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1 Kernelized Stein Discrepancy and MMD

Given RKHS H with kernel k(x, x′), the maximum mean discrepancy (MMD) between two distributions with
density p(x) and q(x) is defined as

MMDH(q, p) = max
f∈H

{
Eqf − Epf s.t. ||f ||H ≤ 1},

which can be shown to be equivalent to

MMDH(q, p)2 = Ex,x′∼p[k(x, x′)]− 2Ex∼p;y∼q[k(x, y)] + Ey,y′∼q[k(y, y′)].

We show that kernelized discrepancy is equivalent to MMDHp(q, p), equipped with the p-Steinalized kernel
kp(x, x

′).

Proposition 1.1. Assume (3) is true, we have

S(q, p) = MMDHp
(q, p)2.

Proof. Simply note that Ex′∼p[kp(x, x
′)] = 0 for any x, we have

MMDHp
(q, p)2 = Ex,x′∼q[kp(x, x

′)] = S(q, p).

Similarly, we also have√
S({xi, wi}ni=1, p) = MMDHp

({xi, wi}, p)

= max
f∈H

{ n∑
i=1

wif(xi)− Epf s.t. ||f ||H ≤ 1}.

Proof of Proposition 3.1. Let h̃(x) = h(x)− Eph, we have

|
∑
i

wih̃(xi)| = |
∑
i

wi〈h̃, kp(·, xi)〉Hp |

= |〈h̃,
∑
i

wikp(·, xi)〉Hp
|

≤ ||h̃||Hp
· ||
∑
i

wikp(·, xi)||Hp

= ||h̃||Hp
·
√

S({wi, xi}, p).

where we used Cauchy-Schwarz inequality and the fact that ||
∑
i wikp(·, xi)||2Hp

=
∑
ij wiwjkp(xi, xj) =

S({wi, xi}, p).
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2 Convergence Rate

We consider the error rate of our estimator
∑
i ŵi(x)h(xi) with {ŵi(x)} given by the optimization in (6), under

the assumption that x = {xi}ni=1 is i.i.d. drawn from an (unknown) distribution q(x). Based on the bound in
Proposition (3.1), we can establish an error rate O(n−δ) by finding a set of oracle “reference weights” {w∗i(x)},
as a function of x, such that S({xi, w∗i(x)}, p) = O(n−2δ), because

|
∑
i

ŵi(x)h(xi)− Eph| ≤ Ch ·
√

S({ŵi(x), xi}, p) ≤ Ch ·
√
S({w∗i(x), xi}, p) = O(n−δ),

where Ch = ||h− Eph||Hp . This idea of using reference weights has been used in Briol et al. [2015b] to study the
convergence rate of Bayesian Monte Carlo.

Section 2.1 proves the O(n−1/2) rate using the typical importance sampling weights as the reference weight.
Section 2.2 proves a better O

(
n−1/2

)
rate by using a reference weight based on a control variates method

constructed with an orthogonal basis estimator.

2.1 O(n−1/2) Rate

We use the typical importance sampling weight as a reference weight and establish O(n−1/2) rate on the error of
our estimator.

Assumption 2.1. Assume p(x)/q(x) > 0 for ∀x ∈ X and Ex∼q[
(p(x)
q(x)

)2
] <∞, Ex∼q(|p(x)

2

q(x)2 kp(x, x)|) <∞, and

Ex,x′∼q
[(p(x)p(x′)
q(x)q(x′)kp(x, x

′)
)2]

<∞.

Lemma 2.2. Assume {xi}ni=1 is i.i.d. drawn from q(x)

w∗i =
1

Z
p(xi)/q(xi), Z =

∑
i

p(xi)/q(xi),

then under Assumption 2.1 we have

S({w∗i , xi}, p) = O(n−1).

