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Abstract

Hamiltonian Monte Carlo (HMC) is a pop-
ular Markov chain Monte Carlo (MCMC)
algorithm that generates proposals for a
Metropolis-Hastings algorithm by simulating
the dynamics of a Hamiltonian system. How-
ever, HMC is sensitive to large time discretiza-
tions and performs poorly if there is a mis-
match between the spatial geometry of the
target distribution and the scales of the mo-
mentum distribution. In particular the mass
matrix of HMC is hard to tune well.
In order to alleviate these problems we pro-
pose relativistic Hamiltonian Monte Carlo, a
version of HMC based on relativistic dynam-
ics that introduces a maximum velocity on
particles. We also derive stochastic gradient
versions of the algorithm and show that the
resulting algorithms bear interesting relation-
ships to gradient clipping, RMSprop, Adagrad
and Adam, popular optimisation methods in
deep learning. Based on this, we develop
relativistic stochastic gradient descent by tak-
ing the zero-temperature limit of relativistic
stochastic gradient Hamiltonian Monte Carlo.
In experiments we show that the relativis-
tic algorithms perform better than classical
Newtonian variants and Adam.

1 Introduction

Markov chain Monte Carlo (MCMC) techniques based
on continuous-time physical systems allow the efficient
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simulation of posterior distributions, and are an impor-
tant mainstay of Bayesian machine learning and statis-
tics. Hamiltonian Monte Carlo (HMC) [1, 2, 3, 4, 5]
is based on Newtonian dynamics on a frictionless sur-
face, and has been argued to be more efficient than
techniques based on diffusions [6]. On the other hand,
stochastic gradient MCMC techniques based on dif-
fusive dynamics [7, 8, 9, 10] have allowed scalable
Bayesian learning using mini-batches.

An important consideration when designing such
MCMC algorithms is adaptation or tuning to the ge-
ometry of the space under consideration [11, 12, 13].
To give a concrete example, consider HMC. Let f(θ) be
a target density that can be written as f(θ) ∝ e−U(θ)

where U(θ) is interpreted as the potential energy of
a particle in location θ. HMC introduces an auxil-
iary momentum variable p so that the joint distribu-
tion is f(θ, p) ∝ e−H(θ,p) where the Hamiltonian is
H(θ, p) = U(θ) + 1

2mp
>p. The quantity 1

2mp
>p, where

m is the mass of the particle, represents the kinetic
energy. Denoting by θ̇ and ṗ the time derivative of
θ and p, the leapfrog discretisation [2] of Hamilton’s
equations θ̇ = ∂H

∂p and ṗ = −∂H∂θ gives

pt+1/2 ← pt − 1
2ε∇U(θt),

θt+1 ← θt + ε
pt+1/2
m ,

pt+1 ← pt+1/2 − 1
2ε∇U(θt+1)

where ε is the time discretisation and the velocity is
pt+1/2
m . If m is too small, the particle travels too fast

leading to an accumulation of discretisation error. To
compensate, ε needs to be set small and the compu-
tational cost required increases. On the other hand,
if m is too large, the particle travels slowly resulting
in slow mixing for the resulting Markov chain. While
the mass parameter can be tuned, e.g., to optimise
acceptance rate according to theory [12], it only inci-
dentally controls the velocity which ultimately affects
the discretisation error and algorithm stability.

In this paper, we are interested in making MCMC al-
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gorithms based on physical simulations more robust by
directly controlling the velocity of the particle. This
is achieved by replacing the Newtonian dynamics in
HMC with the relativistic dynamics [14], whereby par-
ticles cannot travel faster than the “speed of light”. We
also develop relativistic variants of stochastic gradient
MCMC algorithms and show that they work better and
are more robust than the classical Newtonian variants.

