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1 Kernelized Stein Discrepancy and MMD

Given RKHS H with kernel k(z, "), the maximum mean discrepancy (MMD) between two distributions with
density p(z) and ¢(z) is defined as

MMDs(¢,p) = max {Bqf —E,f st [Iflln <1},
which can be shown to be equivalent to

MMDH(q,p)z = ]Ew,m’Np[k($a xl)} - 2Ew~p;y~q[k(xa y)] + Ey,y’~q[k(ya y/)]

We show that kernelized discrepancy is equivalent to MMDy, (g, p), equipped with the p-Steinalized kernel
kp(x,2').

Proposition 1.1. Assume is true, we have
S(g, p) = MMDy, (¢,p)*.

Proof. Simply note that E,/~p[k,(x,2")] = 0 for any z, we have

MMDHp (Qap)Q = Ea;,w’qu[kp(xv J:/)] = S(Qv p)-

Similarly, we also have

VS(aswiliy, p) = MMDy, (i, wi}, p)

:maX{Zwif(xi) —E,f st ||fllx <1}
i=1

feH
Proof of Proposition[3.1. Let h(z) = h(z) — E,h, we have
\Zwiﬁ(xi)l = |Zwi<ﬁ» kp (s 20)) e, |
= |(R, Zwikp(',l’i))HJ
< [IAll3, - Zwikp(umi)l\w,,

= [|hlla, - VS{wi, 2}, p).

where we used Cauchy-Schwarz inequality and the fact that || Ziwikp(-,a:i)ﬂgdp = > wiwiky(zi,x5) =
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2 Convergence Rate

We consider the error rate of our estimator Y, w;(x)h(z;) with {@;(x)} given by the optimization in (6]), under
the assumptlon that @ = {x;}7 is i.i.d. drawn from an (unknown) distribution ¢(z). Based on the bound in
Proposition (3.1]), we can establish an error rate O(n~°) by finding a set of oracle “reference weights” {w.;(x)},
as a function of x, such that S({z;, w.;(z)}, p) = O(n=2%), because

|Zwi(w)h($i) —Eph| < Cu - vS({i(@), 2}, p) < O VS{wii(x),z:}, p) = O(n™?),

where Cy, = ||h — E,hl|3,. This idea of using reference weights has been used in Briol et al.| [2015b] to study the
convergence rate of Bayesian Monte Carlo.

Section proves the O(n’l/ %) rate using the typical importance sampling weights as the reference weight.
Section proves a better O(nil/ 2) rate by using a reference weight based on a control variates method
constructed with an orthogonal basis estimator.

2.1 O(n~'?) Rate

We use the typical importance sampling weight as a reference weight and establish O(n_l/ 2) rate on the error of
our estimator.

. 2 2
Assumption 2.1. Assume p(z)/q(z) > 0 for Vo € X and Ezwq[(p(x)) ] < oo, Equ(|p(I) kp(z,z)|) < oo, and

‘ )
Es o [ (55000 ko2, 2)) ] < co.

Lemma 2.2. Assume {x;} is i.i.d. drawn from q(x)

i = o)), 2= 3 pla)/ate,

then under Assumption [2.1] we have
S({w], 2}, p) = O(n™1).

Proof. Define v} (z;) = %p(xi)/Q(xi)v and

S({vf, i}, )= — Zp b (@i, 5),

then S({v},z;}, p) is a degenerate V-statistic since by . we have

D)D)y 1 o) = PO, by ws )] =0, Vo€ &

q(z)

wal gy gy

then we have [see e.g., ?|

S({v},zi}, p)=0Om ™).

In addition, note that > =1+ 0(n"?), we have

111

S({w}, a1}, p) = S({(Z})p) _ o).

O

Theorem 2.3. Assume {x;} is i.i.d. drawn from q(z), and {w;(z)} is given by (6)), then under Assumption [2.1]
we have

sz —E,h = 0(n"'?).

Proof. Simply note that
{wlvxl i1, p) < S({wzcvxi}?:la p) = O(n_l)’
and combining with Proposition [3.1] gives the result. O



Qiang Liu, Jason D. Lee

2.2 o(n~'/?) Rate

We prove Theorem that shows an O(n_l/ 2) rate for our estimator. Our method is based on constructing a
reference weight by using a two-fold control variate method based on the first L orthogonal eigenfunctions {¢,}
of kernel k,(x, z’).

We first re-state the assumptions made in Theorem [3.3]

Assumption 2.4. 1. Assume ky(x, ') has the following eigen-decomposition
=3 Mde(@)e(a)
L

where \p are the positive eigenvalues sorted in non-increasing order, and ¢y are the eigenfunctions orthonormal
w.r.t. distribution p(z), that is,

E,[gede] / p(2)bu(x) o (x)dz = T[¢ = 0],

2. trace(kp(z,2')) = Y2, A < 00.
3. vargq[wi(z)?de(2)pe (x)] < M for all £ and ¢, where w.(z) = p(z)/q(x).