Proof. Define v∗i (xi) = 1
np(xi)/q(xi), and

S({v∗i , xi}, p) =
1

n2

∑
ij

p(xi)

q(xi)

p(xj)

q(xj)
kp(xi, xj),

then S({v∗i , xi}, p) is a degenerate V-statistic since by (3) we have

Ex′∼q[
p(x)

q(x)

p(x′)

q(x′)
kp(x

′, x′)] =
p(x)

q(x)
Ex′∼p[kp(xi, xj)] = 0, ∀x ∈ X

then we have [see e.g., ?]
S({v∗i , xi}, p) = O(n−1).

In addition, note that
∑n
i=1 v

∗
i = 1 +O(n−1/2), we have

S({w∗i , xi}, p) =
S({v∗i , xi}, p)

(
∑
i v
∗
i )2

= O(n−1).

Theorem 2.3. Assume {xi} is i.i.d. drawn from q(x), and {ŵi(x)} is given by (6), then under Assumption 2.1,
we have

n∑
i=1

ŵi(x)h(xi)− Eph = O(n−1/2).

Proof. Simply note that
S({ŵi, xi}ni=1, p) ≤ S({w∗i , xi}ni=1, p) = O(n−1),

and combining with Proposition 3.1 gives the result.
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2.2 O(n−1/2) Rate

We prove Theorem 3.3 that shows an O
(
n−1/2

)
rate for our estimator. Our method is based on constructing a

reference weight by using a two-fold control variate method based on the first L orthogonal eigenfunctions {φ`}
of kernel kp(x, x′).

We first re-state the assumptions made in Theorem 3.3.

Assumption 2.4. 1. Assume kp(x, x′) has the following eigen-decomposition

kp(x, x
′) =

∑
`

λ`φ`(x)φ`(x
′),

where λ` are the positive eigenvalues sorted in non-increasing order, and φ` are the eigenfunctions orthonormal
w.r.t. distribution p(x), that is,

Ep[φ`φ`′ ]
def
=

∫
p(x)φ`(x)φ`′(x)dx = I[` = `′].

2. trace(kp(x, x
′)) =

∑∞
`=1 λ` <∞.

3. varx∼q[w∗(x)2φ`(x)φ`′(x)] ≤M for all ` and `′, where w∗(x) = p(x)/q(x).

4. |φ`(x)|2 ≤M2, and w∗(x)
def
= p(x)/q(x) ≤M3 for any x ∈ X .

The following is an expended version of Theorem 3.3.

Theorem 2.5. Assume {xi}ni=1 is i.i.d. drawn from q(x), and ŵi is calculated by

ŵ = arg min
w

wKpw, s.t.
∑
i

wi = 1, wi ≥ 0,

and h− Eph ∈ Hp. Under Assumption 2.4, we have

Ex∼q(|
∑
i

ŵih(xi)− Eph|2) = O(
1

n
γ(n)),

where γ(n) = min
L∈N+

{M3

2
R(L) +

M4

2

L

n
+Mfn(n+ 2) exp(− n

L2M0
)
}
,

where N+ is the set of positive integers, and R(L) =
∑
`>L λ` is the residual of the spectrum, and M4 =

2M3Mtrace(kp). and Mf = trace(kp(x, x
′))M2 and M0 = max(M2

2M3, M
2
3 (M2M3 +

√
2)2).

Remark To see how Theorem 2.5 implies Theorem 3.3, we just need to observe that we obviously have
γ(n) ≥ 2M3

b
n , and γ(n) = O(1) by taking L = n1/4.

Based on Proposition 3.1, to prove Theorem 2.5 we just need to show that for any x = {xi}ni=1, there exists a set
of positive and normalized weights {w+

i (x)}, as a function of x, such that

Ex∼q[S({w+
i (x), xi}, p)] = O(

γ(n)

n
).

In the sequel, we construct such a weight based on a control variates method which uses the top eigenfunctions
φ` as the control variates. Our proof includes the following steps:

1. Step 1: Construct a control variate estimator based on the orthogonal eigenfunction basis, and obtain the
corresponding weights {wi(x)}.