The relativistic MCMC algorithms we develop have
interesting relationships with a number of optimisa-
tion algorithms popular in deep learning. Firstly, the
maximum allowable velocity (speed of light) is remi-
niscent of gradient clipping [15]. Our framework gives
Bayesian alternatives to gradient clipping, in the sense
that our algorithms demonstrably sample from instead
of optimising the target distribution (exactly or ap-
proximately). Secondly, the resulting formulas (see
(3)), which include normalisations by L2 norms, bear
strong resemblances to (but are distinct from) RM-
Sprop, Adagrad and Adam [16, 17, 18]. Motivated by
these connections, we develop a relativistic stochastic
gradient descent (SGD) algorithm by taking the zero-
temperature limit of relativistic SGHMC, and show
in experiments on feedforward networks trained on
MNIST that it achieves better performance than Adam.

2 Relativistic Hamiltonian Dynamics

Our starting point is the Hamiltonian that governs the
dynamics in special relativity [14],

H(θ, p) = U(θ) +K(p) (1)

K(p) = mc2
(
p>p

m2c2 + 1
) 1

2

(2)

where the target density is f(θ) ∝ e−U(θ), for θ ∈ Rd
interpreted as the position of the particle, p ∈ Rd is a
momentum variable, and K(p) is the relativistic kinetic
energy. The two tunable hyperparameters are a scalar
“rest mass” m and the “speed of light” c which bounds
the particle’s speed. The joint distribution f(θ, p) ∝
e−H(θ,p) is separable, with the momentum variable
having marginal distribution ∝ e−K(p), a multivariate
generalisation of the symmetric hyperbolic distribution.

The resulting dynamics is given by Hamilton’s equa-
tions, which read

θ̇ = ∂H

∂p
= M−1(p)p, M(p) = m

(
p>p

m2c2 + 1
) 1

2

ṗ = −∂H
∂θ

= −∇U(θ), (3)

where M(p) can be interpreted as the relativistic mass
and M−1(p)p as the velocity of the particle (c.f. the ve-
locity under Newtonian dynamics is m−1p). Note that

the relativistic mass is lower bounded by and increases
asymptotically to ‖p‖/c as the momentum increases,
so that the speed M−1(p)‖p‖ is upper bounded by and
asymptototes to c. On the other hand, the larger the
rest mass m, the smaller the typical “cruising” speed
of the particle. Conversely, as m→ 0 the particle will
travel at the speed of light at all times, i.e. it behaves
like a photon. This gives an intuition for tuning both
hyperparameters c and m based on knowledge about
the length scale of the target density: we choose c as
an upper bound on the speed at which the parameter
of interest θ changes at each iteration, while we choose
m to control the typical sensible speed at which the
parameter changes. We will demonstrate this intuition
in the experimental Section 5.

A crucial property of the relativistic dynamics is that
the mass is a function of the momentum. We will show
in the next sections that this represents a simple way to
adapt to the geometry of the target distribution that,
as opposed to differential geometric approaches [11],
does not require high order geometric information and
more complex integrators.

In very high dimensional problems (e.g. those in deep
learning, collaborative filtering or probabilistic mod-
elling), the maximum overall speed imposed on the
system might need to be very large so that reasonably
large changes in each coordinate are possible at each
step of the algorithm. This means that each coordinate
could in principle achieve a much higher speed than
desirable. An alternative approach is to upper bound
the speed at which each coordinate changes by choosing
the following relativistic kinetic energy

K(p) =
d∑
j=1

mjc
2
j

(
p2
j

m2
jc

2
j

+ 1
) 1

2

, (4)

where j indexes the coordinates of the d-dimensional
system, and each coordinate can have its own mass mj

and speed of light cj . This leads to the same Hamilto-
nian dynamics (3), but with all variables interpreted
as vectors, and all arithmetic operations interpreted
as element-wise operations. Experimental results will
be based on this independent-momenta variant, which
showed consistently better performance. For simplicity,
in the theoretical sections we will describe only the
version (2).