4 |60(@)[? < Ms, and w.(x) < p(x)/q(x) < M for any v € X.
The following is an expended version of Theorem
Theorem 2.5. Assume {x;}, is i.i.d. drawn from q(x), and w; is calculated by

w = argminwK,w, s.t. Zwl =1, w; >0,
and h —Eph € Hy,. Under Assumption [2.4, we have

Baval| 32 ihn) ~ Exhf) = O 3(0),

My L
where  ~(n) = min {—R L) + —4— + Myn(n + 2) exp(—

n
2 L2M0)}’

where NT is the set of positive integers, and R(L) = > o> Ae is the residual of the spectrum, and M, =
2MsMtrace(ky). and My = trace(ky(z,2')) My and My = max(M2Msz, M2(MyMs ++/2)?).

Remark To see how Theorem [2.5] implies Theorem [3.3] we just need to observe that we obviously have
v(n) > 2M3L, and v(n) = o(1) by taking L = nl/4.

Based on Proposition to prove Theorem we just need to show that for any & = {z;}?" ;, there exists a set
of positive and normalized weights {w; (x)}, as a function of , such that

EpralS({wf (@), 2:}, p) = 01,

In the sequel, we construct such a weight based on a control variates method which uses the top eigenfunctions
¢¢ as the control variates. Our proof includes the following steps:

1. Step 1: Construct a control variate estimator based on the orthogonal eigenfunction basis, and obtain the
corresponding weights {w;(x)}.
2. Step 2: Bound Ep4[S{w;(x),z;}, p)].

3. Step 3. Construct a set of positive and normalized weights by w;" (z) = %7 and establish the
corresponding bound.
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Proof of Theorem[2.5 Combine the bound in Lemma [2.7 and Lemma [2.9] below. O

We note that the idea of using reference weights was used in Briol et al.| [2015b] to establish the convergence
rate of Bayesian Monte Carlo. Related results is also presented in [Bach| [2015|. The main additional challenge in
our case is to meet the non-negative and normalization constraint (Step 3); this is achieved by showing that the
{w;(x)} constructed in Step 2 is non-negative with high probability, and their sum approaches to one when n is
large, and hence {w;" (z)} is not significantly different from {w;(x)}.

Note that if we discard the non-negative and normalization constraint (Step 3), the error bound would be
O(y0(n)n=1), where

L
Yo(n) = LHEHNH {2M3R(L) + 2M4E}’

as implied by Lemma Therefore, the third term in y(n) is the cost to pay for enforcing the constraints.
However, this additional term does not influence the rate significantly once R(L) =, ; A¢ decays sufficiently
fast. For example, when R(L) = O(L™%) where a > 1, both v(n) and v(n) equal O(n~1+1/(@+1). when
R(L) = O(exp(—al)) with @ > 0, both v(n) and ~y(n) equal O(l"%). An open question is to derive upper
bounds for the decay of eigenvalues R(L) for given p and k(x, '), so that actual rates can be determined.

Step 1: Constructing the weights

We first construct a set of unnormalized, potentially negative reference weights, by using a two-fold control
variates method based on the orthogonal eigenfunctions {¢,} of kernel k,(z,2’). Assume n is an even number,
and we partition the data {z;}}_, into two parts Do = {1,..., 5} and D; = {§ +1,...n}. For any h € H,, we
have E,h = 0 by , and

2) =Y Bitn(@),  Bo=Eanylh(@)de(a).
=1
We now construct an orthogonal series estimator h(z) for h(z) based on @p,,

p(s)
(i)’

Mh

b, (z 30.060(x where 0 = Z h(z:)de(x;)

/=1 lGDO

>Q

where we approximate §; with an unbiased estimator (3, since

p(z)
q(x)

We also truncate at the Lth basis functions to keep hp,(2) a smooth function, as what is typically done in
orthogonal basis estimators. We will discuss the choice of L later. Based on this we define a control variates
estimator:

Eog (0] = Eamglh(2)de(z) 22| = / p(a)h()bu(x)dz = .