2. Step 2: Bound Ex∼q[S({wi(x), xi}, p)].

3. Step 3. Construct a set of positive and normalized weights by w+
i (x) = max(0,wi(x))∑

i max(0,wi(x))
, and establish the

corresponding bound.
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Proof of Theorem 2.5. Combine the bound in Lemma 2.7 and Lemma 2.9 below.

We note that the idea of using reference weights was used in Briol et al. [2015b] to establish the convergence
rate of Bayesian Monte Carlo. Related results is also presented in Bach [2015]. The main additional challenge in
our case is to meet the non-negative and normalization constraint (Step 3); this is achieved by showing that the
{wi(x)} constructed in Step 2 is non-negative with high probability, and their sum approaches to one when n is
large, and hence {w+

i (x)} is not significantly different from {wi(x)}.

Note that if we discard the non-negative and normalization constraint (Step 3), the error bound would be
O(γ0(n)n−1), where

γ0(n) = min
L∈N+

{2M3R(L) + 2M4
L

n
},

as implied by Lemma 2.7. Therefore, the third term in γ(n) is the cost to pay for enforcing the constraints.
However, this additional term does not influence the rate significantly once R(L) =

∑
`>L λ` decays sufficiently

fast. For example, when R(L) = O(L−α) where α > 1, both γ(n) and γ0(n) equal O(n−1+1/(α+1)); when
R(L) = O(exp(−αL)) with α > 0, both γ(n) and γ0(n) equal O( logn

n ). An open question is to derive upper
bounds for the decay of eigenvalues R(L) for given p and k(x, x′), so that actual rates can be determined.

Step 1: Constructing the weights

We first construct a set of unnormalized, potentially negative reference weights, by using a two-fold control
variates method based on the orthogonal eigenfunctions {φ`} of kernel kp(x, x′). Assume n is an even number,
and we partition the data {xi}ni=1 into two parts D0 = {1, . . . , n2 } and D1 = {n2 + 1, . . . n}. For any h ∈ Hp, we
have Eph = 0 by (3), and

h(x) =

∞∑
`=1

β`φ`(x), β` = Ex∼p[h(x)φ`(x)].

We now construct an orthogonal series estimator ĥ(x) for h(x) based on xD0
,

ĥD0(x) =

L∑
`=1

β̂`,0φ`(x), where β̂`,0 =
2

n

∑
i∈D0

h(xi)φ`(xi)
p(xi)

q(xi)
, (1)

where we approximate β` with an unbiased estimator β̂`,0 since

Ex∼q[β̂`,0] = Ex∼q[h(x)φ`(x)
p(x)

q(x)
] =

∫
p(x)h(x)φ`(x)dx = β`.

We also truncate at the Lth basis functions to keep ĥD0
(x) a smooth function, as what is typically done in

orthogonal basis estimators. We will discuss the choice of L later. Based on this we define a control variates
estimator:

Ẑ0[h] =
2

n

∑
i∈D1

[w∗(xi)(h(xi)− ĥD0(xi))],

which gives an unbiased estimator for Eph = 0 because

Ex∼q(Ẑ0[h]) =

∫
q(x)

p(x)

q(x)
(h(x)− ĥD0

(xi))dx = Ex∼ph− ExD0∼q
[
Ex∼p[ĥD0

(x) | xD0
]
]

= 0,

where the last step is because Ex∼p[ĥD0
(x) | xD0

] =
∑L
`=1 β̂`,0Ex∼p[φ`(x)] = 0. Switching D0 and D1, we get

another estimator
Ẑ1[h] =

2

n

∑
i∈D0

[w∗(xi)(h(xi)− ĥD1
(xi))].