2.1 Relativistic Hamiltonian Monte Carlo

As a demonstration of the relativistic Monte Carlo
framework, we derive a relativistic variant of the Hamil-
tonian Monte Carlo (HMC) algorithm [2, 1]. In the
following, we will refer to all classical variants as Newto-
nian, since they follow Newtonian dynamics (e.g. New-
tonian HMC (NHMC) vs relativistic HMC (RHMC)).
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Each iteration of HMC involves first sampling the mo-
mentum variable, followed by a series of L leapfrog
steps, followed by a Metropolis-Hastings accept/reject
step. The momentum can be simulated by first simulat-
ing the speed ‖p‖ followed by simulating p uniformly on
the sphere with radius ‖p‖. The speed ‖p‖ has marginal
distribution given by a symmetric hyperbolic distribu-
tion, for which specialised random variate generators
exist. Alternatively, the density is log-concave, and we
used adaptive rejection sampling to simulate it. The
leapfrog steps [19] with stepsize ε follows (3) directly:
set θ0, p0 to the current location and momentum and
for t = 1, . . . , L,

pt+1/2 ← pt − 1
2ε∇U(θt)

θt+1 ← θt + εM−1(pt+1/2)pt+1/2

pt+1 ← pt+1/2 − 1
2ε∇U(θt+1)

The leapfrog steps leave the Hamiltonian H ap-
proximately invariant and are volume-preserving [20],
so that the MH acceptance probability is simply
min(1, exp(−H(θL, pL) +H(θ0, p0))).

Observe that the momentum p is unbounded and may
become very large in the presence of large gradients
in the potential energy. However, the size of the θ
update is bounded by εc and therefore the stability
of the proposed sampler can be controlled. This be-
haviour is essential for good algorithmic performance
on complex models such as neural networks, where the
scales of gradients can vary significantly across different
parameters and may not be indicative of the optimal
scales of parameter changes. This is consistent with
past experiences optimising neural networks, where it
is important to adapt the learning rates individually
for each parameter so that typical parameter changes
stay in a sensible range [15, 16, 17, 18, 21]. Such adap-
tation techniques have also been explored for stochastic
gradient MCMC techniques [22, 23], but we will ar-
gue in Sections 3.2 and 5 that they introduce another
form of instability that is not present in the relativistic
approach.

3 Relativistic Stochastic Gradient
Markov Chain Monte Carlo

In recent years stochastic gradient MCMC (SGMCMC)
algorithms have been very well explored as methods
to scale up Bayesian learning by using mini-batches
of data [7, 10, 9, 8, 24]. In this section we develop
relativistic variants of SGHMC [10] and SGNHT [9, 24].
These algorithms include momenta, which serve as
reservoirs of previous gradient computations, thus can
integrate and smooth out gradient signals from previous
mini-batches of data. As noted earlier, because the
momentum can be large, particularly as the stochastic

gradients can have large variance, the resulting updates
to θ can be overly large, and small values of the step
size are required for stability, leading potentially to
slower convergence. This motivates our development
of relativistic variants.

We make use of the framework of [8] for deriving SGM-
CMC algorithms. Let z be a collection of variables
with target distribution f(z) ∝ e−H(z). Let D(z)
be a symmetric positive-definite diffusion matrix and
Q(z) be a skew-symmetric matrix describing an energy-
conserving dynamics. [8] showed that a diffusion pro-
cess has f(z) as its equilibrium distribution if and only
if it has the following form:

dz = −[D(z) +Q(z)]∇H(z)dt+ Γ(z)dt+
√

2D(z)dW

Γi(z) =
d∑
j=1

∂[Dij(z)+Qij(z)]
∂zj

, (5)

where W is the d-dimensional Wiener process (Brow-
nian motion) and Γ(z) is a correction factor which
can be computed from D and Q. To derive a correct
SGMCMC algorithm, one just has to choose D and
Q, compute Γ, discretise the SDE, and substitute a
stochastic estimate ∇Ũ(z) for ∇U(z). The stochastic
gradient has asymptotically negligible variance com-
pared to the noise injected by W for small step sizes.
In the following, we will derive a range of relativistic
algorithms using different choices of the state space, D
and Q.

As a historical aside, the work of [8] brings together
beautifully a number of disparate partial results in
the applied mathematics and physics literature which
we would like to highlight. In the case of constant
diffusion matrix D(z) = D0, the result goes back to
[25]. Moreover, the characterization result of [8] follows
from two observations. The first is to characterise SDEs
with a prescribed invariant distribution using implicit
divergence free vector fields, which appeared in, e.g.,
[26]. The second consists of an explicit expression of
these vector fields in terms of skew-symmetric “steam”
matrices Q. This is well known in the stochastic fluid
dynamic literature, see e.g. [27].