N 2 A
Zolh] = — D [wa(ws) (i) — by (2:))],
€Dy
which gives an unbiased estimator for E,h = 0 because

/ = x @ z) — hpy (2;))dz = — I, () | @ =
Earq(Zo[h]) —/q( )q(x (h(x) = hoy (2:))dz = Eonph — By g [Eanplhp, (2) | 2p,]] =0,

where the last step is because Eyp|hn, (z) | #p,] = Zle Br.oEamplde(x)] = 0. Switching Dy and Dy, we get
another estimator

Zi[h] = - D lwa(@s) (h(w:) = ho, (2:)))-
€Dy
Averaging them gives X R
Z[h] _ Zylh] + Z1[h)
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Lemma 2.6. Given Z[h] defined as above, for any h € H,, we have

%w*(xl) — % > jen, We(@)we(xy)kr(2), ), Vi€ Do
wl(m) = 1

W) = 2 X jepy wa (s (;)ku (g, 0:), Vi €Dy

= Zwi(m)h(xi), with

where wy(x) = p(x)/q(x) and kr(z,2") = 25:1 o) pe(z').

Proof. We have

. 20 A
Zg[h] = ﬁ Z w*(xl)(h(xz) — hDO(xi))]
-i€Dy
o[ L
S| PIRIUCIR SEE >)}
-ieDy =1
2( 2
=0 Z w*(asl EZ Z (@5)ws(z;) Pe(x;) e ))
-ieD; £=1 j€Do
9 L
= > walw)h(x) - Z D h(@wa(wy)wa(w:) Y delw)pe(xs)
€Dy jEDo i€, =1
2
= > walw)h(x) - ﬁ D0 hlwg)wa(wy)wa (@) (2, 7))
€Dy Jj€EDg €Dy
déf Z wiyoh(xi),
i=1
where
Wi = -4 > jep, Wr(@i)we(zy)kr (25, 2;) Vi€ Do @)
%w*(xz) Vi € Dy
We can derive the same result for Z; [h] and averaging them would gives the result. O

Step 2: Calculating Eg,(S({z;, w;(x)}, p))

Lemma 2.7. Under Assumption[2.]] for the weights {w;(z)} defined in Lemma[2.6, we have
2 L
BarglS({as wi(a)}, p) < ZDER(L) + M)

where M3 is the upper bound of p(x)/q(x), Vo € X and R(L) = >_,.; Ae and My = 2Mzmaxe{), Apeer} <
2MsMtrace(kp).
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Proof. First, for any h € H, (such that E,[h] = 0), we have

Eorq [Zo [hP]

(%

€Dy

= ]Equ

2
mmmmwﬁmmol

:;MWJZ&Mthmm%mmﬂ

1€Dy
+ > mww@wmwm—%mmm@mwwﬁmmﬁ}
#5345 €D1
= ;EMONQ{ > E, [(h(zi) — hp, (xi))ﬂ + Y B [(h(:ci) — hipy () (h(;) — b, (xj))} }

1€Dy i#531,5€D,

_ ZEwDONQ{ / ];(8)2 (h(z) — ﬁo(x))de} (because Eyh = Eyh = 0)

< QJZP’EWOW{E;:[(}L(JC) - ﬁo(x))Q]} (because p(z)/q(x) < M3 by assumption)

M S S o)

£>L L<L

2M. 3 3
= ’[’LB{ Z 6(% + Z V&I‘zmo"‘q (5&0)} (because IEE[DO Nq[ﬁe’o] = /BZ)

£>L (<L

= % lz Bi + % Z Valg~q Wy (x)qbe(x)h(x)]] _

£>L L<L

We can derive the same result for Z;[h] and hence

Earg [Z17] < 5(Barmg [Z0[1]7] + By [Z1[417))

=T T Y el @@

£>L L<L

Taking h(x) = ¢ () for which we have 8, = I[¢ = {'], we get

4M e

5 2 Y e r, Valzmg[Wi (7)o () Prr ()] if¢ <L
E,[Z[pe)?] << .7 <

q[ [¢g ] ] a {2]7\:[3 + 4%3 ZZ<L Varw~q[w* (x)(bé(l')(W/ (.Z')] if ¢/ > L.
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Define pper = vargq[w,(z)de(z)pp ()] and we have pyr < M by Assumption 2.4 We have

n

Eong[S{@i, wi(@)},p)] = Bong Y wil@)w;(@)ky(@i, ;)]

=E.q[ Z w;(x)w,;(x) Z Aede(xi)pe(;)]
i,j=1 =1

= D Mo wil@)oe(:))’]
Vi i=1

= Z AZEqu[Z[¢€]2]

< %[Z)\e + %ZM Z I

£>L =1 <L

2 L
< *[MszM + My—],
"L "

where M4 = 2M3 man/{ZE )\gpggl} < 2M3Mtrace(kp). ]

Step 3: Meeting the Non-negative and Normalization Constraint

The weights defined in (2.6)) is not normalized to sum to one, and may also have negative values. To complete the
proof, we define a set of new weights,

wi (z) = max (0, w;(x))

