization

Given the complexity of these models, it is important
to initialize the parameters and latent states with rea-
sonable values. We used the following initialization
procedure: (i) use probabilistic PCA or factor analysis
to initialize the continuous latent states, x1:T , and the
observation, C, D, and d; (ii) fit an AR-HMM to x1:T

in order to initialize the discrete latent states, z1:T ,
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and the dynamics models, {A
k

, Q

k

, b

k

}; and then
(iii) greedily fit a decision list with logistic regressions
at each node in order to determine a permutation of
the latent states most amenable to stick breaking. In
practice, the last step alleviates the undesirable depen-
dence on ordering that arises from the stick breaking
formulation.

As mentioned in Section 4, one of the less desirable
features of the logistic stick breaking regression model
is its dependence on the ordering of the output dimen-
sions; in our case, on the permutation of the discrete
states {1, 2, . . . ,K}. To alleviate this issue, we first do
a greedy search over permutations by fitting a decision
list to (x

t

, z

t

), z
t+1 pairs. A decision list is an iterative

classifier of the form,

z
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...
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where (o1, . . . , oK) is a permutation of (1, . . . ,K),
and p1, . . . , pk are predicates that depend on (x
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, z
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)
and evaluate to true or false. In our case, these predi-
cates are given by logistic functions,

p
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x
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We fit the decision list using a greedy approach:
to determine o1 and r1, we use maximum a pos-
terior estimation to fit logistic regressions for each
of the K possible output values. For the k-th lo-
gistic regression, the inputs are x1:T and the out-
puts are y

t

= I[z
t+1 = k]. We choose the best lo-

gistic regression (measured by log likelihood) as the
first output. Then we remove those time points for
which z

t+1 = o1 from the dataset and repeat, fit-
ting K � 1 logistic regressions in order to determine
the second output, o2, and so on.

After iterating through all K outputs, we have a per-
mutation of the discrete states. Moreover, the predi-
cates {r

k

}K�1
k=1 serve as an initialization for the recur-

rence weights, R, in our model.

3 Bernoulli-Lorenz Details

The Pólya-gamma augmentation makes it easy to han-
dle discrete observations in the rSLDS, as illustrated in
the Bernoulli-Lorenz experiment. Since the Bernoulli

likelihood is given by,
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we see that it matches the form of (7) with,
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Thus, we introduce an additional set of Pólya-
gamma auxiliary variables,

⇠
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⇠ PG(1, 0),

to render the model conjugate. Given these auxiliary
variables, the observation potential is proportional to
a Gaussian distribution on x

t
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) = [(y
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Again, this admits e�cient message passing infer-
ence for x1:T . In order to update the auxiliary
variables, we sample from their conditional distribu-
tion, ⇠

t,n

⇠ PG(1, ⌫
t,n

).

This augmentation scheme also works for binomial,
negative binomial, and multinomial obsevations as well
[Polson et al., 2013].

4 Basketball Details

For completeness, Figures 1 and 2 show all K = 30
inferred states of the rAR-HMM (ro) for the basketball
data.
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Figure 1: All of the inferred basketball states
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Figure 2: All of the inferred basketball states