3.1 Relativistic Stochastic Gradient
Hamiltonian Monte Carlo

Suppose our noisy gradient estimate ∇Ũ(θ) of ∇U(θ)
is based on a minibatch of data. Then, appealing to the
central limit theorem, we can assume that ∇Ũ(θ) ≈
∇U(θ) +N (0, B(θ)). Let z = (θ, p) and H(z) be the
relativistic Hamiltonian in (2). Choosing

D(z) =
(

0 0
0 D

)
, Q(z) =

(
0 −I
I 0

)
, (6)
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and thus Γ(z) = 0, where D is a fixed symmetric
diffusion matrix results in the following relativistic
SGHMC dynamics:(
dθ
dp

)
=
(

M−1(p)p
−∇U(θ)−DM−1(p)p

)
dt+

(
0 0
0
√

2D

)
dWt

Using a simple Euler-Maruyama discretisation, the
relativistic SGHMC algorithm is,

pt+1 ← pt − εt∇Ũ(θt)− εtDM−1(pt)pt
+N (0, εt(2D − εtB̂t))

θt+1 ← θt + εtM
−1(pt+1)pt+1 (7)

where B̂ is an estimate of the noise coming from the
stochastic gradient B(θ). The term DM−1(p)p can
be interpreted as friction, which prevents the kinetic
energy to build up and corrects for the noise coming
from the stochastic gradient.

It is useful to compare RSGHMC with preconditioned
SGLD [22, 23], which attempts to adapt the SGLD
algorithm to the geometry of the space, using adap-
tations similar to RMSProp, Adagrad or Adam. The
relevant term above is the update M−1(pt+1)pt+1 to
θt+1:

M−1(pt+1)pt+1 = pt+1√
p>

t+1pt+1

c2 +m2
(8)

Note the surprising similarity to RMSProp, Adagrad
and Adam, with the main difference being that the
relativistic mass adaptation uses the current momen-
tum instead of being separately estimated using the
square of the gradient. This has the advantage that
the relativistic SGHMC enforces a maximum speed of
change. In contrast, as we also observe in Section 5,
preconditioned SGLD has the following failure mode:
when the gradient is small, the adaptation scales up the
gradient so that the gradient update has a reasonable
size. However it also scales up the injected noise, which
can end up being significantly larger than the gradient
update, and making the algorithm unstable.

3.2 Relativistic Stochastic Gradient Descent
(with Momentum)

Motivated by the relationship to RMSprop, Adagrad
and Adam, we develop a relativistic stochastic gradient
descent (RSGD) algorithm with momentum by taking
the zero-temperature limit of the RSGHMC dynamics.
This idea connects to Santa [28], a recently developed
algorithm where an annealing scheme on the system
temperature makes it possible to obtain a stochastic
optimization algorithm starting from a Bayesian one.

From thermodynamics [29], the canonical (Gibbs Boltz-
mann) density is proportional to e−βU(z), where β is

the inverse temperature. Previously we have been using
β = 1, which corresponds to the posterior distribution.
For general β,(

dθ
dp

)
=
(

βM−1(p)p
β
(
−∇U(θ)−DM−1(p)p

)) dt
+
(

0 0
0
√

2D

)
dW

By taking β → ∞ the target distribution becomes
more peaked around the MAP estimator. Simulated
annealing [30, 31, 28], which increases β → ∞ over
time, forces the sampler to converge to a MAP estima-
tor. We can derive RSGD by rescaling time as well,
guaranteeing a non-degenerate limit process. Letting
θ̂(t) = θ(βt), p̂(t) = p(βt), so that(

dθ̂
dp̂

)
=
(

M−1(p̂)p̂
−∇U(θ̂)−DM−1(p̂)p̂

)
dt

+
(

0 0
0
√

2D
β

)
dW

and letting β →∞, we obtain the following ODE:(
dθ
dp

)
=
(

M−1(p)p
−∇U(θ)−DM−1(p)p

)
dt

Discretising the above then gives RSGD. Notice that if
the above converges, i.e. θ̇ = ṗ = 0, it does so at a crit-
ical point of U . Similar to other adaptation schemes,
RSGD adaptively rescales the learning rates for dif-
ferent parameters, which enables effective learning es-
pecially in high dimensional settings. Moreover, the
update in each iteration is upper bounded by the speed
of light. Our algorithm differs from others through
the use of a momentum, and adapting based on the
momentum instead of the average of squared gradients.