22 max(0, wi(@))’

We need to give the bound for S({z;, w;" (z)}, p) based on the bound of O(S({z;, w;(x)}, p)). The key observation
is that we have S°° | w;(z) 2 1 and w;(x) > 0 with high probability for the weights given by in Lemma

Lemma 2.8. For the weights {w;(z)} defined in Lemma[2.6, under Assumption[2.j, we have
i). When x = {z;}}'_; ~ ¢, we have

Priw;(z) < 0] < exp(—m), for Vi <n. (3)
3 M3

ii). We have Eg [, wi(x)] = 1. Assume L > 1, we have

Pr(S <1—1t) <2exp(— where M, = MZ(MyMs + /2)%/4, (4)

n
LQMS)

Proof. i). Recall that

Lw, () — % > jep, We(@i)we(xy)kr(2),2;), Vi€ Do
wi(®) = { |

w(z;) — % > jemy Wr (@) walzj) ke (), ), Vi€ Dy.

We just need to prove for i € Dy. Note that

1
w;(x) = ﬁw*(sz)[l - T, where T= - Z wy(xj)kr (x5, ;).
JEDy
Because E[T | x;] = Epglws(2)kp (2, 2;)] = 0 for Vo and |w(z")kr(z,2")] < LMy;Ms, Vz,2' € X, using
Hoeffding’s inequality, we have

n

Pr(w;(x) <0) =Pr(T > 1) < eXP(—W)-
2413
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ii). Note that S def > wi(x) =81+ Sa,

3
1 — 2
where S =— Zw*(ﬂ«“i), Sp=—= Z Z W (w)ws ()b (24, 75),
i=1 i€Dg jED,

where the first term is the standard importance sampling weights and the second term comes from the control
variate. It is easy to show that E[S;] = 1 and E[S2] = 0, and hence E[S] = 1. To prove the tail bound, note that
for any t1 + to =t, t1,t2 > 0, we have

PI‘(S <1-— t) < PI‘(Sl <1-— tl) + PI‘(SQ < tg)

ont? 4Anit2
< exp(— M??l) + eXp(—WZQQMé;)a

where the bound for S5 uses the Hoffeding’s inequality for two-sample U statistics [?, Section 5b]. We take
t1 = V/2t/(LMyM; + /2), we have

Pr(S < 1—1) < 2exp(— At ) < 2exp(— -2y
L2M3(MyMs + +/2/L)? LM,
where M, = M2(MyM3 + /2)%/4 (we assume L > 1).
O
Lemma 2.9. Under Assumption[2.], we have
BIS({os ui @)}, 2)] < {EB({on @), 9] + Myln+ 2 expl(- i),

where My = trace(ky(z,2')) My and My = max(MZMs, M2(MsM; ++/2)?).
Proof. We use short notation f(w*) = S({z;,w; (x)}, p) for convenience. We have

def
[Fb) =13 Xe(Q wif del:)?] < trace(ky(z,2')) My = Mj.

¢ i
Define &, to be the event that all w; >0 and ), w; > 1/2, that is, &, = {d>°, w; > 1/2, w; >0, Vi € [n]}. We
have from Lemma2.§| that

Pr(&,) < nexp(— + 2exp(—

L) L)
L2MZM, AL,

Note that under event &,, we have w = w™. Therefore,
E[f(w+)] E[f(w+) | En] - Prl&n] + E[f(w+) ‘ gn] 'Pr[gn]
[f(w®) [ €] - Prlén] + M- Pr(&,]

<

IN

E[f(w) | &) - Pr[€,] + My - Pr[&,]

IN

E[f(w)] + Mj - Pr(&,]

n n
E[f(w)] + My - nexp(77L2M2M3) +2exp(774L2M )
2 s

IN
N e N

E[f(w)] + My(n +2)exp(~pgyp)

3 Additional Empirical Results

Here we show in Figure [I] an additional empirical result when p(z) is a Gaussian mixture model shown in
Figure[lfa) and {;}?_, is generated by running n independent chains of MALA for 10 steps.
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%
0 **.*** % -A-Uniform
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%) 0.5¢ -©-Control Func
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2
(a) p(z) (b) E(x) (c) E(z7) (d) E(cos(wz + b))

Figure 1: Gaussian Mixture Example. (a) The contour of the distribution p(z) that we use, and {z;}; is
generated by running n independent MALA for 10 steps. (b) - (¢) The MSE of the different weighting schemes
for estimating E(h(x)), where h(z) equals x, 2%, and cos(wx + b), respectively. For h = cos(wz + b) in (c), we
draw w ~ N(0,1) and b ~ Uniform([0, 27]) and average the MSE over 20 random trials.