Averaging them gives

Ẑ[h] =
Ẑ0[h] + Ẑ1[h]

2
.
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Lemma 2.6. Given Ẑ[h] defined as above, for any h ∈ Hp, we have

Ẑ[h] =

n∑
i=1

wi(x)h(xi), with wi(x) =


1
nw∗(xi)−

2
n2

∑
j∈D1

w∗(xi)w∗(xj)kL(xj , xi), ∀i ∈ D0

1
nw∗(xi)−

2
n2

∑
j∈D0

w∗(xi)w∗(xj)kL(xj , xi), ∀i ∈ D1

where w∗(x) = p(x)/q(x) and kL(x, x′) =
∑L
`=1 φ`(x)φ`(x

′).

Proof. We have

Ẑ0[h] =
2

n

[ ∑
i∈D1

w∗(xi)
(
h(xi)− ĥD0

(xi)
)]

=
2

n

[ ∑
i∈D1

w∗(xi)
(
h(xi)−

L∑
`=1

β̂`,0φ`(x)
)]

=
2

n

[ ∑
i∈D1

w∗(xi)
(
h(xi)−

2

n

L∑
`=1

∑
j∈D0

h(xj)w∗(xj)φ`(xj)φ`(xi)
)]

=
2

n

∑
i∈D1

w∗(xi)h(xi) −
4

n2

∑
j∈D0

∑
i∈D1

h(xj)w∗(xj)w∗(xi)

L∑
`=1

φ`(xj)φ`(xi)

=
2

n

∑
i∈D1

w∗(xi)h(xi) −
4

n2

∑
j∈D0

∑
i∈D1

h(xj)w∗(xj)w∗(xi)kL(xi, xj)

def
=

n∑
i=1

wi,0h(xi),

where

wi,0 =

{
− 4
n2

∑
j∈D1

w∗(xi)w∗(xj)kL(xj , xi) ∀i ∈ D0

2
nw∗(xi) ∀i ∈ D1

(2)

We can derive the same result for Ẑ1[h] and averaging them would gives the result.

Step 2: Calculating Ex∼q(S({xi, wi(x)}, p))

Lemma 2.7. Under Assumption 2.4, for the weights {wi(x)} defined in Lemma 2.6, we have

Ex∼q[S({xi, wi(x)}, p] ≤ 2

n
[M3R(L) + M4

L

n
]

where M3 is the upper bound of p(x)/q(x), ∀x ∈ X and R(L) =
∑
`>L λ` and M4 = 2M3 max`′{

∑
` λ`ρ``′} ≤

2M3Mtrace(kp).
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Proof. First, for any h ∈ Hp (such that Ep[h] = 0), we have

Ex∼q

[
Ẑ0[h]2

]
= Ex∼q

[(
2

n

∑
i∈D1

w∗(xi)(h(xi)− ĥD0(xi))

)2
]

=
4

n2
ExD0∼q

{∑
i∈D1

Exi∼q

[
w∗(xi)

2(h(xi)− ĥD0
(xi))

2
]

+
∑

i 6=j;i,j∈D1

Exi,xj∼q

[
w∗(xi)(h(xi)− ĥD0

(xi))w∗(xj)(h(xj)− ĥD0
(xj))

]}

=
4

n2
ExD0∼q

{∑
i∈D1

Er
[
(h(xi)− ĥD0

(xi))
2
]

+
∑

i6=j;i,j∈D1

Ep
[
(h(xi)− ĥD0

(xi))(h(xj)− ĥD0
(xj))

]}

=
2

n
ExD0∼q

{∫
p(x)2

q(x)
(h(x)− ĥ0(x))2dx

}
(because Eph = Epĥ = 0)

≤ 2M3

n
ExD0∼q

{
Ep[(h(x)− ĥ0(x))2]

}
(because p(x)/q(x) ≤M3 by assumption)

=
2M3

n
ExD0∼q

{∑
`>L

β2
` +

∑
`<L

(β` − β̂`,0)2
}

=
2M3

n

{∑
`>L

β2
` +

∑
`<L

varxD0∼q(β̂`,0)

}
(because ExD0∼q[β̂`,0] = β`)

=
2M3

n

[∑
`>L

β2
` +

2

n

∑
`<L

varx∼q[w∗(x)φ`(x)h(x)]

]
.