4 A Stochastic Gradient Nosé-Hoover
Thermostat for Relativistic
Hamiltonian Monte Carlo

Borrowing a second concept from physics, SGHMC can
be improved by introducing a dynamic variable ξ that
adaptively increases or decreases the momenta. The
new variable ξ can be thought of as a thermostat in a
statistical physics setting and its dynamics expressed
as

dξ = 1
d

(
pT p− d

)
dt. (9)

The idea is that the system adaptively changes the
friction for the momentum, ‘heating’ or ‘cooling down’
the system. The dynamics of this new variable, known
as Nosé-Hoover [32] thermostat due to its links to sta-
tistical physics, has been shown to be able to remove
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the additional bias due to the stochastic gradient pro-
vided that the noise is isotropic Gaussian and spatially
constant ([9],[20]). In general, the noise is neither Gaus-
sian, spatially constant or isotropic. Nevertheless, there
is numerical evidence that the thermostat increases sta-
bility and mixing. Heuristically, the dynamics for ξ can
be motivated by the fact that in equilibrium we have

E
[
∂2K

∂p2
i

]
=
∫
∂2K

∂p2
i

e−K(p)dp

= −
∫
∂K

∂pi

(
−∂K
∂pi

e−K(p)
)
dp

= E

[(
∂K

∂pi

)2
]
.

Since ∂K
∂pi

= pi and ∂2K
∂p2

i
= 1 this implies

E
[
dξ

dt

]
= E

[
1
d

∑
i

((
∂K

∂pi

)2
− ∂2K

∂p2
i

)]
= 0

The additional dynamics pushes the system towards
dξ
dt = 0, suggesting that the distribution will be moved
closer to the equilibrium. This gives a recipe for a
stochastic gradient Nosé-Hoover thermostat with a
general kinetic energy K(p).

We first augment the Hamiltonian with ξ:

H(q, p, ξ) = U(q) +K(p) + d

2(ξ −D)2.

We are now in the position to derive the SDE preserving
the probability density ∝ exp(−H) by adopting the
framework of [8] and defining:

H(θ, p, ξ) = U(θ) +K(p) + d

2(ξ −D)2

D(θ, p, ξ) =

 0 0 0
0 D · I 0
0 0 0


Q(θ, p, ξ) =

 0 −I 0
I 0 ∇K(p)/d
0 −∇K(p)T /d 0

 .

From (5) it follows that Γ = (0 0 −∆K(p)/d)T and
the dynamics becomesdθdp

dξ

 =

 ∇K(p)
−∇Ũdt− ξ∇K(p)

1
d

(
‖∇K(p)‖2 −∆K(p)

)
 dt

+

0 0 0
0
√

2D 0
0 0 0

 dWt

where ∆ is the Laplace operator defined as ∆K(p) =∑
i
∂2K(p)
∂p2

i
. For the relativistic kinetic energy

K(p), we have that ∇pK(p) = M−1(p)p with

M(p) := m
(
pT p
m2c2 + 1

) 1
2 a scalar and that ∆K(p) =

tr
(
d
dp

( 1
dM

−1(p)p
))

. The Stochastic Gradient Nosé-
Hoover Thermostat for relativistic HMC follows:

dθdp
dξ

 =

 M−1(p)p
−∇Ũ − ξM−1(p)p

pT p
d

(
M−2(p) + c−2M−3(p)

)
−M−1(p)

 dt

+

0 0 0
0
√

2D 0
0 0 0

 dWt.

