Supplementary materials for Paper "Attributing Hacks"

Ziqi Liu Xi'an Jiaotong Univ. Ant Financial Group Alexander J. Smola Amazon Kyle Soska CMU Yu-Xiang Wang CMU

Qinghua Zheng Xi'an Jiaotong Univ.

A Proof of Theorem 1

When the feature x is constant, the hazard function for user j

$$\lambda(t) = \sum_{i=1}^{d} x_{ji}(t)w_i(t)$$

and the cumulative hazard function

$$\Lambda(t) = \int_{-\infty}^{t} \sum_{i=1}^{d} x_{ji}(t) w_i(t) dt = \sum_{i=1}^{d} \int_{-\infty}^{t} x_{ji}(t) w_i(t) dt$$
$$= \sum_{i=1}^{d} \left(\sum_{\tau \in \mathcal{T}_i, \tau \le t} \alpha_{i,\tau} W_i(\tau) + \alpha_{i,t} W_i(t) \right). \tag{1}$$

where $W_i(t) = \int_{-\infty}^t w_j(t)dt$, \mathcal{T}_i denotes all break points of th piecewise constant $x_{ji}(t)$ and $\alpha_{i,\tau}$ are coefficients that depends only on x_{ji} . When there are no uncensored observations, we can re-parameterize the above variational optimization problems using the $\Lambda(t)$ hence $W_j(t)$ alone:

$$\min_{(W_0,W_1,\dots,W_d)\in\mathcal{F}^d} \mathcal{L}(\{\boldsymbol{\tau},\boldsymbol{\Psi},\boldsymbol{Z}\},\boldsymbol{W}) + \gamma \sum_{j=0}^d \mathrm{TV}(W_j)$$
s.t. $W_i(t) \geq 0, W_i(t+\delta) - W_i(t) \geq 0$
for any $i \in [p], t \in \mathbb{R}, \delta \in \mathbb{R}_+$.
$$W_i \text{ is convex.}$$

Let \mathcal{T} be the set of observed time points (including 0, T and all censored interval boundaries). For each i, let W_i^* be the optimal solution. By Proposition 7 of Mammen et al. (1997), we know that for each i, there is a spline \tilde{W}_i of order 1 such that

$$\begin{cases} \text{All knots of the spline are contained in } \mathcal{T} \backslash \{0, T\} \\ \tilde{W}_i(\tau) = W_i^*(\tau) \text{ for all } \tau \in \mathcal{T} \\ \text{TV}(\tilde{W}_i) \leq \text{TV}(W_i^*) \end{cases}$$

We will now show that \tilde{W}_i also defines a set of optimal solution using these properties.

Note that the loss function $\mathcal{L}(\{\tau, \Psi, Z\}, W)$ can be decomposed into the sum of negative log-probability of form as described in (8), and when there are no uncensored data, the value of the loss function is completely determined by the survival function S(t) evaluated at $t \in \mathcal{T}$. There is a one-to-one mapping between survival functions and the cumulative hazard functions through $S(t) = \exp(-\Lambda(t))$. It follows from (1) that $\mathcal{L}(\{\tau, \Psi, Z\}, W)$ is a function of W only through its evaluations at $W(\mathcal{T})$, therefore

$$\mathcal{L}(\{\boldsymbol{ au}, \boldsymbol{\Psi}, \boldsymbol{Z}\}, \tilde{\boldsymbol{W}}) = \mathcal{L}(\{\boldsymbol{ au}, \boldsymbol{\Psi}, \boldsymbol{Z}\}, \boldsymbol{W}^*).$$

By $\mathrm{TV}(\tilde{W}_i) \leq \mathrm{TV}(W_i^*)$, we know that $\tilde{\boldsymbol{W}}$ has a smaller overall objective function than the optimal solution.

It remains to show that $\tilde{\boldsymbol{W}}$ is feasible. First note that the only spline of order 1 that satisfy the first and second condition is the piecewise linear interpolation of the knots in T. For each i, the constraints require that W_i^* obeys that W_i^* is non-negative, non-decreasing and convex. This ensures that the piecewise linear interpolation of any subset of points in the domain of W_i^* to be also nonnegative, monotonically nondecreasing and convex, which ensures the feasibility of \tilde{W}_i .

Finally, \tilde{W}_i can be represented by a nonnegative linear combination of truncated power basis functions defined on \mathcal{T} and the corresponding hazard function w_i can be represented by the same nonnegative combination of step functions defined at \mathcal{T} . This completes the proof.

B Additional experiments

B.1 Real-World Case Study

Another spot check for the model is the ability to corroborate existing literature on malicious web detection. Figure 1 demonstrates the change-points in $\lambda_i(t)$ for specific versions of Wordpress. The model assigns Wordpress 2.9.2, 3.2.1, 3.3.1 and 3.5.1 change-points around July 2011, August 2011, December 2011, and February 2013 respectively. The work of Soska et

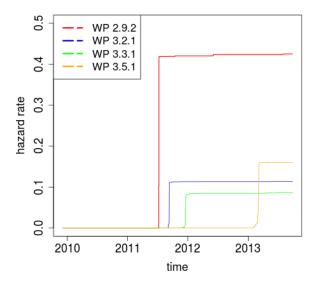


Figure 1: $\lambda_t(i)$ of features known to correspond directly to particular versions of Wordpress.

al. Soska & Christin (2014) found nearly identical attack campaigns for Wordpress 2.9.2, 3.2.1 and 3.3.1 but failed to produce a meaningful result for 3.5.1.

References

Mammen, Enno, van de Geer, Sara, et al. Locally adaptive regression splines. *The Annals of Statistics*, 25(1):387–413, 1997.

Soska, Kyle and Christin, Nicolas. Automatically detecting vulnerable websites before they turn malicious. *USENIX Security Symposium*, 2014.