We can derive the same result for Ẑ1[h] and hence

Ex∼q
[
Ẑ[h]2

]
≤ 1

2
(Ex∼q

[
Ẑ0[h]2

]
+ Ex∼q

[
Ẑ1[h]2

]
)

=
2M3

n

[∑
`>L

β2
` +

2

n

∑
`<L

varx∼q[w∗(x)φ`(x)h(x)]

]
.

Taking h(x) = φ`′(x) for which we have β` = I[` = `′], we get

Eq
[
Ẑ[φ`′ ]

2
]
≤

{
4M3

n2

∑
`<L varx∼q[w∗(x)φ`(x)φ`′(x)] if `′ ≤ L

2M3

n + 4M3

n2

∑
`<L varx∼q[w∗(x)φ`(x)φ`′(x)] if `′ > L.
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Define ρ``′ = varx∼q[w∗(x)φ`(x)φ`′(x)] and we have ρ``′ ≤M by Assumption 2.4. We have

Ex∼q[S({xi, wi(x)}, p)] = Ex∼q[

n∑
i,j=1

wi(x)wj(x)kp(xi, xj)]

= Ex∼q[

n∑
i,j=1

wi(x)wj(x)

∞∑
`=1

λ`φ`(xi)φ`(xj)]

=
∑
`

λ`Ex∼q[(

n∑
i=1

wi(x)φ`(xi))
2]

=
∑
`

λ`Ex∼q[Ẑ[φ`]
2]

≤ 2M3

n
[
∑
`>L

λ` +
2

n

∞∑
`=1

λ`
∑
`′<L

ρ``′ ]

≤ 2

n
[M3

∑
`>L

λ` + M4
L

n
],

where M4 = 2M3 max`′{
∑
` λ`ρ``′} ≤ 2M3Mtrace(kp).

Step 3: Meeting the Non-negative and Normalization Constraint

The weights defined in (2.6) is not normalized to sum to one, and may also have negative values. To complete the
proof, we define a set of new weights,

w+
i (x) =

max(0, wi(x))∑
i max(0, wi(x))

.

We need to give the bound for S({xi, w+
i (x)}, p) based on the bound of O(S({xi, wi(x)}, p)). The key observation

is that we have
∑n
i=1 wi(x)

p→ 1 and wi(x) ≥ 0 with high probability for the weights given by in Lemma 2.6.

Lemma 2.8. For the weights {wi(x)} defined in Lemma 2.6, under Assumption 2.4, we have

i). When x = {xi}ni=1 ∼ q, we have

Pr[wi(x) < 0] ≤ exp(− n

LM2
2M

2
3

), for ∀i ≤ n. (3)

ii). We have Ex∼q[
∑
i wi(x)] = 1. Assume L ≥ 1, we have

Pr(S < 1− t) ≤ 2 exp(− n

L2Ms
) where Ms = M2

3 (M2M3 +
√

2)2/4, (4)

Proof. i). Recall that

wi(x) =


1
nw∗(xi)−

2
n2

∑
j∈D1

w∗(xi)w∗(xj)kL(xj , xi), ∀i ∈ D0

1
nw∗(xi)−

2
n2

∑
j∈D0

w∗(xi)w∗(xj)kL(xj , xi), ∀i ∈ D1.

We just need to prove (3) for i ∈ D0. Note that

wi(x) =
1

n
w∗(xi)

[
1− T

]
, where T =

2

n

∑
j∈D1

w∗(xj)kL(xj , xi).