5 Experiments

5.1 Synthetic data

All the experimental results in this section are based
on the independent-momenta versions (4) as they give
superior results. We first explore the performances
of the algorithms on a set of small examples includ-
ing a two dimensional banana function (Banana) [33]
with density p(x) ∝ exp{−0.5(0.01x2

1 + (x2 + 0.1x2
1 −

10)2)}, and Gaussian mixture models (GMM1, GMM2,
GMM3) obtained by combining the three following
Gaussian random variables with equal mixing pro-
portions: N (−5, 1/σ2), N (0, σ2), N (5, 1/σ2), where
σ2 = 1, 0.5, 0.3. When σ2 = 1 the three Gaussians
have the same variance, while a lower σ2 means larger
discrepancies between their variances and thus a wider
range of length scales and log density gradients. The
density plots of the examples can be found in the top
row of Figure 3.

We start with an exploration of the behaviour of RHMC
as the tuning parameters m, c and ε are varied. First
we considered the effective sample sizes (ESS) of the al-
gorithm on the Banana and GMM1 datasets. We varied
both ε and ε× c over a grid, and computed the average
ESS, over 20 chains, each of length 104 for Banana,
and over 100 chains of length 105 for GMM1. The ESS
contour plots can be found in Figure 1, which suggests
that εc and ε can be independently tuned. While ε
controls the time discretisation of the continuous-time
dynamics, εc controls the maximum change in the pa-
rameters at each leapfrog step. Next we varied the mass
parameter m for GMM1, showing plots in Figure 2. As
expected the ESS is optimised at an intermediate value
of m, and the average “cruising speed” v̄ decreases
with m. In order to understand how to tune m, on the
third panel we overlaid two contour plots: one for ESS
and the other for v̄. We see that the cruising speed
v̄ correlates much better with the ESS than m does,
which suggests that m should be tuned via v̄, e.g. by
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Figure 1: ESS contour plots of ε× c versus ε for Banana and GMM1 models.
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Figure 2: Varying m for GMM1. From left to right: ESS, cruising speed (the red horizontal line is c), and ESS
and relative cruising speed v̄/c contour plots versus m and ε.

the user specifying a desired value for v̄ and m being
adapted to achieve the speed (noting that m and v̄
have a monotonic relationship, which makes for easy
adaptation).

We next compare the performances of NHMC and
RHMC for a wide range of stepsizes, via the ESS (higher
better), the mean absolute error (MAE) between the
true probabilities and the histograms of the sample fre-
quencies (lower better), and the log Stein discrepancy
[34] (lower better). The Stein discrepancy is a more ac-
curate measure of sample quality, the reason being that
it can be used to bound the Wasserstein distance, thus
accounting for bias and insufficient exploration of the
target. The results can be found in rows 2-4 of Figure 3.
It can be seen that RHMC achieves better performance
and is strikingly more robust to the step size ε than
NHMC. As expected, this behaviour is particularly pro-
nounced when the step size is large. Moreover, when
the gradients of the target model span a large range of
values (GMM2, GMM3), the improvements yielded by
the relativistic variants are more pronounced. These
results confirm that, since the speed of particles is
bounded by c, RHMC is less sensitive to the presence
of large gradients in the target density and more stable
with respect to the choice of ε, allowing for a more
efficient exploration of the target density.

Next we compare both the Newtonian and relativistic
variants of HMC and SGMCMC algorithms on a sim-
ulated 3-dimensional logistic regression example with
500 observations. For the stochastic versions of the
algorithms, we use mini-batches of size 100. After a
burn-in period of 1000 iterations, we calculated the
Stein discrepancy for different ε while keeping the prod-
uct ε× c fixed. To make a fair comparison in terms of
computational time, we used 200 samples for NHMC
and RHMC and 1000 samples for the SGMCMC al-
gorithms. From Figure 4, we see that the relativistic
variants are significantly more robust than the Newto-
nian variants. The NHT algorithms were able to correct
for stochastic gradient noise and performed better than
SGHMC algorithms. Particularly, RSGNHT had lower
Stein discrepancies than the other algorithms for most
values of ε.