Because E[T | xi] = Ex′∼q[w∗(x
′)kL(x′, xi)] = 0 for ∀x and |w(x′)kL(x, x′)| ≤ LM2M3, ∀x, x′ ∈ X , using

Hoeffding’s inequality, we have

Pr(wi(x) < 0) = Pr(T > 1) ≤ exp(− n

L2M2
2M

2
3

).
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ii). Note that S def
=
∑
i wi(x) = S1 + S2,

where S1 =
1

n

n∑
i=1

w∗(xi), S2 = − 2

n2

∑
i∈D0

∑
j∈D1

w∗(xi)w∗(xj)kL(xi, xj),

where the first term is the standard importance sampling weights and the second term comes from the control
variate. It is easy to show that E[S1] = 1 and E[S2] = 0, and hence E[S] = 1. To prove the tail bound, note that
for any t1 + t2 = t, t1, t2 > 0, we have

Pr(S < 1− t) ≤ Pr(S1 < 1− t1) + Pr(S2 ≤ t2)

≤ exp(−2nt21
M2

3

) + exp(− 4nt22
L2M2

2M
4
3

),

where the bound for S2 uses the Hoffeding’s inequality for two-sample U statistics [?, Section 5b]. We take
t1 =

√
2t/(LM2M3 +

√
2), we have

Pr(S < 1− t) ≤ 2 exp(− 4nt2

L2M2
3 (M2M3 +

√
2/L)2

) ≤ 2 exp(− nt2

L2Ms
),

where Ms = M2
3 (M2M3 +

√
2)2/4 (we assume L ≥ 1).

Lemma 2.9. Under Assumption 2.4, we have

E[S({xi, w+
i (x)}, p)] ≤ 1

4
E[S({xi, wi(x)}, p)] + Mf (n+ 2) exp(− n

L2M0
),

where Mf = trace(kp(x, x
′))M2 and M0 = max(M2

2M3, M
2
3 (M2M3 +

√
2)2).

Proof. We use short notation f(w+) = S({xi, w+
i (x)}, p) for convenience. We have

|f(w+)| = |
∑
`

λ`(
∑
i

w+
i φ`(xi))

2| ≤ trace(kp(x, x
′))M2

def
= Mf .

Define En to be the event that all wi > 0 and
∑
i wi ≥ 1/2, that is, En = {

∑
i wi ≥ 1/2, wi ≥ 0, ∀i ∈ [n]}. We

have from Lemma2.8 that
Pr(Ēn) ≤ n exp(− n

L2M2
2M3

) + 2 exp(− n

4L2Ms
).

Note that under event En, we have w = w+. Therefore,

E[f(w+)] = E[f(w+) | En] · Pr[En] + E[f(w+) | Ēn] · Pr[Ēn]

≤ E[f(w+) | En] · Pr[En] + Mf · Pr[Ēn]

≤ 1

4
E[f(w) | En] · Pr[En] + Mf · Pr[Ēn]

≤ 1

4
E[f(w)] + Mf · Pr[Ēn]

≤ 1

4
E[f(w)] + Mf ·

[
n exp(− n

L2M2
2M3

) + 2 exp(− n

4L2Ms
)

]
≤ 1

4
E[f(w)] + Mf (n+ 2) exp(− n

L2M0
)

3 Additional Empirical Results

Here we show in Figure 1 an additional empirical result when p(x) is a Gaussian mixture model shown in
Figure 1(a) and {xi}ni=1 is generated by running n independent chains of MALA for 10 steps.
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Figure 1: Gaussian Mixture Example. (a) The contour of the distribution p(x) that we use, and {xi}ni=1 is
generated by running n independent MALA for 10 steps. (b) - (c) The MSE of the different weighting schemes
for estimating E(h(x)), where h(x) equals x, x2, and cos(ωx+ b), respectively. For h = cos(ωx+ b) in (c), we
draw ω ∼ N (0, 1) and b ∼ Uniform([0, 2π]) and average the MSE over 20 random trials.