5.2 Neural Networks

Turning to more complex models, we first considered a
neural network with 50 hidden units and initialised its
weights by the widely used Xavier initialisation. We
used the Pima Indians dataset for binary classification
(552 observations and 8 covariates) to compare the
relativistic and the preconditioning approach. Indeed,
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Figure 3: Left to right: Banana, GMM1, GMM2, GMM3 datasets. Top to bottom: density plot, ESS versus step
size ε, MAE versus ε, log stein discrepancy versus ε.
these methods represent two different ways to normalise
gradients so that the update sizes are reasonable for the
local lengthscale of the target distribution. In particu-
lar we consider SGLD Adam, namely a preconditioned
SGLD algorithm with an additional Adam-style debias-
ing of the preconditioner. Figure 5 compares the test-
set accuracy of SGLD Adam with RSGD and RHMC,
showing that the first is significantly outperformed by
the relativistic algorithms. Due to Xavier initialization
all of the weights are small, which causes small gradi-
ents; therefore, the injected noise becomes very large
due to the rescaling by the inverse of squared root of the
average gradients, which makes SGLD Adam unstable.
The histograms reveal that at the first iteration the pre-
conditioning causes the weights to become extremely
large and this strongly compromises the performance
of SGLD Adam, which takes a long time to recover.
The relativistic framework represents therefore a much
better approach to perform adaptation of the learning
rates specific to each parameter.

We then apply our algorithms to the standard MNIST
dataset, which consists of 28 × 28 handwritten digi-
tal images from 10 classes with a training set of size
60, 000 and a test set of size 10, 000. We tested our
optimization algorithm on a single layer with 100 hid-

Figure 4: Stein discrepancy versus stepsize ε for logistic
regression. NSGHMC and NSGNHT were unstable for
ε > 6 × 10−3 and thus their Stein discrepancies were
not plotted.

den units and two multi-layer neural networks with
500∗300 and 400∗400 hidden units. In Figure 6 a com-
parison with Adam and Santa [28] is displayed (their
relation is discussed in more detail in Section 3.2). As
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Figure 5: Comparison between RSGD, RHMC and SGLD Adam on the Pima Indians dataset using 50 hidden
units. The histograms show the neural network weights at the first iteration.

Figure 6: Comparison of the test-set error rate on the MNIST dataset. From left to right: 100 hidden units;
500 ∗ 300 hidden units; 400 ∗ 400 hidden units.

the goal of these experiments is to compare stochastic
optimizers, we consider Santa SGD, namely Santa in
its zero-temperature limit. In addition, we adopt an
Euler integration scheme for all algorithms, since the
improvements yielded by higher-order integrators are
orthogonal to the specific algorithm. It can be observed
that our algorithm is competitive with Adam and is
able to achieve a lower error rate, particularly with
the 100 hidden units architecture. Moreover, RSGD
performs significantly better than Santa SGD on all
the considered architectures.

6 Conclusion

Our numerical experiments demonstrate that the rel-
ativistic algorithms developed in this paper are much
more stable and robust to the choice of parameters and
noise in stochastic gradients compared to the Newto-
nian counterparts. Moreover, while the standard New-
tonian algorithms also require parameter tuning, in
the relativistic setting we have a clearer understanding
of how each parameter affects performance: εc and m
respectively control the maximal parameter change and
the average speed. This direct interpretation simplifies
tuning and is used consistently across experiments to
select parameters, achieving improved performance for
a wider range of parameters.

The connection of our algorithms with popular stochas-
tic optimizers such as Adam and RMSProp is novel and
gives an interesting perspective to understand them.
Moreover, the relativistic stochastic gradient descent
showed to be very competitive with state of the art
stochastic gradient methods for fitting neural nets. We
anticipate a variety of algorithms with different kinetic
energies to be developed following our work.

Each of the proposed methodologies has scope for fur-
ther research. The HMC version of the algorithm could
be improved by some more advanced HMC methodol-
ogy such as the NUTS version [4] and partial moment
refreshment instead of Adaptive Rejection Sampling
[2]. Additionally, better numerical integration schemes
could be employed. Finally, we leave an in-depth er-
godic theory as an interesting avenue for future work.
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